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1. Introduction

The notion of 2-metric space was introduced by Gahler ([12], [13]). It
is generalization of usual notion of metric space (X, d). It has been de-
veloped extensively by Gahler and many other mathmaticians ([22], [23]).
The topology induced by 2-metric space is called 2-metric topology, which
is generated by the set of all open sphers with two centres. Many authors
used this topology in many applications for example EI Nachie [10] used this
sort of topology in physical applications. Many authors studied fixed point
theorems in 2-metric spaces (Hsiao [14], Iseki [15]).

In 1992, Dhage [4] introduced a new class of generalized metric spaces
called D-metric spaces. Dhage attempted to develop topological structures
in such spaces ([5], [6], [7]). But in 2003, Mustafa and Sims [22], proved that
the most of the claims concerning the fundamental topological structures of
D-metric spaces are incorrect.

Sessa [30], introduced the concept of weakly commuting maps. Jungck
[16] defined the notion of compatible maps in order to generalize the concept
of weak commutativity and showed that weakly commuting mappings are
compatible but the converse is not true.
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Jungck and Rhoades ([17], [18]) defined the concepts of δ-compatibility
between a set valued mappings and a single valued mappings.

Monsef et. al. [1] generalized some concept in 2-metric spaces for set
valued mappings. They also proved some common fixed point theorems in
2-metric spaces.

Fixed point theorems for set valued and single valued mappings provide
technique for solving variety of applied problems in mathmatical science and
engineering (e.g. Krzyska and Kubiaczyk [19], Sessa and khan [31]).

Pant ([25], [27]) initiated the study of noncompatible maps and intro-
duced pointwise R-weak commutativity of mappings in [25]. He also showed
that pointwise R-weak commutativity is a necessary, hence minimal, con-
dition for the existence of a common fixed point of contractive type maps
[26].

In 1998, Jungck and Rhoades [18] defined the concept of weak compat-
ibility. Pathak, Cho and Kang [28] introduced the concept of R-weakly
commuting maps of type (A) and showed that they are not compatible.

Recently, Kubiaczyk and Bhavana Deshpande [20] extended the concept
of R-weakly commutativity of type (A) for a pair of single valued mappings
to a single valued and a set valued mappings i.e. a hybrid pair of mappings
and introduced weak commutativity fo type (KB) which is weaker condition
than δ-compatibility.

It is well known that a δ-compatible pair of hybrid maps is weakly com-
muting of type (KB) but converse need not true for examples see Kubiazyk,
Deshpande [20], Sharma, Deshpande [32], Sharma, Deshpande, Pathak, [33]

In this paper, we prove common fixed point theorem of two hybrid pairs
of weakly commuting mappings of type (KB) satisfying an implicit relation
in 2-metric spaces our result generalizes and extends results of Aliouche [2],
Aliouche and Djoudi [3] and others.

Djoudi and Nisse [8], proved a common fixed point theorem of Gregus
type for weakly compatible single valued maps in a Banach space. We
extend, improve and generalize result of Djoudi and Nisse for hybrid pairs
of maps in 2-metric spaces by using weak commutativity of type (KB).

2. Preliminaries

Definition 1 ([11]). Let X denotes a nonempty set and R, the set of all
nonnegative numbers. Then X together with a function d : X×X×X → R,
is called a 2-metric space if it satisfies the following properties :

1. For distinct point x, y ∈ X, there exists a point c ∈ X such that
d(x, y, c) 6= 0 and d(x, y, c) = 0 if at least two of x, y and c are equal.

2. d(x, y, c) = d(x, c, y) = d(y, x, c) = d(y, c, x) = d(c, x, y) = d(c, y, x)
(symmetry).
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3. d(x, y, c) ≤ d(x, y, z)+d(x, z, c)+d(z, y, c) for x, y, z, c ∈ X. (Rectangle
in equality)

The function d is called a 2-metric for the space X and the pair (X, d)
denotes 2-metric space. It has been shown by Gahler in [11] that 2-metric d
is non-negative and although d is a continuous function of any of its three
arguments, it need not be continuous in two arguments. A 2-metric d which
is continuous in all of its arguments is said to be continuous.

Geometrically, the value of 2-metric d(x, y, c) represents the area of a
triangle with vertices x, y and c.

Throughout this paper, let (X, d) be a 2-metric space unless mentioned,
otherwise and B(X) is the class of all nonempty bounded subsets of X.

Definition 2 ([29]). A sequence {xn} in (X, d) is said to be convergent
to a point x in X, denoted by limn→∞ xn = x if limn→∞ d(xn, x, c) = 0 for
all c in X. The point x is called the limit of the sequence {xn} in x.

Definition 3 ([29]). A sequence {xn} in (X, d) is said to be a Cauchy
sequence if limn→∞ d(xm, xn, c) = 0 for all c in X.

Definition 4 ([29]). The space (X, d) is said to be complete if every
Cauchy sequence in X converges to a point of X.

Remark 1. We note that, in a metric space a convergent sequence is
a Cauchy sequence and in a 2-metric space a convergent sequence need not
be a Cauchy sequence, but every convergent sequence is a Cauchy sequence
when the 2-metric d is continuous on X [24].

For all A,B,C ∈ B(X), let δ(A,B,C) and D(A,B,C) be the functions
defined by

δ(A,B,C) = sup{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C}
D(A,B,C) = inf{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

If A consists of a single point a we write δ(A,B,C) = δ(a,B,C). If B and
C also consists of single points b and c, respectively, we write δ(A,B,C) =
D(A,B,C) = d(a, b, c). It follows immediately from the definition that:

δ(A,B,C) = δ(A,C,B) = δ(C,B,A) = δ(C,A,B) = δ(B,C,A)

= δ(B,A,C) ≥ 0,

δ(A,B,C) ≤ δ(A,B,E) + δ(A,E,C) + δ(E,B,C)

for all A,B,C,E ∈ B(X).

δ(A,B,C) = 0 if atleast two of A, B and C are equal singleton sets.

Definition 5 ([1]). A sequence {An} of subsets of a 2-metric space (X, d)
is said to be convergent to a subset A of X if -
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(i) given a ∈ A, there is sequence {an} in X such that an ∈ An for
n = 1, 2, 3, ..... and limn→∞ d(an, a, c) = 0.

(ii) given ε > 0, there exists a positive integer N such that An ⊆ Aε

for n > N where Aε is the union of all open spheres with centers in A and
radius ε.

Definition 6 ([1]). The mappings F : X → B(X) and f : X → X are
said to be weakly commuting on X if fFx ∈ B(x) and δ(Ffx, fFx,C) ≤
max{δ(fx, Fx, c), δ(fFx, fFx,C)}.

Note that if F is a single valued mapping, then the set fFx consists
of a single piont. Therefore δ(fFx, fFx,C) = d(fFx, fFx,C) = 0 and
the above inequality reduces to the condition given by Khan [21], that is
d(Ffx, fFx,C) ≤ d(fx, Fx,C).

Definition 7 ([1]). The mappings F : X → B(X) and f : X → X are
said to be δ-compatible if limn→∞ δ(Ffxn, fFxn, C) = 0, whenever {xn} is
a sequence in X such that fFx ∈ B(X), Fxn → {t} and fxn → t for some
t in X.

Definition 8 ([9]). The maps f : X → X and F : X → B(X) are said to
be D-maps iff there exists a sequence {xn} in X such that limn→∞ fxn = t
and limn→∞ Fxn = {t} for some t in X.

The authors of [2] and [3] proved common fixed point theorems for weakly
compatible single-valued maps in metric spaces. Our purpose here is to ex-
tend their results to the setting of single and set-valued maps.

Definition 9. The mappings F : X → B(X) and f : X → X are said
to be weakly commuting of type (KB) at x if there exists some positive real
number R such that δ(ffx, Ffx,C) ≤ Rδ(fx, Fx,C). Here F and f are
weakly commuting of type (KB) on X if the above inequality holds for all
x ∈ X.

Example 1. LetX = [0, 10] Define d(x, y, z) = min{|x−y|, |y−z|, |z−x|}
for all x, y, z in X. Define F : X → B(X) and f : X → X by Fx = [1, x]
and fx = x, for all x ∈ X, consider the sequence {xn} = {1− 1

n} in X, then
limn→∞ fxn = 1 ∈ {1} = limn→∞ Fxn. Therefore f and F are D-maps.
also limn→∞ δ(Ffxn, fFxn, C) = 0.

Thus the pair {f, F} is δ−compatible. We can see that there exists
positive real number R such that δ(ffx, Ffx,C) ≤ Rδ(fx, Fx,C), for all
x ∈ X. Thus the pair {f, F} is weakly commuting of type (KB).

Example 2. LetX = [0, 10] Define d(x, y, z) = min{|x−y|, |y−z|, |z−x|}
for all x, y, z in X. Define F : X → B(X) and f : X → X by Fx = [1, 2x]
and fx = 2x, for all x ∈ X. Consider the sequence {xn} = {1 − 1

n} in
X, then limn→∞ fxn = 2 ∈ [1, 2] = limn→∞ Fxn. Therefore f and F are
D-maps. also limn→∞ δ(Ffxn, fFxn, C) 6= 0.
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Thus the pair {f, F} is not δ−compatible. We can observe that the pair
{f, F} is weakly commuting of type (KB) at x = 0 for all real R ≥ 0.

Lemma 1 ([1]). If {An} and {Bn} are sequence in B(X) converging to
A and B in B(X), respectively, then the sequence {δ(An, Bn, C)} converges
to δ(A,B,C).

3. Implicit relation

Let Φ be the family of all continuous maps φ : R6
+ → R such that

(φ1): for all u, v ≥ 0 with
(φa) : φ(u, v, v, u, u+ v, 0) ≤ 0

or
(φb) : φ(u, v, u, v, 0, u+ v) ≤ 0

we have u ≤ v
(φ2) : φ(u, u, 0, 0, u, u) > 0, ∀u > 0.

Example 3. Let φ(t1, t2, t3, t4, t5, t6) = t21 − αmax{t22, t23, t24, β(t25 + t26)}
where 0 < α < 1 and 0 ≤ β ≤ 1 then

(φ1) : if u > 0 and v ≥ 0 we have

(φa) : φ(u, v, v, u, u+ v, 0) = u2 − αmax
{
v2, v2, u2, β

(
(u+ v)2 + 0

)}
= u2 − αmax{v2, v2, u2, β(u+ v)2} ≤ 0

and
(φb) : φ(u, v, u, v, 0, u+ v) = u2 − αmax

{
v2, u2, v2, β

(
0 + (u+ v)2

)}
= u2 − αmax{v2, u2, v2, β(u+ v)2} ≤ 0.

Suppose that u > v, then u2 ≤ αu2 < u2, which is a contradiction.
Therefore u ≤ v. If u = 0 then u ≤ v

(φ2) : φ(u, u, 0, 0, u, u) = u2(1− α) > 0 ∀u > 0.

Example 4. Let φ(t1, t2, t3, t4, t5, t6) = t1−αmax{t2t3, t3t4, t5t6} where
0 < α < 1 then

(φ1) : if u > 0 and v ≥ 0
we have

(φa) : φ(u, v, v, u, u+ v, 0) = u− αmax{v2, uv, 0}
= u− αmax{v2, uv} ≤ 0

and
(φb) : φ(u, v, u, v, 0, u+ v) = u− αmax{uv, uv, 0}

= u− αmax{uv, uv} ≤ 0.
Suppose that u > v, then u ≤ 0 and (1 − αu) ≤ 0, which implies that

αu ≥ 1, which is a contradiction. Therefore u ≤ v. If u = 0 then u ≤ v
(φ2) : φ(u, u, 0, 0, u, u) = u− αmax{u2}

= u− αu2 = u(1− αu) > 0 ∀u > 0.
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Example 5. Let φ(t1, t2, t3, t4, t5, t6) = t1 − αmax{t2, t3, t4, t5t6} where
0 < α < 1

(φ1) : if u > 0 and v ≥ 0
we have

(φa) : φ(u, v, v, u, u+v, 0) = u−αmax{v, v, u, 0} = u−αmax{v, v, u} ≤ 0
and

(φb) : φ(u, v, u, v, 0, u+v) = u−αmax{v, u, v, 0} = u−αmax{v, u, v} ≤ 0.
Suppose that u > v, then u ≤ αu, which is a contradiction. Therefore

u ≤ v. If u = 0 then u ≤ v
(φ2) : φ(u, u, 0, 0, u, u) = u− αmax{u, 0, 0, u2}

= u(1− αu) > 0∀u > 0.

Example 6. Let φ(t1, t2, t3, t4, t5, t6) = t21−c1 max{t22, t23}−c2 max
{
t23, t

2
4 ,

t25
}
− c3 max{t3t5, t4t6} where c1, c2 > 0, c3 ≥ 0 & c1 + c2 + c3 < 1 then

(φ1) : if u > 0 and v ≥ 0 we have
(φa) : φ(u, v, v, u, u+v, 0) = u2−c1 max{v2, v2}−c2 max{v2, v2, (u+v)2}

− c3 max{v(u+ v), 0} ≤ 0
and

(φb) : φ(u, v, u, v, 0, u+ v) = u2 − c1 max{v2, u2} − c2 max{u2, v2, 0}
− c3 max{0, v(u+ v)} ≤ 0.

Suppose that u > v, then u2(1 − c1 − c2 − c3) ≤ 0, which implies that
c1 + c2 + c3 ≥ 1, which is a contradiction. Thus u < v and u ≤ (c1 + c2 +

c3)
1
2 v = hv where h = (c1 + c2 + c3)

1
2 < 1

(φ2) : φ(u, u, 0, 0, u, u) = u2−c1 max{u2, 0}−c2 max{0, 0, u2}−c3 max{0, 0}
= u2(1− c1 − c2) > 0 for all u > 0.

Example 7. Let φ(t1, t2, t3, t4, t5, t6) = t1 − at2 − b t3t5+t4t6
t5+t6

− ct4 where
a+ b+ c = 1, 0 < a < 1, 0 < b < 1, c < 1 then

(φ1) : if u ≥ 0 and v ≥ 0 we have
(φa) : φ(u, v, v, u, u+ v, 0) = u− av − bv − cu

= u(1− c)− (a+ b)v ≤ 0,
which implies that

u ≤ a+ b

1− c
v.

Therefore u ≤ v
(φb) : φ(u, v, u, v, 0, u+ v) = u− av − bv − cv

= u− (a+ b+ c)v ≤ 0,
which implies that

u ≤ (a+ b+ c)v.

Therefore u ≤ v
(φ2) : φ(u, u, 0, 0, u, u) = u− au = u(1− a) > 0, ∀u > 0.
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4. Main results

Theorem 1. Let f and g be self maps of a 2-metric space (X, d) and let
F,G : X → B(X) be set valued maps satisfying the following conditions.

(1) FX ⊆ gX and GX ⊆ fX

φ(δ(Fx,Gy,C), d(fx, gy, C), δ(fx, Fx,C), δ(gy,Gy,C),(2)

δ(fx,Gy,C), δ(gy, Fx,C)) ≤ 0

for all x, y in X,φ ∈ Φ and C ∈ B(X). If either

(3) If f and F are D −maps and FX is closed.

or

(4) If g and G are D −maps and GX is closed.

Then
(i) g and G have a coincidence point and f and F have a coincidence

point.
Further, if

The hybrid pairs {f, F} and {g,G}are weakly commuting(5)

of type (KB) at coincidence points.

Then
(ii) f , g, F and G have a unique common fixed point in X.

Proof. Suppose that f and F are D-maps. Then there exists a sequence
{xn} in X such that limn→∞ fxn = t and limn→∞ Fxn = {t} for some
t ∈ X. Since FX is closed and FX ⊆ gX, there is a point u ∈ X such that
gu = t, using inequality (2) we get

φ(δ(Fxn, Gu,C), d(fxn, gu, C), δ(fxn, Fxn, C),

δ(gu,Gu,C), δ(fxn, Gu,C), δ(gu, Fxn, C)) ≤ 0

Since φ is continuous, we get on letting n→∞.

φ(δ(t, Gu,C), d(t, t, C), δ(t, t, C), δ(t, Gu,C), δ(t, Gu,C), δ(t, t, C))

= φ(δ(t, Gu,C), 0, 0, δ(t, Gu,C), δ(t, Gu,C), 0))

= φ(δ(gu,Gu,C), 0, 0, δ(gu,Gu,C), δ(gu,Gu,C), 0)) ≤ 0.
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Using (φa) we have Gu = {gu} = {t} and since the hybrid pair {g,G} is
weakly commuting of type (KB) at coincidence points, we have

δ(ggu,Ggu,C) ≤ Rδ(gu,Gu,C)

which gives Ggu = {ggu} or Gt = {gt}.
If g2u 6= gu, then using (2), we have

φ(δ(Fxn, Ggu,C), d(fxn, g
2u,C), δ(fxn, Fxn, C),

δ(g2u,Ggu,C), δ(fxn, Ggu,C), δ(g2u, Fxn, C)) ≤ 0.

Letting n→∞ and using the continuity of φ, we obtain

φ(δ(t, Ggu,C), d(t, g2u,C), δ(t, t, C), δ(t, t, C), δ(t, Ggu,C), δ(g2u, t, C))

= φ(d(gu, g2u,C), d(gu, g2u,C), 0, 0, d(gu, g2u,C), d(g2u, gu, C)) ≤ 0.

which contradicts (φ2). Then g2u = gu and so

Ggu = {ggu} = {gu} = {t}.

Since GX ⊆ fX, there exists an element v ∈ X such that {fv} = Gu.
We claim that Fv = {fv}. If not, then the use of condition (2) gives

φ(δ(Fv,Gu,C), d(fv, gu, C), δ(fv, Fv, C), δ(gu,Gu,C), δ(fv,Gu,C),

δ(gu, Fv, C)) = φ(δ(Fv, fv, C), 0, δ(fv, Fv, C), 0, 0, δ(fv, Fv, C)) ≤ 0.

By (φb), we get fv = {fv} since the hybrid pair {f, F} is weakly commuting
of type (KB) at coincidence points, we have

δ(ffv, Ffv, C) ≤ Rδ(fv, Fv, C),

which gives
Ffv = {ft} or Ft = {ft}.

Suppose that f2v = fv. Then using (2), we have

φ(δ(Ffv,Gu,C), d(f2v, gu, C), δ(f2v, Ffv, C), δ(gu,Gu,C),

δ(f2v,Gu,C), δ(gu, Ffv, C))

= φ(d(f2v, fv, C), d(f2v, fv, C), d(f2v, f2v, C), δ(gu,Gu,C),

d(f2v, fv, C), d(fv, f2v, C))

= φ(d(f2v, fv, C), d(f2v, fv, C), 0, 0, d(f2v, fv, C), d(fv, f2v, C))

≤ 0,

which is a contradiction of (φ2). Hence f2v = fv and so

Ffv = {ffv} = {fv} = {gu} = {t}.
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Therefore t is a common fixed point of maps f , g, F and G such that
tp 6= t, the use of inequality (2) gives.

φ(δ(Ft,Gtp, C), d(ft, gtp, C), δ(ft, F t, C), δ(gtp, Gtp, C),

δ(ft,Gtp, C), δ(gtp, F t, C))

= φ(d(t, tp, C), d(t, tp, C), d(t, t, C), d(tp, tp, C), d(t, tp, C), d(tp, t, C))

= φ(d(t, tp, C), d(t, tp, C), 0, 0, d(t, tp, C), d(tp, t, C)) ≤ 0,

which is a contradiction of (φ2). Hence tp = t. �

The proof is similar if we use (4) in lieu of (3).

Corollary 1. Let (X, d) be a 2-metric space and f : X → X and
F : X → B(X) be single and set valued maps, respectively suppose that

(6) FX ⊆ fX

φ(δ(Fx, Fy, C), d(fx, fy, C), δ(fx, Fx,C),(7)

δ(fy, Fy, C), δ(fx, Fy, C), δ(fy, Fx,C)) ≤ 0

for all x, y in X, where φ ∈ Φ.

(8) If f and F are D −maps and FX is closed.

Then
(i) f and F have a coincidence point.

Further if

The hybrid pairs {f, F} are weakly commuting(9)

of type (KB) at coincidence points.

Then
(ii) f and F have a unique common fixed point in X.

Corollary 2. Let f be a map from a 2-metric space (X, d) into itself
and let F,G→ B(X) be two set-valued maps such that

(10) FX ⊆ fX and GX ⊆ fX.

φ(δ(Fx,Gy,C), d(fx, fy, C), δ(fx, Fx,C),(11)

δ(fy,Gy,C), δ(fx,Gy,C), δ(fy, Fx,C)) ≤ 0

for all x, y in X,where φ ∈ Φ if either

(12) If f and F are D −maps and FXis closed.



46 Bhavana Deshpande and Suresh Chouhan

or

(13) If f and G are D −maps and GX is closed.

Then
(i) f and G have a coincidence point and f and F have a coincidence

point.
Further if

The hybrid pairs {f, F} and {f,G}are weakly commuting(14)

of type (KB) at coincidence points.

Then
(ii) f , F and G have a unique common fixed point in X.

Corollary 3. If in the hypothesis of Theorem1 we have instead of (2)
the next inequality.

δ2(Fx,Gy,C) ≤ αmax{d2(fx, gy, C), δ2(fx, Fx,C), δ2(gy,Gy,C),

β(δ2(fx,Gy,C) + δ2(gy, Fx,C))}

for all x, y in X, where 0 < α < 1 and 0 ≤ β ≤ 1, Then f , g, F and G have
a unique common fixed point in X.

Proof. Use Theorem 1 and Example 1. �

Corollary 4. If in Theorem1 we have in lieu of inequality (2) the next
inequality

δ(Fx,Gy,C) ≤ αmax{d(fx, gy, C) · δ(fx, Fx,C), δ(fx, Fx,C) · δ(gy,
Gy,C), δ(fx,Gy,C) · δ(gy, Fx,C)}

for all x, y in X, where 0 < α < 1, Then f, g, F and G have a unique
common fixed point.

Proof. Use Theorem 1 and Example 2. �

Corollary 5. If in Theorem1 we have in lieu of inequality (2) the next
inequality

δ(Fx,Gy,C) ≤ αmax{d(fx, gy, C), δ(fx, Fx,C), δ(fx, Fx,C),

δ(gy,Gy,C), δ(fx,Gy,C) · δ(gy, Fx,C)}

for all x, y in X, where 0 < α < 1, Then f , g, F and G have a unique
common fixed point.
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Proof. Use Theorem 1 and Example 3. �

Corollary 6. If in Theorem 1 we have in lieu of inequality (2) the next
inequality

δ2(Fx,Gy,C) ≤ c1 max{d2(fx, gy, C), δ2(fx, Fx,C)}
− c2 max{δ2(fx, Fx,C), δ2(gy,Gy,C), δ2(fx,Gy,C)}
− c3 max{δ(fx, Fx,C)δ(fx,Gy,C), δ(gy,Gy,C)δ(gy, Fx,C)}

for all x, y in X, where c1, c2 > 0, c3 ≥ 0 and c1 + c2 + c3 < 1. Then f , g,
F and G have a unique common fixed point.

Proof. Use Theorem 1 and Example 4. �

Corollary 7. If in the hypothesis of Theorem 1 we have instead of (2)
the next inequality.

δ2(Fx,Gy,C) ≤ ad2(fx, gy, C) + bδ2(fx, Fx,C)

+ c
δ2(fx, Fx,C) + δ2(gy,Gy,C)

δ(fx,Gy,C) + δ(gy, Fx,C)

for all x, y in X, where 0 < a < 1 and 0 < b < 1, a+ b+ c = 1, c < 1 Then
f , g, F and G have a unique common fixed point.

Proof. Use Theorem 1 and Example 5. �

Example 8. Let X = [0, 10) Define d(x, y, z) = min{|x−y|, |y−z|, |z−x|}
for all x, y, z in X. Then (X, d) is 2-metric space. Let F : G→ B(X) and
f, g : X → X be defined by

F (x) =

{
[0, x], 0 ≤ x ≤ 5,

[1, 3x+5
10 ], 5 < x < 10,

g(x) =

{
2x, 0 ≤ x ≤ 5,
x−1
2 , 5 < x < 10,

G(x) =

{
[0, x2 ], 0 ≤ x ≤ 5,

[1, x+5
5 ], 5 < x < 10,

f(x) =

{
x, 0 ≤ x ≤ 5,
2x+4
7 , 5 < x < 10,

Then F (x) ⊆ g(x) and G(X) ⊆ f(x). Consider the sequence {xn} define
by xn = {5+ 1

n} inX, then limn→∞ fxn = 2 ∈ [1, 2] = limn→∞ Fxn.Therefore
f and F are D-maps and limn→∞ gxn = 2 ∈ [1, 2] = limn→∞Gxn Therefore
g andG are D-maps but limn→∞ δ(Ffxn, fFxn, C) 6= 0 and limn→∞ δ(Ggxn,
gGxn, C) 6= 0. Therefore the pair {f, F} and {g,G} are not δ-compatible.
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We can observe that the hybrid pairs {f, F} and {g,G} are weakly com-
muting of type (KB) at coincidence point 0 ∈ X for all positive real num-
ber R. Condition (2) of Theorem1 is satisfied if we take α = 0.9, C =
[1, 8](the bounded subset of X = [0, 10)). Let φ(t1, t2, t3, t4, t5, t6) = t1 −
αmax{t2, t3, t4, t5t6} where φ ∈ Φ is that of Example 8.

Thus all the condition of Theorem 1 and Corollary 5 are satisfied and
0 ∈ X is unique common fixed point of f , g, F and G.

Theorem 2. Let (X, d) be a 2-metric space let f, g : X → X be two
single-valued maps and let Fn : X → B(X), where n = 1, 2, . . . are set-valued
maps satisfying the conditions.

(15) FnX ⊆ gX and Fn+1X ⊆ fX.

φ(δ(Fnx, Fn+1y, C), d(fx, gy, C), δ(fx, Fnx,C), δ(gy, Fn+1y, C),(16)

δ(fx, Fn+1y, C), δ(gy, Fnx,C)) ≤ 0

for all x, y in X,φ ∈ Φ if either

(17) If f and Fn are D −maps and FnX is closed.

or

(18) If g and Fn+1 are D −maps and Fn+1X is closed.

Then
(i) g and Fn+1 have a coincidence point and f and Fn have a coincidence

point.
Further if

The hybrid pairs {f, Fn} and {g, Fn+1} are weakly commuting(19)

of type (KB).

Then
(ii) f , g and Fn have a unique common fixed point in X.

Theorem 3. Let f , g be single-valued maps of a 2-metric space (X, d)
into itself and let F,G : X → B(X) be set-valued maps such that

(20) FX ⊆ gX and GX ⊆ fX.

δp(Fx,Gy,C) ≤ φ[adp(fx, gy, C) + (1− a) max{αδp(fx, Fx,C),(21)

βδp(gy,Gy,C), δ
p
2 (fx, Fx,C)δ

p
2 (gy, Fx,C), δ

p
2 (gy, Fx,C)

δ
p
2 (fx,Gy,C),

1

2
(δp(fx, Fx,C) + δp(gy,Gy,C))}]
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for all x, y in X, where 0 < a < 1, 0 < α, β ≤ 1, p ∈ N∗ = {1, 2, ....} and
φ ∈ Φ if either

(22) If f and F are D −maps and FXis closed.

or

(23) If g and G are D − maps and GX is closed.

Then
(i) g and G have a coincidence point and f and F have a coincidence

point.
Further if

The hybrid pairs {f, F} and {g,G} are weakly commuting(24)

of type (KB) at coincidence points,

Then
(ii) f , g, F and G have a unique common fixed point in X.

Proof. Suppose that f and F are D-maps. Then there exists a sequence
{xn} in X such that limn→∞ fxn = t and limn→∞ Fxn = {t} for some
t ∈ X. Since FX is closed and FX ⊆ gX, there exists an element u ∈ X
such that gu = t

Suppose that Gu 6= {t}. Then use of (21) gives.

δp(Fxn, Gu,C) ≤ φ[adp(fxn, gu, C) + (1− a) max{αδp(fxn, Fxn, C),

βδp(gu,Gu,C), δ
p
2 (fxn, Fxn, C)δ

p
2 (gu, Fxn, C),

δ
p
2 (gu, Fxn, C)δ

p
2 (fxn, Gu,C),

1

2
(δp(fxn, Fxn, C) + δp(gu,Gu,C))}].

Letting n→∞, we get

δp(t, Gu,C) ≤ φ[(1− a) max{0, βδp(t, Gu,C),
1

2
δp(t, Gu,C)}]

= φ[(1− a) max{(β, 1

2
)δp(t, Gu,C)}]

< (1− a) max{(β, 1

2
)δp(t, Gu,C)}

< δp(t, Gu,C)},

which is a contradiction. Therefore

Gu = {t} = {gu}.
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Since the pair {g,G} is weakly commuting of type (KB) at coincidence point
in X, we have

δ(ggu,Ggu,C) ≤ Rδ(gu,Gu,C),

which gives

Ggu = {ggu} or Gt = {gt}.

If Gt 6= {t} then by (21) we get

δp(Fxn, Gt, C) ≤ φ[adp(fxn, gt, C) + (1− a) max{αδp(fxn, Fxn, C),

βδp(gt,Gt, C), δ
p
2 (fxn, Fxn, C)δ

p
2 (gt, Fxn, C),

δ
p
2 (gt, Fxn, C)δ

p
2 (fxn, Gt, C),

1

2
(δp(fxn, Fxn, C) + δp(gt,Gt, C))}].

Letting n→∞, it follows that

dp(t, gt, C) = δp(t, Gt, C)

≤ φ[adp(t, gt, C) + (1− a)dp(t, gt, C)]

= φ[dp(t, gt, C)]

< dp(t, gt, C),

which is a contradiction and so Gt = {gt} = {t}. Since GX ⊆ fx,there is a
point v ∈ X such that

{fv} = gt = {t}.

We claim that Fv = {fv}. If not, then using (21) we obtain

δp(Fv,Gt, C) ≤ φ[adp(fv, gt, C) + (1− a) max{αδp(fv, Fv, C),

βδp(gt,Gt, C), δ
p
2 (fv, Fv, C)δ

p
2 (gt, Fv, C),

δ
p
2 (gt, Fv, C)δ

p
2 (fv,Gt, C)

1

2
(δp(fv, Fv, C) + δp(gt,Gt, C))}].

That is

δp(Fv, t, C) ≤ φ[(1− a) max{αδp(t, Fv, C), 0, δp(t, Fv, C),

1

2
(δp(t, Fv, C))}] = φ[(1− a)δp(t, Fv, C)]

< (1− a)δp(t, Fv, C)

< δp(t, Fv, C),

a contradiction. This implies that Fv = {t} = {fv} and since the pair
{f, F} is weakly commuting we have fFV = Ffv i.e. Ft = {ft}.
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Suppose that Ft 6= {t} then by (21) we have

δp(Ft,Gt, C) ≤ φ[adp(ft, gt, C) + (1− a) max{αδp(ft, F t, C),

βδp(gt,Gt, C), δ
p
2 (ft, F t, C)δ

p
2 (gt, F t, C),

δ
p
2 (gt, F t, C)δ

p
2 (ft,Gt, C),

1

2
(δp(ft, F t, C) + δp(gt,Gt, C))}]

that is

dp(ft, t, C) = δp(Ft, t, C)

≤ φ[adp(ft, t, C) + (1− a) max{0, dp(ft, t, C)}]
= φ[dp(ft, t, C)]

< dp(ft, t, C),

which is a contradiction. Hence Ft = {t} = {ft}. Therefore t is a common
fixed point of both f , g, F and G.

Finally, we prove that t is unique.
Suppose that tp 6= t, is another common fixed point of both f , g, F and

G by using inequality (21) we obtain

dp(t, tp, C) = δp(Ft,Gtp, C)

≤ φ[adp(ft, gtp, C) + (1− a) max{αδp(ft, F t, C), βδp(gtp, Gtp, C),

δ
p
2 (ft, F t, C)δ

p
2 (gtp, F t, C), δ

p
2 (gtp, F t, C)δ

p
2 (ft,Gtp, C),

1

2
(δp(ft, F t, C) + δp(gtp, Gtp, C))}]

= φ(dp(t, tp, C)) < dp(t, tp, C),

a contradiction. This implies that tp = t. �

Note that if we let F = G and f = g in Theorem 2 we get the following
corollary.

Corollary 8. Let (X, d) be a 2-metric space and let f : X → X a
single-valued map and let F : X → B(X) be set-valued map satisfying the
conditions.

(25) FX ⊆ fX

δp(Fx, Fy, C) ≤ φ[adp(fx, fy, C) + (1− a) max{αδp(fx, Fx,C),(26)

βδp(fy, Fy, C), δ
p
2 (fx, Fx,C)δ

p
2 (fy, Fx,C),

δ
p
2 (fy, Fx,C)δ

p
2 (fx, Fy, C),

1

2
(δp(fx, Fx,C) + δp(fy, Fy, C))}]
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for all x, y in X, where 0 < a < 1, 0 < α, β ≤ 1, p ∈ N∗ and φ ∈ Φ

(27) If f and F are D −maps and FX is closed .

Then
(i) f and F have a coincidence point.
Further if

The hybrid pairs {f, F} are weakly commuting of type (KB)(28)

at coincidence points.

Then
(ii) f and F have a unique common fixed point in X.

If we put f = g, in Theorem 2 then we obtain the next result.

Corollary 9. Let f : X → X be a single-valued map and let F,G : X →
B(X) be two set-valued maps such that

(29) FX ⊆ fX and GX ⊆ fX

δp(Fx,Gy,C) ≤ φ[adp(fx, fy, C) + (1− a) max{αδp(fx, Fx,C),(30)

βδp(fy,Gy,C), δ
p
2 (fx, Fx,C)δ

p
2 (fy, Fx,C),

δ
p
2 (fy, Fx,C)δ

p
2 (fx,Gy,C),

1

2
(δp(fx, Fx,C) + δp(fy,Gy,C))}]

for all x, y in X, where 0 < a < 1, 0 < α, β ≤ 1, p ∈ N∗ and φ ∈ Φ if
either

(31) If f and F are D −maps and FX is closed.

or

(32) If f and G are D −maps and GX is closed.

Then
(i) f and G have a coincidence point and f and F have a coincidence

point.
Further if

The hybrid pairs {f, F} and {f,G}a re weakly commuting(33)

of type (KB) at coincidence points.

Then
(ii) f , F and G have a unique common fixed point in X.
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Corollary 10. If in the hypothesis of Theorem 2 we have the following
inequality instead of condition (21).

δp(Fx,Gy,C) ≤ φ[adp(fx, gy, C) + (1− a) max{δ(fx, Fx,C),

δ(gy,Gy,C), δ
1
2 (fx, Fx,C)δ

1
2 (gy, Fx,C),

δ
1
2 (gy, Fx,C)δ

1
2 (fx,Gy,C)}p]

for all x, y in X, where 0 < a < 1, p ∈ N∗ and φ ∈ Φ
Then f , g, F and G have a unique common fixed point in X.

Proof. It is similar to the proof of Theorem 2. �

Now, we generalize Theorem 2.

Theorem 4. Let f, g : X → X be two single-valued maps and let Fn :
X → B(X), where n = 1, 2, . . . be set-valued maps satisfying the following
conditions.

(34) FnX ⊆ gX and Fn+1X ⊆ fX

δp(Fnx, Fn+1y, C) ≤ φ[adp(fx, gy, C)(35)

+ (1− a) max{αδp(fx, Fnx,C),

βδp(gy, Fn+1y, C), δ
p
2 (fx, Fnx,C)δ

p
2 (gy, Fnx,C),

δ
p
2 (gy, Fnx,C)δ

p
2 (fx, Fn+1y, C),

1

2
(δp(fx, Fnx,C)

+ δp(gy, Fn+1y, C))}]

for all x, y in X, where 0 < a < 1, 0 < α, β ≤ 1, p ∈ N∗ = {1, 2, . . .} and
φ ∈ Φ

(36) If f and Fn are D −maps and FX is closed.

or

(37) If g and Fn+1 are D −maps and GX is closed.

Then
(i) g and Fn+1 have a coincidence point and f and Fn have a coincidence

point.
Further if

The hybrid pairs {f, Fn} and {g, Fn+1} are weakly commuting(38)

of type (KB) at coincidence points,

Then
(ii) f , g and Fn have a unique common fixed point in X.
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