$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 46}$ 2011

C. CARPINTERO, N. RAJESH AND E. ROSAS

ON A CLASS OF (γ, γ') -PREOPEN SETS IN A TOPOLOGICAL SPACE

ABSTRACT. In this paper we have introduced the concept of (γ, γ') -preopen sets in topological space.

KEY WORDS: topological spaces, preopen set, (γ, γ') -open set, (γ, γ') -preopen set.

AMS Mathematics Subject Classification: 54A05, 54A10, 54D10.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara [1] defined the concept of an operation on topological spaces and introduced the concept of γ -closed graphs of a function. In 1992, Umehara et. al. [4] introduced a new class of open sets called (γ, γ') -open sets into the field of General Topology. In this paper, we have introduced and studied the notion of (γ, γ') -preopen sets by using operations γ and γ' on a topological space (X, τ) . We also introduced (γ, γ') -precontinuous functions and (γ, γ') -prehomeomorphisms and investigate some important properties.

2. Preliminaries

The closure and the interior of A of X are denoted by $\operatorname{Cl}(A)$ and $\operatorname{Int}(A)$, respectively. A subset A of X is said to be preopen [2] $A \subset \operatorname{Int}(\operatorname{Cl}(A))$.

Definition 1 ([1]). Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$. **Definition 2.** Let (X, τ) be a topological space. An operation γ is said to be regular [1] if, for every open neighborhood U and V of each $x \in X$, there exists an open neighborhood W of x such that $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$.

Definition 3. A subset A of a topological space (X, τ) is said to be (γ, γ') -open set [4] if for each $x \in A$ there exist open neighbourhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of (γ, γ') -open set is called (γ, γ') -closed. $\tau_{(\gamma, \gamma')}$ denotes set of all (γ, γ') -open sets in (X, τ) .

Definition 4. The point $x \in X$ is in the (γ, γ') -closure [4] of a set $A \subset X$ if $(U^{\gamma} \cup W^{\gamma'}) \cap A \neq \emptyset$ for every open neighbourhoods U and W of X. The (γ, γ') -closure of a set A is denoted by $\operatorname{Cl}_{(\gamma, \gamma')}(A)$.

Definition 5 ([4]). For a subset A of (X, τ) , $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)$ denotes the intersection of all (γ, γ') -closed sets containing A, that is, $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A) = \bigcap \{F : A \subset F, X \setminus F \in \tau_{(\gamma,\gamma')} \}.$

Definition 6. A topological space (X, τ) is said to be (γ, γ') -regular [4] if for each $x \in X$ and for every open neighborhood U of x there exist open neighborhoods W and S of x such that $W^{\gamma} \cup S^{\gamma'} \subset U$.

Definition 7. Let A be any subset of X. The $\tau_{(\gamma,\gamma')}$ -Int(A) is defined as $\tau_{(\gamma,\gamma')}$ -Int(A) = $\bigcup \{U : U \text{ is a } (\gamma,\gamma')\text{-open set and } U \subset A \}.$

3. (γ, γ') -preopen sets

Definition 8. Let (X, τ) be a topological space and γ , γ' be operations on τ . A subset A of X is said to be (γ, γ') -preopen if $A \subset \tau_{(\gamma, \gamma')} - \text{Int}(\tau_{(\gamma, \gamma')} - \text{Cl}(A))$.

Remark 1. The set of all (γ, γ') -preopen sets of a topological space (X, τ) is denoted as $\tau_{(\gamma, \gamma')} - PO(X)$.

Example 1 ([4]). Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows: for every $A \in \tau$, $A^{\gamma} = A \cup \{a\}$ and

$$A^{\gamma'} = \begin{cases} A, & \text{if } A = \{a\}, \\ A \cup \{c\}, & \text{if } A \neq \{a\}. \end{cases}$$

Then $\tau_{(\gamma,\gamma')} - PO(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}.$

Theorem 1. If A is a (γ, γ') -open set in (X, τ) , then it is (γ, γ') -preopen set.

Proof. Clear.

Remark 2. The converse of the above Theorem need not be true. From the Example 1, we have $\{a, b\}$ is (γ, γ') -preopen set but it is not (γ, γ') -open.

Remark 3. By Theorem 1 and Remark 2, we have $\tau_{(\gamma,\gamma')} \subset \tau_{(\gamma,\gamma')} PO(X,\tau)$.

Remark 4. The following examples show that the concepts preopeness and (γ, γ') -preopeness set are independent.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows: for every $A \in \tau$, $A^{\gamma} = A \cup \{a\}$ and

$$A^{\gamma'} = \begin{cases} A, & \text{if } a \in A, \\ \operatorname{Cl}(A), & \text{if } a \notin A. \end{cases}$$

Then $\tau_{(\gamma,\gamma')} - PO(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Clearly, the set $\{b\}$ is preopen but not (γ, γ') -preopen in (X, τ) .

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A, & \text{if } b \notin A, \\ \operatorname{Cl}(A), & \text{if } b \in A. \end{cases}$$

and

$$A^{\gamma'} = \begin{cases} A \cup \{b\}, & \text{if} \quad b \notin A, \\ A \cup \{a\}, & \text{if} \quad b \in A. \end{cases}$$

Then $\tau_{(\gamma,\gamma')} - PO(X) = \mathcal{P}(X) \setminus \{\{c\}\}$. Clearly, the set $\{b, c\}$ is (γ, γ') -preopen but not preopen in (X, τ) .

Theorem 2. If (X, τ) is (γ, γ') -regular space, then the concept of (γ, γ') -preopen and preopen coincide.

Proof. Follows from Proposition 2.6(i) of [4].

Theorem 3. Let γ and γ' be operations on τ and $\{A_{\alpha}\}_{\alpha \in \Delta}$ be the collection of (γ, γ') -preopen sets of (X, τ) , then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is also a (γ, γ') -preopen set.

Proof. Since each A_{α} is (γ, γ') -preopen and $A_{\alpha} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$, implies that $\bigcup_{\alpha \in \Delta} A_{\alpha} \subset \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\bigcup_{\alpha \in \Delta} A_{\alpha}))$. Hence $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is also a (γ, γ') -preopen set in (X, τ) .

Remark 5. If A and B are any two (γ, γ') -preopen sets in (X, τ) , then $A \cap B$ need not be (γ, γ') -preopen in (X, τ) . From the Example 3, we have $\{a, c\}$ and $\{b, c\}$ are (γ, γ') -preopen set but their intersection is not a (γ, γ') -preopen set in (X, τ) .

Lemma 1. Let (X, τ) be a topological space and γ , γ' operations on τ and A be the subset of X. Then the following are holds good:

(i) $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A).$

(ii) $\tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')}) - \operatorname{Int}(A) = \tau_{(\gamma,\gamma')} - \operatorname{Int}(A).$

(*iii*) $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A) = X \setminus \tau_{(\gamma,\gamma')} - \operatorname{Int}(X \setminus A)).$

(iv) $\tau_{(\gamma,\gamma')} - \operatorname{Int}(A) = X \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus A)$).

Proof. Straightforward.

Lemma 2. Let (X, τ) be a topological space and γ, γ' regular operations on τ and A be the subset of X. Then

(i) for every (γ, γ') -open set G and every subset $A \subset X$ we have $\tau_{(\gamma, \gamma')}$ - $\operatorname{Cl}(A) \cap G \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A \cap G).$

(ii) for every (γ, γ') -closed set F and every subset $A \subset X$ we have $\tau_{(\gamma,\gamma')} - \operatorname{Int}(A \cup F) \subset \tau_{(\gamma,\gamma')} - \operatorname{Int}(A) \cup F.$

Proof. (i) Let $x \in \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A) \cap G$, then $x \in \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)$ and $x \in G$. Let V be the (γ, γ') -open set containing x. Then by Proposition 2.7 of [4], $V \cap G$ is also (γ, γ') -open set containing x. Since $x \in \tau_{(\gamma, \gamma')} - \operatorname{Cl}(A)$, we have $(V \cap G) \cap A \neq \emptyset$. This implies that $V \cap (G \cap A) \neq \emptyset$. This is true for every V containing x, hence by Proposition 3.3(i) of [4] $x \in \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A \cap G)$. Therefore, $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A) \cap G \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A \cap G).$

(ii) Follows from (i) and Lemma 1(iv).

Theorem 4. Let (X, τ) be a topological space and γ, γ' regular operations on τ . Let A be a (γ, γ') -preopen and U be the (γ, γ') -open subset of X, then $A \cap U$ is also (γ, γ') -preopen set.

Proof. Follows from the Proposition 2.7 of [4] and Lemma 1.

Definition 9. Let (X, τ) be a topological space, a subset A of X is said to be:

(i) (γ, γ') -dense if $\tau_{(\gamma, \gamma')} - \operatorname{Cl}(A) = X$. (ii) (γ, γ') -nowhere dense if $\tau_{(\gamma, \gamma')} - \operatorname{Int}(\tau_{(\gamma, \gamma')} - \operatorname{Cl}(A)) = \emptyset$.

Theorem 5. Let (X, τ) be a topological space and γ, γ' regular operations on τ . Then a subset N of X is (γ, γ') -nowhere dense if and only if any one of the following conditions holds:

(i) $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)) = X.$

(*ii*) $N \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)).$

(iii) Every nonempty (γ, γ') -open set U contains a nonempty (γ, γ') -open set A disjoint with N.

Proof. (i) $\tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)) = \emptyset$ if and only if $X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))) = \emptyset$ if and only if $X \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$ if and only if $X = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$.

(*ii*) $N \subset X = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$ by (*i*). Conversely, $N \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$, implies $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N) \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$. Since $X = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N) \cup (X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$, implies $X \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N))) \cup (X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N))) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$. Hence $X = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)))$.

(*iii*) Let N be a (γ, γ') -nowhere dense subset of X, then $\tau_{(\gamma,\gamma')} - \operatorname{Int}(X \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)) = \emptyset$. This implies $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)$ does not contain any (γ, γ') -open set. Hence for any nonempty (γ, γ') -open set U, $U \setminus (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)) \neq \emptyset$. Thus by Proposition 2.7 of [4] $A = U \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)$ is a nonempty (γ, γ') -open set contained in U and disjoint with N. Conversely, if for any given nonempty (γ, γ') -open set U, there exists a nonempty (γ, γ') -open set A such that $A \subset U$ and $A \cap N = \emptyset$, then $N \subset X \setminus A$, $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N) \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(X \setminus A) = X \setminus A$. Therefore, $U \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N) \supset U \setminus (X \setminus A) = U \cap A = A \neq \emptyset$. Thus, $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)$ does not contain any nonempty (γ, γ') -open set. This implies $\tau_{(\gamma,\gamma')} - \operatorname{Int}(X \setminus \tau_{(\gamma,\gamma')} - \operatorname{Cl}(N)) = \emptyset$. Hence N is (γ, γ') -nowhere dense set in X.

Theorem 6. Let (X, τ) be a topological space and γ , γ' operations on τ . Then for every $x \in X$, $\{x\}$ is either (γ, γ') -preopen or (γ, γ') -nowhere dense set.

Proof. Suppose $\{x\}$ is not (γ, γ') -preopen, then $\tau_{(\gamma, \gamma')} - \operatorname{Int}(X \setminus \tau_{(\gamma, \gamma')} - \operatorname{Cl}(\{x\})) = \emptyset$. This implies $\{x\}$ is (γ, γ') -nowhere dense set in X.

Definition 10. A topological space X is said to be (γ, γ') -submaximal if every (γ, γ') -dense subset of X is (γ, γ') -open.

Theorem 7. Let (X, τ) be a topological space in which every (γ, γ') -preopen set is (γ, γ') -open, then (X, τ) is (γ, γ') -submaximal.

Proof. Let A be a (γ, γ') -dense subset of (X, τ) . Then $A \subset \tau_{(\gamma, \gamma')} - \operatorname{Int}(\tau_{(\gamma, \gamma')} - \operatorname{Cl}(A))$. This implies A is a (γ, γ') -preopen set. Therefore, from the assumption it is (γ, γ') -open. Hence (X, τ) is (γ, γ') -submaximal.

Definition 11. Let A be a subset of a topological space (X, τ) and γ, γ' be operations on τ . Then a subset A of X is said to be (γ, γ') -preclosed if and only if $X \setminus A$ is (γ, γ') -preopen, equivalently a subset A of X is (γ, γ') -preclosed if and only if $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)) \subset A$.

Remark 6. The set of all (γ, γ') -preclosed sets of a topological space (X, τ) is denoted as $\tau_{(\gamma, \gamma')} - PC(X)$.

Definition 12. Let A be subset of a topological space (X, τ) and γ, γ' be operations on τ . Then

(i) the $\tau_{(\gamma,\gamma')}$ -preclosure of A is defined as intersection of all (γ,γ') -preclosed sets containing A. That is, $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(A) = \bigcap \{F : F \text{ is } (\gamma,\gamma')\text{-preclosed and } A \subset F \}$.

(ii) the $\tau_{(\gamma,\gamma')}$ -preinterior of A is defined as union of all (γ,γ') -preopen sets contained in A. That is, $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Int}(A) = \bigcup \{U : U \text{ is } (\gamma,\gamma')\text{-preopen} and U \subset A\}.$

The proof of the following theorem is obvious and therefore is omitted.

Theorem 8. Let A be a subset of a topological space (X, τ) and γ , γ' be operations on τ . Then

- (i) $\tau_{(\gamma,\gamma')}$ -pInt(A) is a (γ,γ') -preopen set contained in A.
- (ii) $\tau_{(\gamma,\gamma')}$ -p Cl(A) is a (γ,γ') -preclosed set containing A.
- (iii) A is (γ, γ') -preclosed if and only if $\tau_{(\gamma, \gamma')}$ -p Cl(A) = A.
- (iv) A is (γ, γ') -preopen if and only if $\tau_{(\gamma, \gamma')}$ -p Int(A) = A.

Remark 7. From the definitions, we have $A \subset \tau_{(\gamma,\gamma')} p \operatorname{Cl}(A) \subset \tau_{(\gamma,\gamma')} \operatorname{Cl}(A)$ for any subset A of (X, τ) .

Theorem 9. For a point $x \in X$, $x \in \tau_{(\gamma,\gamma')}$ -pCl(A) if and only if $V \cap A \neq \emptyset$ for all (γ, γ') -preopen set V of X containing x.

Proof. Let *E* be the set of all $y \in X$ such that $V \cap A \neq \emptyset$ for every $V \in \tau_{(\gamma,\gamma')} - PO(X)$ and $y \in V$. Now to prove the theorem it is enough to prove that $E = \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$. Let $x \in \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$ and $x \notin E$. Then there exists a (γ, γ') -preopen set *U* of *x* such that $U \cap A = \emptyset$. This implies $A \subset U^c$. Hence $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A) \subset U^c$. Therefore $x \notin \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$. This is a contradiction. Hence $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A) \subset E$. Conversely, let *F* be a set such that $A \subset F$ and $X \setminus F \in \tau_{(\gamma,\gamma')} - PO(X)$. Let $x \notin F$, then we have $x \in X \setminus F$ and $(X \setminus F) \cap A = \emptyset$. This implies $x \notin E$. Hence $E \subset \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$.

Theorem 10. Let (X, τ) be a topological space and γ , γ' be regular operations on τ and A be a subset of X. Then the following holds:

(i)
$$\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(A) = A \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)).$$

(ii) $\tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) = A \cap \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A))$

Proof. (i) $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))) \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Cl} - \operatorname{Int}(A))) \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)) \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)) \subset A \cup (\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)))$. Hence $A \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))$ is a (γ,γ') - preclosed set

containing A. Therefore, $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A) \subset A \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))$. Conversely, $\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)) \subset \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A))) \subset \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$ since $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$ is a (γ,γ') -preclosed set. Hence $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A) = A \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))$. (*ii*) Follows from (*i*) and Lemma 1(i).

Remark 8. If the conditions of γ , γ' are omitted in the above Theorem, it may be false. See Example 3.

Corollary 1. Let (X, τ) be a topological space and γ , γ' be regular operations on τ and A be a subset of X. Then the following holds good:

(i)
$$\tau_{(\gamma,\gamma')} - p \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)).$$

 $\begin{array}{l} (ii) \ \tau_{(\gamma,\gamma')} - p \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)).\\ (iii) \ \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))).\\ \operatorname{Int}(A))). \end{array}$

$$(iv) \ \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A))).$$

Proof. (i) By Theorem 10(ii), $\tau_{(\gamma,\gamma')} - p \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A) \cap \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A))) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(A) \cap \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)).$

(*ii*) By Theorem 10(i), $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)) = \tau_{(\gamma,\gamma')} - \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A)).$ (*iii*) and (*iv*) follows from (*i*) and (*ii*), respectively.

Theorem 11. Let (X, τ) be a topological space and γ , γ' be regular operations on τ and A be a subset of X. Then $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(\tau_{(\gamma,\gamma')} - p\operatorname{Int}(A)) = \tau_{(\gamma,\gamma')} - p\operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Int}(A))).$

Proof. Since $\tau_{(\gamma,\gamma')} \subset \tau_{(\gamma,\gamma')} - PO(X)$, implies $\tau_{(\gamma,\gamma')} - \text{Int}(A) \subset \tau_{(\gamma,\gamma')} - p \text{Int}(A) = \tau_{(\gamma,\gamma')} - \text{Int}(A)$. By Theorem 10(i), $\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cap \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A)) = \tau_{(\gamma,\gamma')} - TL(A) \cup \tau_{(\gamma,\gamma')} - Cl(\tau_{(\gamma,\gamma')} - p \int(A) \cup$

Theorem 12. Let (X, τ) be a topological space and γ , γ' be operations on τ and A be a subset of X. Then V is (γ, γ') -preopen if and only if $V \subset \tau_{(\gamma,\gamma')} - p \operatorname{Int}(\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(V)).$

Proof. (i) Let V be (γ, γ') -preopen. Then $\tau_{(\gamma,\gamma')} - p \operatorname{Int}(V) = V$ and also $V \subset \tau_{(\gamma,\gamma')} - p \operatorname{Int}(\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(V))$. Conversely, let $V \subset \tau_{(\gamma,\gamma')} - p \operatorname{Int}(\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(V))$. Then $V \subset \tau_{(\gamma,\gamma')} - p \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(V)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(V) \cap \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(V)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(V) \cap \tau_{(\gamma,\gamma')} - \operatorname{Int}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(V)) = \tau_{(\gamma,\gamma')} - \operatorname{Cl}(V))$. Hence, V is (γ, γ') -preopen.

Definition 13. A subset A of (X, τ) is said to be (γ, γ') -pregeneralized closed if $\tau_{(\gamma,\gamma')}$ -p Cl(A) $\subset U$ whenever $A \subset U$ and U is (γ, γ') -preopen in (X, τ) .

Remark 9. In Example 2, the set $A = \{c\}$ is a (γ, γ') -pregeneralized closed and the set $B = \{a, b\}$ is not a (γ, γ') -pregeneralized closed.

Definition 14. A topological space (X, τ) is said to be (γ, γ') -pre- $T_{1/2}$ if every (γ, γ') -pregeneralized closed set in (X, τ) is (γ, γ') -preclosed.

Theorem 13. A subset A of (X, τ) is (γ, γ') -pregeneralized closed if and only if $\tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(\{x\}) \cap A \neq \emptyset$ holds for every $x \in \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(A)$.

Proof. Let U be any (γ, γ') -preopen set such that $A \subset U$. Let $x \in \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)$. By assumption there exists $z \in \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\})$ and $z \in A \subset U$. It follows from Theorem 9 that $U \cap \{x\} \neq \emptyset$. Hence $x \in U$. This implies $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \subset U$. Therefore A is (γ, γ') -pregeneralized closed set in (X, τ) . Conversely, suppose $x \in \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)$ such that $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\}) \cap A = \emptyset$. Since $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\})$ is (γ, γ') -preclosed set in (X, τ) , $(\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\}))^c$ is a (γ, γ') -preopen set of (X, τ) . Since $A \subset (\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\}))^c$ and A is (γ, γ') -pregeneralized closed, $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \subset (\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\}))^c$. This implies that $x \notin \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)$. This is a contradiction. Hence $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\}) \cap A \neq \emptyset$.

Theorem 14. A is a (γ, γ') -pregeneralized closed subset of a topological space (X, τ) , if and only if $\tau_{(\gamma, \gamma')}$ -p Cl(A)\A does not contain a nonempty (γ, γ') -preclosed set.

Proof. Suppose there exists a nonempty (γ, γ') -preclosed set F such that $F \subset \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)\setminus A$. Let $x \in F$, $x \in \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)$ holds. Then $F \cap A = \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(F) \cap A \supset \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(\{x\}) \cap A \neq \emptyset$. Hence $F \cap A \neq \emptyset$. This is a contradiction. Conversely, suppose that $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)\setminus A$ does not contain a nonempty (γ, γ') -preclosed set. Let $A \subset U$ and U a (γ, γ') -preopen set in (X, τ) , then $X \setminus U \subseteq X \setminus A$, follows $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \cap (X \setminus U) \subseteq \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \cap (X \setminus A) = \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)\setminus A$. If we take $F = \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \cap (X \setminus U)$, F is a (γ, γ') -preclosed set and $F \subseteq \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \setminus A$. Therefore $F = \emptyset$, in consequence, $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \subseteq U$ and follows that A is (γ, γ') -pregeneralized closed set.

Theorem 15. For each $x \in X$, $\{x\}$ is (γ, γ') -preclosed or $\{x\}^c$ is (γ, γ') -pregeneralized closed set in (X, τ) .

Proof. Suppose that $\{x\}$ is not (γ, γ') -preclosed, then $X \setminus \{x\}$ is not (γ, γ') -preopen. Let U be any (γ, γ') -preopen set such that $\{x\}^c \subset U$. Since

 $U = X, \tau_{(\gamma,\gamma')} - p \operatorname{Cl}(\{x\}^c) \subset U$. Therefore, $\{x\}^c$ is (γ, γ') -pregeneralized closed.

Theorem 16. A topological space (X, τ) is (γ, γ') -pre- $T_{1/2}$ space if and only if every singleton subset of X is (γ, γ') -preclosed or (γ, γ') -preopen in (X, τ) .

Proof. Let $x \in X$. Suppose $\{x\}$ is not (γ, γ') -preclosed. Then, it follows from assumption and Theorem 15 that $\{x\}$ is (γ, γ') -preopen. Conversely, Let F be a (γ, γ') -pregeneralized closed set in (X, τ) . Let x be any point in $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(F)$, then by assumption $\{x\}$ is (γ, γ') -preopen or (γ, γ') -preclosed.

Case (i): Suppose $\{x\}$ is (γ, γ') -preopen. Then by Theorem 13 we have $\{x\} \cap F \neq \emptyset$. This implies $\tau_{(\gamma, \gamma')} - p \operatorname{Cl}(F) = F$; hence (X, τ) is (γ, γ') -pre- $T_{1/2}$.

Case (*ii*): Suppose $\{x\}$ is (γ, γ') -preclosed. Assume $x \notin F$, then $x \in \tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(F)\setminus F$. This is not possible by Theorem 14. Thus, we have $x \in F$. Therefore, $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(F) = F$ and hence F is (γ, γ') -preclosed. It follows that (X, τ) is (γ, γ') -pre- $T_{1/2}$.

Remark 10. The space defined in Example 2, is (γ, γ') -pre- $T_{1/2}$ space.

3. (γ, γ') -precontinuous functions

Throughout this section let (X, τ) and (Y, σ) be two topological spaces and let $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ and $\beta, \beta' : \sigma \to \mathcal{P}(Y)$ be operations on τ and σ , respectively.

Definition 15. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (γ, γ') -precontinuous if for each $x \in X$ and each (β, β') -preopen set V containing f(x)there exists a (γ, γ') -preopen set U such that $x \in U$ and $f(U) \subset V$.

Theorem 17. Let $f : (X, \tau) \to (Y, \sigma)$ be an (γ, γ') -precontinuous function. Then the following hold:

(i) $f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)) \subset \sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(A))$ holds for every subset A of (X,τ) .

(ii) for every (β, β') -preclosed set B of (Y, σ) , $f^{-1}(B)$ is (γ, γ') -preclosed in (X, τ) .

Proof. (i) Let $y \in f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A))$ and V be any (β, β') -preopen set containing y. Then there exists $x \in X$ and (γ, γ') -preopen set U such that f(x) = y and $x \in U$ and $f(U) \subset V$. Since $x \in \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)$, we have $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$. This implies $x \in \sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(A))$. Therefore we have $f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)) \subset \sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(A))$.

(*ii*) Let B be a (β, β') -preclosed set in (Y, σ) . Therefore, $\sigma_{(\beta,\beta')}$ - $p \operatorname{Cl}(B) = B$. By using (*i*) we have $f(\tau_{(\gamma,\gamma')}$ - $b \operatorname{Cl}(f^{-1}(B)) \subset \sigma_{(\beta,\beta')}$ - $p \operatorname{Cl}(B) = B$. Therefore, we have $\tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(f^{-1}(B)) = f^{-1}(B)$. Hence $f^{-1}(B)$ is (γ, γ') -preclosed.

Definition 16. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (γ, γ') -preclosed if for any (γ, γ') -preclosed set A of (X, τ) , f(A) is a (β, β') -closed in Y.

Theorem 18. Suppose that f is (γ, γ') -precontinuous and (γ, γ') -preclosed function. Then,

(i) for every (γ, γ') -pregeneralized closed set A of (X, τ) , the image f(A) is (β, β') -pregeneralized closed.

(ii) for every (β, β') -pregeneralized closed set B of (Y, σ) , $f^{-1}(B)$ is (γ, γ') -pregeneralized closed.

Proof. (i) Let V be any (β, β') -preopen set in (Y, σ) such that $f(A) \subset V$. By using Theorem 17 (ii), $f^{-1}(V)$ is (γ, γ') -preopen in (X, τ) . Since A is (γ, γ') -pregeneralized closed and $A \subset f^{-1}(V)$, we have $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A) \subset f^{-1}(V)$, and hence $f(\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)) \subset V$. It follows that $f(\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A))$ is a (β, β') -preclosed set in Y. Therefore, $\sigma_{(\beta,\beta')}$ - $p\operatorname{Cl}(f(A)) \subset \sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A))) = f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A)) \subset V$. This implies f(A) is (β, β') -pregeneralized closed.

(ii) Let U be a (γ, γ') -preopen set of (X, τ) such that $f^{-1}(B) \subset U$. Put $F = \tau_{(\gamma,\gamma')} p \operatorname{Cl}(f^{-1}(B)) \cap U^c$. It follows that F is (γ, γ') -preclosed set in (X, τ) . Since f is (γ, γ') -preclosed, f(F) is (β, β') -preclosed in (Y, σ) . Then $f(F) \subset f(\tau_{(\gamma,\gamma')} p \operatorname{Cl}(f^{-1}(B) \cap U^c)) \subset \sigma_{(\beta,\beta')} - \operatorname{Cl}(f(f^{-1}(B)) \cap f(U^c)) \subset \tau_{(\gamma,\gamma')} - p \operatorname{Cl}(B) \setminus B$. This implies $f(F) = \emptyset$, and hence $F = \emptyset$. Therefore, $\tau_{(\gamma,\gamma')} - p \operatorname{Cl}(f^{-1}(B)) \subset U$. Hence $f^{-1}(B)$ is (γ, γ') -pregeneralized closed in (X, τ) .

Theorem 19. Let $f : (X, \tau) \to (Y, \sigma)$ be (γ, γ') -precontinuous and (γ, γ') -preclosed function. Then,

(i) If f is injective and (Y, σ) is (β, β') -pre- $T_{1/2}$, then (X, τ) is (γ, γ') -pre- $T_{1/2}$ space.

(ii) If f is surjective and (X, τ) is (γ, γ') -pre- $T_{1/2}$, then (Y, σ) is (β, β') -pre- $T_{1/2}$.

Proof. Straightforward.

Definition 17. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (γ, γ') -prehomeomorphism, if f is bijective, (γ, γ') -precontinuous and f^{-1} is (β, β') -precontinuous.

Theorem 20. Let $f : (X, \tau) \to (Y, \sigma)$ be (γ, γ') -prehomeomorphism. If (X, τ) is (γ, γ') -pre- $T_{1/2}$, then (Y, σ) is (β, β') -pre- $T_{1/2}$.

Proof. Let $\{y\}$ be a singleton set of (Y, σ) . Then, there exists a point x of X such that y = f(x) and by Theorem 16 that $\{x\}$ is (γ, γ') -preopen or (γ, γ') -preclosed. By using Theorem 18(i), then $\{y\}$ is (β, β') -preclosed or (β, β') -preopen. By Theorem 16, (Y, σ) is (β, β') -pre- $T_{1/2}$ space.

References

- [1] KASAHARA S., Operation-compact spaces, Math. Japonica, 24(1979), 97-105.
- [2] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEB S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [3] OGATA H., Operation on topological spaces and associated topology, Math. Japonica, 36(1)(1991), 175-184.
- [4] UMEHARA J., MAKI H., NOIRI T., Bioperation on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. (A), 3(1992), 45-59.

CARLOS CARPINTERO UNIVERSIDAD DE ORIENTE NUCLEO DE SUCRE CUMANA, VENEZUELA *e-mail:* ccarpi@sucre.udo.edu.ve

NEELAMEGARAJAN RAJESH DEPARTMENT OF MATHEMATICS KONGU ENGINEERING COLLEGE PERUNDURAI, ERODE-638 052, TAMILNADU, INDI *e-mail:* nrajesh_topology@yahoo.co.in

Ennis Rosas Universidad De Oriente Nucleo De Sucre Cumana, Venezuela *e-mail:* erosas@sucre.udo.edu.ve

Received on 09.03.2010 and, in revised form, on 17.06.2010.