$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 46}$ 2011

SABIR HUSSAIN

APPLICATIONS OF MINIMAL γ -SEMI-OPEN SETS

ABSTRACT. In this paper, minimal γ -semi-open sets in topological spaces introduce and discuss. Also some properties of pre γ -semi-open sets using properties of minimal γ -semi-open sets obtain. As an application of a theory of minimal γ -semi-open sets, I obtain a sufficient condition for a γ -semi-locally finite space to be a pre γ -semi- T_2 space.

KEY WORDS: γ -semi-closed (open), γ -semi-closure, minimal γ -semi-open, pre γ -semi-open, finite γ -semi-open, γ -semi-locally finite, pre γ -semi- T_2 space.

AMS Mathematics Subject Classification: 54A05, 54A10, 54D10, 54D99.

1. Introduction

N. Levine [11] introduced the notion of semi-open sets in the context of topological spaces, that is : $A \subseteq X$ is semi-open in a topological space X if $A \subseteq cl(int(A))$, where cl and int represents the closure and interior. S. Kasahara [12] introduced and discussed an operation γ of a topology τ into the power set P(X) of a space X. Several known characterizations of compact spaces, nearly compact spaces and H-closed spaces are unified by generalizing the notion of compactness with the help of a certain operation γ . H. Ogata [13], introduced the concept of γ -open sets and investigated the related topological properties of the associated topology τ_{γ} and τ by using operation γ . He introduced the notions of γ - T_i (i = 0, 1/2, 1, 2) spaces which generalize T_i - spaces (i = 0, 1/2, 1, 2) respectively. Moreover, he investigated general operator approaches of the closed graph mappings.

Carpintero, et al [7], introduced the notion of α -semi-open set as a generalization of semi-open set: Let $\alpha : P(X) \to P(X), U \subseteq \alpha(U), \forall U \in \tau$. $A \subseteq X$ is α -semi-open if there exists $U \in \tau$, such that $U \subseteq A \subseteq \alpha(U)$. It is clear that under this notation, if τ_{α} (τ_{γ} in the sense of H. Ogata [13]) is the set of α -open set (γ -open sets in the sense of H. Ogata [13]) and $\alpha - SO(X)$ the set α -semi-open then, $\tau_{\alpha} \subseteq \tau \subseteq \alpha - SO(X)$.

S. Hussain and B. Ahmad [1-6] and [8-10] continued studying the properties of γ -operations on topological spaces and investigated many interesting results. Recently B. Ahmad and S. Hussain [2] defined and discussed γ -semi-open sets in topological spaces. They explored many characterizations and properties of γ -semi-open(closed) sets, γ -semi-interior(exterior), γ -semi-closure, γ -semi-boundary and semi-regular operation. It is interesting to mention that γ -semi-open sets generalized γ -open sets introduced by H. Ogata [13].

In this paper, minimal γ -semi-open sets in topological spaces introduce and discuss. Also some properties of pre γ -semi-open sets using properties of minimal γ -semi-open sets obtain. As an application of a theory of minimal γ -semi-open sets, I obtain a sufficient condition for a γ -semi-locally finite space to be a pre γ -semi- T_2 space.

First, we recall some definitions and results used in this paper. Hereafter, we shall write a space in place of a topological space.

2. Preliminaries

Definition 1 ([12]). Let X be a space. An operation $\gamma : \tau \to P(X)$ is a function from τ to the power set of X such that $V \subseteq V^{\gamma}$, for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The operations defined by $\gamma(G) = G$, $\gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ .

Definition 2 ([12]). Let $A \subseteq X$. A point $x \in A$ is said to be γ -interior point of A, if there exists an open $nbd \ N$ of x such that $N^{\gamma} \subseteq A$ and we denote the set of all such points by $int_{\gamma}(A)$. Thus

$$int_{\gamma}(A) = \{x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A\} \subseteq A.$$

Note that A is γ -open [13] if and only if $A = int_{\gamma}(A)$. A set A is called γ - closed [1] if and only if X-A is γ -open.

Definition 3 ([13]). A point $x \in X$ is called a γ -closure point of $A \subseteq X$, if $U^{\gamma} \cap A \neq \phi$, for each open nbd U of x. The set of all γ -closure points of A is called γ -closure of A and is denoted by $cl_{\gamma}(A)$. A subset A of X is called γ -closed, if $cl_{\gamma}(A) \subseteq A$. Note that $cl_{\gamma}(A)$ is contained in every γ -closed superset of A.

Definition 4 ([12]). An operation γ on τ is said e regular, if for any open nbds U, V of $x \in X$, there exists an open nbd W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$.

Definition 5 ([13]). An operation γ on τ is said to be open, if for any open nbd U of each $x \in X$, there exists γ -open set B such that $x \in B$ and $U^{\gamma} \supseteq B$.

Definition 6 ([2]). A subset A of a space X is said to be a γ -semi-open set, if there exists a γ -open set O such that $O \subseteq A \subseteq cl_{\gamma}(O)$. The set of all γ -semi-open sets is denoted by $SO_{\gamma}(X)$. A is γ -semi-closed if and only if X - A is γ -semi-open in X. Note that A is γ -semi-closed if and only if $int_{\gamma}cl_{\gamma}(A) \subseteq A$.

Definition 7 ([2]). Let A be a subset of a space X. The intersection of all γ -semi-closed sets containing A is called γ -semi-closure of A and is denoted by $scl_{\gamma}(A)$. Note that A is γ -semi-closed if and only if $scl_{\gamma}(A) = A$. The set of all γ -semi-closed subsets of A is denoted by $SC_{\gamma}(A)$.

Definition 8 ([2]). Let A be a subset of a space X. The union of γ -semi-open subsets contained in A is called γ -semi-interior of A and is denoted by $sint_{\gamma}(A)$.

Definition 9 ([2]). An operation γ on τ is said be semi-regular, if for any semi-open sets U, V of $x \in X$, there exists a semi-open W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$.

Note that, if γ is semi-regular operation, then intersection of two γ -semiopen sets is γ -semi-open [2]. To explore the characterizations and properties of γ -semi-open set and semi-regular operation, I refer to [2].

3. Minimal γ -semi-open sets

In view of the definition of minimal γ -open sets [8], we define minimal γ -semi-open sets as:

Definition 10. Let X be a space and $A \subseteq X$ a γ -semi-open set. Then A is called a minimal γ -semi-open set, if ϕ and A are the only γ -semi-open subsets of A.

The following is immediate:

Proposition 1. Let X be a space. Then

1) Let A be a minimal γ -semi-open set and B a γ -semi-open set. Then $A \cap B = \phi$ or $A \subseteq B$, where γ is semi-regular.

2) Let B and C be minimal γ -semi-open sets. Then $B \cap C = \phi$ or B = C, where γ is semi-regular.

Proposition 2. Let X be a space and A a minimal γ -semi-open set. If $a \in A$, then for any γ -semi-open nbd B of $a, A \subseteq B$, where γ is semi-regular.

Proof. Suppose on the contrary that B is a γ -semi-open nbd B of $a \in A$ such that $A \not\subseteq B$. Since γ is a semi-regular operation, therefore $A \cap B$ is a γ -semi-open set [2] with $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This is a contradiction to our supposition that A is a minimal γ -semi-open se. Hence the proof.

Example 1. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by $\gamma(A) = cl(A)$. Then calculations show that the operation γ is semi-regular. The semi-open sets are ϕ , X, $\{a\}, \{a, b\},$ $\{a, c\}$ and $SO_{\gamma}(X) = \{\phi, X\}$. Note that the above proposition is true in this case.

The following proposition easily follows from Proposition 2:

Proposition 3. Let X be a space and A a minimal γ -semi-open set. Then for any $y \in A$, $A = \cap \{B : B \text{ is } \gamma\text{-semi-open nbd of } y\}$, where γ is semi-regular.

Similarly we have:

Proposition 4. Let A be a minimal γ -semi-open set in X and $x \in X$ such that $x \notin A$. Then for any γ -semi-open nbd C of x, $C \cap A = \phi$ or $A \subseteq C$, where γ is semi-regular.

Corollary 1. Let A be a minimal γ -semi-open set in X and $x \in X$ such that $x \notin A$. If $A_x = \{B : B \text{ is a } \gamma\text{-semi-open nbd of } x\}$. Then $A_x \cap A = \phi$ or $A \subseteq A_x$, where γ is semi-regular.

Proposition 5. Let X be a space and A be an open subset of X. If A is a nonempty minimal γ -semi-open set of X, then for a nonempty subset C of A, $A \subseteq cl_{\gamma}(C)$, where γ is semi-regular and monotone.

Proof. Let *C* be any nonempty subset of *A*. Let $y \in A$ and *B* be any γ -semi-open nbd *B* of *y*. By Proposition 2, we have $A \subseteq B$. Also since γ is monotone, $C \subseteq A \cap C \subseteq A^{\gamma} \cap C \subseteq B^{\gamma} \cap C$. Thus we have $B^{\gamma} \cap C \neq \phi$ and hence $y \in cl_{\gamma}(C)$ [1]. This implies that $A \subseteq cl_{\gamma}(C)$. This completes the proof.

Proposition 6. Let A be a nonempty γ -semi-open subset of a space X. If $A \subseteq cl_{\gamma}(C)$, then $cl_{\gamma}(A) = cl_{\gamma}(C)$, for any nonempty subset C of A, where γ is open.

Proof. Since for any nonempty C such that $C \subseteq A$ implies $cl_{\gamma}(C) \subseteq cl_{\gamma}(A)$. On the other hand, by supposition, we have, $A \subseteq cl_{\gamma}(C)$. Since γ is open, $cl_{\gamma}(A) \subseteq cl_{\gamma}(cl_{\gamma}(C)) = cl_{\gamma}(C)$ [1] implies $cl_{\gamma}(A) \subseteq cl_{\gamma}(C)$. Hence the proof.

The following example shows that the condition that γ is open is necessary for the above proposition.

Example 2. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = A^{\gamma} = \begin{cases} cl(A), & \text{if } b \in A\\ int(cl(A)), & \text{if } b \notin A. \end{cases}$$

Then the operation γ is not open. The γ -semi-open sets are ϕ , X, $\{b\}$, $\{a, c\}$. Let $A = \{b\}$ and $C = \{a, b\}$, then $cl_{\gamma}(A) = \{b\} \neq X = cl_{\gamma}(C)$.

Proposition 7. Let A be a nonempty γ -semi-open subset of a space X. If $cl_{\gamma}(A) = cl_{\gamma}(C)$, for any nonempty subset C of A, then A is a minimal γ -semi-open set.

Proof. We suppose on the contrary that A is not a minimal γ -semi-open set. Then there exists a nonempty γ -semi-open set D such that $D \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin D$. Then we have $cl_{\gamma}(\{x\}) \subseteq D^{\gamma}$ implies that $cl_{\gamma}(\{x\}) \neq cl_{\gamma}(A)$. This contradiction proves the proposition.

Combining Propositions 5, 6 and 7, we have:

Theorem 1. Let X be a space and A be an open subset of X. If A is a nonempty γ -semi-open subset of space X. Then the following are equivalent:

(a) A is minimal γ -semi-open set.

(b) For any nonempty subset C of A, $A \subseteq cl_{\gamma}(A)$, where γ is semi-regular and monotone.

(c) For any nonempty subset C of A, $cl_{\gamma}(A) = cl_{\gamma}(C)$, where γ is open.

Definition 11. Let X be a space and $A \subseteq X$. Then A is called a pre- γ -semi-open set, if $A \subseteq sint_{\gamma}(cl_{\gamma}(A))$. The family of all pre- γ -semi-open sets of X will be denoted by $PSO_{\gamma}(X)$.

In view of the definition of a pre γ - T_2 space [8], we define a pre γ -semi- T_2 space as:

Definition 12. A space X is called a pre γ -semi- T_2 space, if for any $x, y \in X, x \neq y$, there exist subsets U and V of $PSO_{\gamma}(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Proposition 8. Let X be a space and A be an open subset of X. If A is a minimal γ -semi-open set, then $\phi \neq C \subseteq A$ is a pre- γ -semi-open set, where γ is semi-regular and monotone.

Proof. Let A be a minimal γ -semi-open set and $\phi \neq C \subseteq A$. By Proposition 5, we have $A \subseteq cl_{\gamma}(C)$ implies $sint_{\gamma}(A) \subseteq sint_{\gamma}(cl_{\gamma}(C))$. Since A is a γ -semi-open set, therefore $C \subseteq A = sint_{\gamma}(A) \subseteq sint_{\gamma}(cl_{\gamma}(C))$ or $C \subseteq sint_{\gamma}(cl_{\gamma}(C))$, that is, C is pre- γ -semi-open. Hence the proof.

We use Theorem 1(a) and prove the following:

Theorem 2. Let X be a space, $\phi \neq B \subseteq X$, A a minimal γ -semi-open set and an open subset of X. If there exists a γ -semi-open set C containing B such that $C \subseteq cl_{\gamma}(B \cup A)$, then for any nonempty subset D of A, $B \cup D$ is a pre- γ -semi-open set, where γ is regular. **Proof.** Suppose A is a minimal γ -semi-open set in X. Since γ is regular, therefore for any nonempty subset D of A, we have

$$cl_{\gamma}(B \cup D) = cl_{\gamma}(B) \cup cl_{\gamma}(D) = cl_{\gamma}(B) \cup cl_{\gamma}(A) = cl_{\gamma}(B \cup A) \quad \text{with} \quad [1].$$

By supposition, we have $C \subseteq cl_{\gamma}(B \cup A) = cl_{\gamma}(B \cup D)$ implies $sint_{\gamma}(C) \subseteq sint_{\gamma}(cl_{\gamma}(B \cup D))$, C being γ -semi-open set such that $B \subseteq C$. It follows that

(1)
$$B \subseteq C = sint_{\gamma}(C) \subseteq sint_{\gamma}(cl_{\gamma}(B \cup D))$$
 or $B \subseteq sint_{\gamma}(cl_{\gamma}(B \cup D))$

and

(2)
$$sint_{\gamma}(A) = A \subseteq cl_{\gamma}(A) \subseteq cl_{\gamma}(B) \cup cl_{\gamma}(A)$$

= $cl_{\gamma}(B \cup A)$ implies $sint_{\gamma}(A) \subseteq sint_{\gamma}(cl_{\gamma}(B \cup A)).$

Since A is a γ -semi-open set, therefore

(3)
$$D \subseteq A = sint_{\gamma}(A) \subseteq sint_{\gamma}(cl_{\gamma}(B \cup A)) \subseteq sint_{\gamma}(cl_{\gamma}(B \cup D)).$$

From (1) and (3),

$$B \cup D \subseteq sint_{\gamma}(cl_{\gamma}(B \cup D))$$

implies $B \cup D$ is a pre- γ -semi-open set. This completes the proof.

Corollary 2. Let X be a space, $\phi \neq B \subseteq X$, A a minimal γ -semi-open set and an open subset of X. If there exists a γ -semi-open set C containing B such that $C \subseteq cl_{\gamma}(A)$, then for any nonempty subset D of A, $B \cup D$ is a pre γ -semi-open set, where γ is regular.

Proof. Let A be a minimal γ -semi-open set and $B \subseteq X$. Suppose there exists a γ -semi-open set C containing B such that $C \subseteq cl_{\gamma}(A)$. Then we have $C \subseteq cl_{\gamma}(B) \cup cl_{\gamma}(A) = cl_{\gamma}(A \cup B)[1]$, since γ is regular. By Theorem 3.16, it follows that for any nonempty subset D of A, $B \cup D$ is a pre γ -semi-open set. This completes the proof.

4. Finite γ -semi-open sets

Proposition 9. Let X be a space and $\phi \neq B$ a finite γ -semi-open set in X. Then there exists at least one (finite) minimal γ -semi-open set A such that $A \subseteq B$.

Proof. Suppose that B is a finite γ -semi-open set in X. Then we have the following two possibilities:

(a) B is a minimal γ -semi-open set.

(b) B is not a minimal γ -semi-open set.

In case (a), if we choose B = A, then the theorem is proved. If the case (b) is true, then there exists a nonempty (finite) γ -semi-open set B_1 which is properly contained in B. If B_1 is minimal γ -semi-open, we take $A = B_1$. In case (b), if B_1 is not a minimal γ -semi-open set, then there exists a nonempty (finite) γ -semi-open set B_2 such that $B_2 \subset B_1 \subset B$. We continue this process and have a sequence of γ -semi-open sets $\ldots \subset B_m \subset \ldots \subset B_2 \subset B_1 \subset B$. Since B is a finite, this process will end in a finite number of steps. That is, for some natural number k, we have a minimal γ -semi-open set B_k such that $B_k = A$. This completes the proof.

In view of the Definition of γ -locally finite space [8], we define γ -semi-locally finite space as:

Definition 13. A space X is said to be a γ -semi-locally finite space, if for each $x \in X$ there exists a finite γ -semi-open set A in X such that $x \in A$.

Example 3. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = A^{\gamma} = \begin{cases} A, & \text{if } b \in A \\ cl(A), & \text{if } b \notin A. \end{cases}$$

Then calculations show that the γ -semi-open sets are ϕ , X, $\{b\}$, $\{a, b\}$, $\{a, c\}$ [2]. Clearly X is γ -semi-locally finite space.

Proposition 10. Let $\phi \neq B$ be a γ -semi-open set in a γ -semi-locally finite space X. Then there exists at least one (finite) minimal γ -semi-open set A which is contained in B, where γ is semi-regular.

Proof. Let $y \in B$. Since X is a γ -semi-locally finite space, then there exists a finite γ -semi-open set B_y such that $y \in B_y$. Semi-regularity of γ implies that $B \cap B_y$ is a finite γ -semi-open set [2], therefore by Proposition 9 there exists a minimal γ -semi-open set A such that $A \subseteq B \cap B_y \subseteq B$. This completes the proof.

Proposition 11. Let X be a γ -semi-locally finite space and for any $\alpha \in I$, B_{α} a γ -semi-open set and $\phi \neq A$ a finite γ -semi-open set. Then $A \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a finite γ -semi-open set, where γ is semi-regular.

Proof. Since X is a γ -semi-locally finite space, then there exists an integer k such that $A \cap (\bigcap_{\alpha \in I} B_{\alpha}) = A \cap (\bigcap_{i=1}^{k} B_{i})$. Since γ is semi-regular [2], $A \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a finite γ -semi-open set. This completes the proof.

Using Proposition 11, we can prove the following:

Theorem 3. Let X be a space and for any $\alpha \in I$, B_{α} a γ -semi-open set and for any $\beta \in J$, A_{β} a nonempty finite γ -semi-open set. Then $(\bigcup_{\beta \in J} A_{\beta}) \cap$ $(\bigcap_{\alpha \in I} B_{\alpha})$ is a γ -semi-open set, where γ is semi-regular.

5. Applications

Let A be a nonempty finite γ -semi-open set. It is clear, by Proposition 1 and Proposition 10, that if γ is semi-regular, then there exists a natural number m such that $\{A_1, A_2, ..., A_m\}$ is the class of all minimal γ -semi-open sets in A satisfying the following two conditions:

(a) For any l, n with $1 \leq l, n \leq m$ and $l \neq n, A_l \cap A_n = \phi$.

(b) If C is a minimal γ -semi-open set in A, then there exists l with $1 \leq l \leq m$ such that $C = A_l$.

Theorem 4. Let X be a space and $\phi \neq A$ a finite γ -semi-open set such that A is not a minimal γ -semi-open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal γ -semi-open sets in A and $y \in A - (A_1 \cup A_2 \cup ... \cup A_m)$. If $A_y =$ $\cap \{B : B \text{ is a } \gamma$ -semi-open nbd of $y\}$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that A_k is contained in A_y , where γ is semi-regular.

Proof. Suppose on the contrary that for any natural number $k \in \{1, 2, ..., m\}$, A_k is not contained in A_y . Therefore, for any minimal γ -semiopen set A_k in $A, A_k \cap A_y = \phi$. By Proposition 14, $\phi \neq A_y$ is a finite γ -semi-open set. Therefore, by Proposition 9, there exists a minimal γ -semi-open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, then C is a minimal γ -semi-open set in A. By supposition, for any minimal γ -semi-open set A_k , we have $A_k \cap C \subseteq A_k \cap A_y = \phi$. Therefore, for any natural number $k \in \{1, 2, ..., m\}, C \neq A_k$. This is a contradiction to our supposition. Hence the proof.

Proposition 12. Let X be a space and $\phi \neq A$ be a finite γ -semi-open set which is not a minimal γ -semi-open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal γ -semi-open sets in A and $y \in A - (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that for any γ -semi-open nbd B_y of y, A_k is contained in B_y , where γ is semi-regular.

Proof. This follows from Theorem 4, as $\cap \{B : B \text{ is a } \gamma \text{-semi-open nbd} \text{ of } y\} \subseteq B_y$. Hence the proof.

Theorem 5. Let X be a space and $\phi \neq A$ be a finite γ -semi-open set which is not a minimal γ -semi-open set. Let $\{A_1, A_2, ..., A_m\}$ be the class of all minimal γ -semi-open sets in A and $y \in A - (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, ..., m\}$ such that $y \in cl_{\gamma}(A_k)$, where γ is semi-regular. **Proof.** It follows from Proposition 11 that there exists a natural number $k \in \{1, 2, ..., m\}$ such that $A_k \subseteq B$ for γ -semi-open nbd B of x. Therefore $\phi \neq A_k \cap A_k \subseteq A_k \cap B \subseteq A_k \cap B^{\gamma}$ implies $y \in cl_{\gamma}(A_k)$. This completes the proof.

Proposition 13. Let $\phi \neq A$ be a finite γ -semi-open set in a space Xand for each $k \in \{1, 2, ..., m\}$, A_k a minimal γ -semi-open set in A. If the class $\{A_1, A_2, ..., A_m\}$ contains all minimal γ -semi-open sets in A, then for any $\phi \neq B_k \subseteq A_k$, $A \subseteq cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$, where γ is regular, monotone and semi-regular.

Proof. Let $\phi \neq A$ be a finite γ -semi-open set. We consider the following two cases:

Case 1. If A is a minimal γ -semi-open set, then this follows directly from Proposition 5.

Case 2. If A is not a minimal γ -semi-open set. $y \in A - (A_1 \cup A_2 \cup ... \cup A_m)$. Then by Theorem 5, it follows that $y \in cl_{\gamma}(A_1) \cup cl_{\gamma}(A_2) \cup ... \cup cl_{\gamma}(A_m)$. Therefore by Proposition 5, we have

$$A \subseteq cl_{\gamma}(A_1) \cup cl_{\gamma}(A_2) \cup \ldots \cup cl_{\gamma}(A_m) = cl_{\gamma}(B_1) \cup cl_{\gamma}(B_2) \cup \ldots \cup cl_{\gamma}(B_m)$$
$$= cl_{\gamma}(B_1 \cup B_2 \cup \ldots \cup B_m),$$

since γ is regular [1]. This completes the proof.

Proposition 14. Let X be a space and $\phi \neq A$ a finite γ -semi-open set and A_k a minimal γ -semi-open set in A, for each $k \in \{1, 2, ..., m\}$. If for any $\phi \neq B_k \subseteq A_k, A \subseteq cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$ then $cl_{\gamma}(A) = cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$, where γ is open.

Proof. For any $\phi \neq B_k \subseteq A_k$, $k \in \{1, 2, ..., m\}$, we have $cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m) \subseteq cl_{\gamma}(A)$. Also, we have

$$cl_{\gamma}(A) \subseteq cl_{\gamma}(cl_{\gamma}(B_1 \cup B_2 \cup \dots \cup B_m)) = cl_{\gamma}(B_1 \cup B_2 \cup \dots \cup B_m),$$

since γ is open [1].

This implies that for any $\phi \neq B_k \subseteq A_k$, $cl_{\gamma}(A) = cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$. Hence the proof.

Proposition 15. Let X be a space and $\phi \neq A$ be a finite γ -semi-open set and for each $k \in \{1, 2, ..., m\}$, A_k a minimal γ -semi-open set in A. If for any $\phi \neq B_k \subseteq A_k$, $cl_{\gamma}(A) = cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$, then the class $\{A_1, A_2, ..., A_m\}$ contains all minimal γ -semi-open sets in A.

Proof. Suppose on the contrary that C is a minimal γ -semi-open set in A and for $k \in \{1, 2, ..., m\}$, $C \neq A_i$. Therefore, for each $k \in \{1, 2, ..., m\}$, $C \cap cl_{\gamma}(A_k) = \phi$. This implies that any element of C is not contained in $cl_{\gamma}(A_1 \cup A_2 \cup ... \cup A_m)$. This is a contradiction to the fact that $C \subseteq A \subseteq cl_{\gamma}(A) = cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$. This completes the proof.

Combining Propositions 13, 14 and 15, we have the following theorem:

Theorem 6. Let X be a space and $\phi \neq A$ be a finite γ -semi-open set and for each $k \in \{1, 2, ..., m\}$, A_k a minimal γ -semi-open set in A. Then the following three conditions are equivalent:

(a) The class $\{A_1, A_2, ..., A_m\}$ contains all minimal γ -semi-open sets in A,

(b) or any $\phi \neq B_k \subseteq A_k$, $A \subseteq cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$.

(c) For any $\phi \neq B_k \subseteq A_k$, $cl_{\gamma}(A) = cl_{\gamma}(B_1 \cup B_2 \cup ... \cup B_m)$.

Where γ is regular, monotone and semi-regular.

Remark 1. Suppose that $\phi \neq A$ is a finite γ -semi-open set and $\{A_1, A_2, ..., A_m\}$ is a class of all minimal γ -semi-open sets in A such that for each $k \in \{1, 2, ..., m\}, y_k \in A_k$. Then by Theorem 5, it is clear that $\{y_1, y_2, ..., y_m\}$ is a pre- γ -semi-open set.

Theorem 7. Let X be a space. Suppose that $\phi \neq A$ is a finite γ -semi-open set and $\{A_1, A_2, ..., A_m\}$ is a class of all minimal γ -semi-open sets in A. If for any $B \subseteq A - \{A_1, A_2, ..., A_m\}$ and $\phi \neq B_k \subseteq A_k$, for each $k \in \{1, 2, ..., m\}$, then $B \cup B_1 \cup B_2 \cup ... \cup B_m$ is a pre- γ -semi-open set, where γ is regular, monotone and semi-regular.

Proof. Suppose that $\phi \neq A$ is a finite γ -semi-open set and $\{A_1, A_2, ..., A_m\}$ is a class of all minimal γ -semi-open sets in A. Then by Proposition 13.

 $A \subseteq cl_{\gamma}(B_1 \cup B_2 \cup \ldots \cup B_m) \subseteq cl_{\gamma}(B \cup B_1 \cup B_2 \cup \ldots \cup B_m).$

Also, A is γ -semi-open implies

 $B \cup B_1 \cup B_2 \cup \ldots \cup B_m \subseteq A = sint_{\gamma}(A) \subseteq sint_{\gamma}(cl_{\gamma}(B \cup B_1 \cup B_2 \cup \ldots \cup B_m)).$

This follows that $B \cup B_1 \cup B_2 \cup ... \cup B_m$ is a pre- γ -semi-open set. This completes the proof.

Theorem 8. Let X be a γ -semi-locally finite space. If a minimal γ -semi-open set $A \subseteq X$ has more than one element, then X is a pre γ -semi- T_2 space, where γ is regular, monotone and semi-regular.

Proof. Let $a, b \in X$ such that $a \neq b$. Since X is γ -semi-locally finite, therefore there exist finite γ -semi-open sets V and W containing a and b

respectively. Proposition 9 implies that there exist a class $\{V_1, V_2, ..., V_m\}$ of all minimal γ -semi-open sets in V and a class $\{W_1, W_2, ..., W_l\}$ of all minimal γ -semi-open sets in W. We consider three possibilities:

1. Suppose there exist $k \in \{1, 2, ..., m\}$ and $i \in \{1, 2, ..., l\}$ such that $a \in V_k$ and $b \in W_i$. Then Proposition 8 implies that $\{a\}$ and $\{b\}$ are pre- γ -semi-open sets such that $a \in \{a\}, b \in \{b\}$ and $\{a\} \cap \{b\} = \phi$.

2. Suppose there exist $k \in \{1, 2, ..., m\}$ and $i \in \{1, 2, ..., l\}$ such that $a \in V_k$ and $b \notin W_i$. Then by supposition, Proposition 8 and Theorem 7, we can find for each $i, b_i \in W_i$ such that $\{a\}$ and $\{b, b_1, b_2, ..., b_l\}$ are pre- γ -semi-open sets and $\{a\} \cap \{b, b_1, b_2, ..., b_l\} = \phi$.

3. Suppose that there exist $k \in \{1, 2, ..., m\}$ and $i \in \{1, 2, ..., l\}$ such that $a \notin V_k$ and $b \notin W_i$. Then by supposition and Theorem 7, for each k and i, we can find elements $a_k \in V_k$ and $b_i \in W_i$ such that $\{a, a_1, a_2, ..., a_m\}$ and $\{b, b_1, b_2, ..., b_l\}$ are pre- γ -semi-open sets and $\{a, a_1, a_2, ..., a_m\} \cap \{b, b_1, b_2, ..., b_l\} = \phi$. Hence X is a pre γ -semi- T_2 space. This completes the proof.

Acknowledgement. This work is dedicated to Respectable Professor Dr. Bashir Ahmad on his 60th birthday.

References

- AHMAD B., HUSSAIN S., Properties of γ-operations on topological spaces, *Aligarh Bull. Math.*, 22(1)(2003), 45-51.
- [2] AHMAD B., HUSSAIN S., γ-semi-open sets in topological spaces II, Southeast Asian Bull. Maths., (in press).
- [3] AHMAD B., HUSSAIN S., γ-convergence in topological space, Southeast Asian Bull. Maths., 29(2005), 832-842.
- [4] AHMAD B., HUSSAIN S., γ*-regular and γ-normal space, Math. Today., 22(1) (2006), 37-44.
- [5] AHMAD B., HUSSAIN S., On γ -s-closed subspaces, Far East Jr. Math. Sci., 31(2)(2008), 279-291.
- [6] AHMAD B., HUSSAIN S., NOIRI T., On some mappings in topological space, Eur. J. Pure Appl. Math., 1(2008), 22-29.
- [7] CARPINTERO C., ROSAS E., VIELMA J., Operadores asociados a una topologia Γ sobre un conjunto X y nociones conexas, *Divulgaciones Mathematica*, 6(2)(1998), 139-144.
- [8] HUSSAIN S., AHMAD B., On minimal γ-open sets, Eur. J. Pure Appl. Maths., 2(3)(2009), 338-351.
- [9] HUSSAIN S., AHMAD B., On γ-s-closed spaces, Sci. Magna Jr., 3(4)(2007), 89-93.
- [10] HUSSAIN S., AHMAD B., On γ-s-regular spaces and almost γ-s-continuous functions, *Lobackevskii*. J. Math., 30(4)(2009), 263-268. DOI:10.1134/5199 5080209040039.
- [11] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

- [12] KASAHARA S., Operation-compact spaces, Math. Japonica, 24(1979), 97-105.
- [13] OGATA H., Operations on topological spaces and associated topology, Math. Japonica, 36(1)(1991), 175-184.

SABIR HUSSAIN DEPARTMENT OF MATHEMATICS ISLAMIA UNIVERSITY BAHAWALPUR, PAKISTAN Present address: DEPARTMENT OF MATHEMATICS, YANBU UNIVERSITY P.O. BOX 31387, YANBU ALSINAIYAH, SAUDI ARABIA e-mail: sabiriub@yahoo.com

Received on 21.02.2010 and, in revised form, on 30.05.2010.

76