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EQUATIONS∗

Abstract. We establish sufficient conditions for the linear func-
tional differential equation of n-th order of the forms

y(n)(t) + p(t)y(g(t)) = 0

and
y(n)(t)− p(t)y(g(t)) = 0

to have property A and B, where p and g ∈ C([σ,∞), (0,∞)),
with σ ∈ R and g(t) ≥ t, and n ≥ 2 is a positive integer.
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1. Introduction

This paper deals with the oscillation and asymptotic property of nonoscil-
latory solutions of the functional differential equations of the forms

(1) y(n)(t) + p(t)y(g(t)) = 0

and

(2) y(n)(t)− p(t)y(g(t)) = 0

where p and g ∈ C([σ,∞), (0,∞)), with σ ∈ R and g(t) ≥ t, and n ≥ 2 is a
positive integer.

A continuous function y ∈ [σ,∞) → R is said to be a solution of (1)(or
(2)) if it is continuous, along with its derivatives up to (n− 1)-th order and
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satisfies (1)(or (2)). A solution of (1)(or (2)) is said to be oscillatory if it
has a sequence of zeros tending to infinity; Otherwise, the solution is said to
be nonoscillatory. Equation (1) with g(t) = t is said to be disconjugate on
[σ,∞) if no nontrivial solution of the equation has more than (n− 1)-zeros,
counting multiplicities.

Let y(t) be a nonoscillatory solution of (1)(or (2)). We may assume,
without any loss of generality, that y(t) > 0 for t ≥ t0 ≥ σ. Then y(g(t)) > 0
and y(n)(t) < 0 (y(n)(t) > 0) for t ≥ t0. Hence by Lemma 1.1 due to [9], it
follows that there exists an integer l, 0 ≤ l ≤ n − 1, such that n + l is odd
(even) and

(3)
y(i)(t) > 0, i = 0, 1, 2, . . . , l,

(−1)i+ly(i)(t) > 0, i = l + 1, . . . , n,

for large t, say for t ≥ T ≥ t0. Further, for l ∈ {1, 2, 3, . . . , n− 1}, n+ l odd,
the following inequality holds for large t, say for t ≥ t1 ≥ T ,

(4) |y(t)| ≥ (t− t1)(n−1)

(n− 1)(n− 2) . . . (n− l)
|y(n−1)(2n−l−1t)|, t ≥ t1.

Definition 1. We say that Eq.(1) has property A if any of its solution is
oscillatory when n is even and either is oscillatory or satisfies (3) for l = 0
when n is odd.

If N denotes the set of all nonoscillatory solutions of (2) and Nl denotes
the set of all nonoscillatory solutions of (2) satisfying (3). Then

N =

{
N1 ∪N3 ∪ · · · ∪Nn, if n is odd,

N0 ∪N2 ∪ · · · ∪Nn, if n is even.

Definition 2. Equation (2) is said to have property B if N = Nn for n
odd, and N = N0 ∪Nn for n even.

A vast literature exists on the oscillation, property A , property B and
asymptotic behaviour of the nonoscillatory solutions of n-th order delay
differential equations of the forms

(5) y(n)(t) + q(t)y(τ(t)) = 0

and

(6) y(n)(t)− q(t)y(τ(t)) = 0

where q and τ ∈ C([σ,∞), [0,∞)), τ(t) ≤ t and τ(t) → ∞ as t → ∞. One
may see the monograph due to Lakshmikantham et.al [13], Gyori and Ladas
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[7] and the references cited therein for oscillation, property A and property B
of Eq.(5) and (6) respectively. Higher order differential equations of the form
(5) and (6) were studied by Koplatadze [11]. We note that the definitions
given above for Eq.(1) also hold for Eq.(5) and (6). In a recent paper [16], the
author studied the oscillation and property A of Eq.(5). The results obtained
in [16] are different from earlier existing ones. Furthermore the sufficient
conditions for the oscillation of (5) have been obtained while dealing with the
property A of the equation. On the other hand, it seems that very few work
has been done on the oscillation and asymptotic behaviour of nonoscillatory
solutions of the advanced differential equations (1) and (2). The results we
shall provide here, are different from the results due to Koplatadze et. al.
[12]. This is dealt in Section 2. Further, some easily verifiable sufficient
conditions for property B of (2) and (6) are given in Section 3.

The following lemma due to Kiguradze [9] is needed for our use in the
sequel.

Lemma 1. Let the inequality (3) hold for a certain l ∈ {1, 2, 3, . . . , n−1}.
Then

(7)

∫ ∞
t1

sn−l−1|y(n)(s)| ds <∞,

(8) y(i)(t) ≥ y(i)(t1) +
1

(l − i− 1)!

∫ t

t1

(t− s)l−i−1y(l)(s) ds

for t ≥ t1, i = 0, 1, 2, . . . , l − 1 and

(9) y(l)(t) ≥ 1

(n− l − 1)!

∫ ∞
t

(s− t)n−l−1|y(n)(s)| ds

for t ≥ t1.

Lemma 2. Let t0 and T be such that T ≥ t0 ≥ σ and g(t) ≥ t0 for
t ≥ T . Assume that u : [t0,∞) → (0,∞), w∗ : [T,∞) × (0,∞) → (0,∞),
H : [0,∞) × [0,∞) → [0,∞) and φ, ψ : ∆ → [0,∞) are continuous, where
∆ = {(t, s); t ≥ s ≥ T} and each of w∗ and H is nondecreasing in the second
variable. Suppose that ∫ ∞

T
ψ∗(t)H(t, u(g(t))) dt <∞

and

u(t) ≥ w∗(t, u(t)) +

∫ t

T
φ(t, s)(

∫ ∞
s

ψ(α, s)H(α, u(g(α))) dα) ds
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for t ≥ T , where ψ∗(t) = max{ψ(t, s); s ∈ [T, t]}. Then the integral equation

u(t) = w∗(t, v(t)) +

∫ t

T
φ(t, s)(

∫ ∞
s

ψ(α, s)H(α, v(g(α))) dα) ds,

t ≥ T , has a solution v ∈ C([t0,∞), (0,∞)) satisfying

w∗(t, v(t)) ≤ v(t) ≤ u(t), t ≥ T.

The proof of Lemma 2 is similar to that of Lemma 3 in Kusano and Naito
[10] and hence is omitted.

Lemma 3 ([3]). If z ∈ C2([T,∞), R) and

z(t) > 0, z
′
(t) > 0, z

′′
(t) ≤ 0

on [T,∞), then for each k ∈ (0, 1), there is a Tk ≥ T such that

z(τ(t)) ≥ kτ(t)

t
z(t)

for t ≥ Tk.

2. Main results-I

In this section, sufficient conditions in terms of the coefficient functions
have been obtained for property A and oscillation of (1).

Theorem 1. Let t − g−1(t) → ∞ as t → ∞. Suppose that for every
l ∈ {1, 2, · · · , n− 1}

(10) lim sup
t→∞

(g−1(t))

∫ ∞
t

(s− t)n−l−1p(s) ds > (n− l − 1)! · l!

holds, then (1) has property A.

Proof. Suppose, for the sake of contradiction, that (1) does not have
property A. Then there exists a nonoscillatory solution y(t) of (1) and a
real t1 ≥ σ such that for t ≥ t1, (3) holds for some l ∈ {1, 2, · · · , n − 1}.
Without any loss of generality, we may assume that y(t) > 0 for t ≥ t1.
Then y(n)(t) < 0 and y(g(t)) > 0 for t ≥ t1. Putting i = 0 in (8), we obtain

(11) y(t) ≥ 1

(l − 1)!

∫ t

t1

(t− s)l−1y(l)(s) ds, t ≥ t1.
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We can find a t2 ≥ t1 such that t− g−1(t) > t1 for t ≥ t2. Thus, for t ≥ t2

y(t) ≥ 1

(l − 1)!

∫ t

t−g−1(t)
(t− s)l−1y(l)(s) ds

≥ y(l)(t)

(l − 1)!

∫ t

t−g−1(t)
(t− s)l−1 ds

≥ (g−1(t))l

l!
y(l)(t),

which using (35) gives

y(t) ≥ (g−1(t))l

l! · (n− l − 1)!

∫ ∞
t

(s− t)n−l−1p(s)y(g(s)) ds

≥ (g−1(t))l

l! · (n− l − 1)!
y(g(t))

∫ ∞
t

(s− t)n−l−1p(s) ds

≥ (g−1(t))l

l! · (n− l − 1)!
y(t)

∫ ∞
t

(s− t)n−l−1p(s) ds

which contradicts (10). Hence Eq.(1) has property A. Thus the theorem is
proved. �

Remark 1. Theorem 1 holds strictly for the advanced differential equa-
tions, that is, the theorem does not hold when g(t) = t. In [11], several
sufficient conditions for the property A were obtained for functional differ-
ential equations. Our result Theorem 1 cannot be compared with the results
in [11]. Corollary 6.2 in [11] gives a sufficient condition where no advanced
term is required, while our theorem 1 requires the advanced term g(t). Our
result here is also different from the results obtained in [4] and [5].

Theorem 2. Suppose that g(t) > t and for every l ∈ {1, 2, · · · , n− 1},

(12) lim sup
t→∞

∫ t

g−1(t)
(t−s)l−1

∫ ∞
s

(u−s)n−l−1p(u) du ds > (l−1)!·(n−l−1)!

holds. Then (1) has property A.

Proof. Let y(t) be a nonoscillatory solution of (1). Without any loss of
generality, we may assume that y(t) > 0 for t ≥ t0 > σ. Then y(n)(t) < 0
and y(g(t)) > 0 for t ≥ t0. Thus there exists an integer l, 0 ≤ l ≤ n− 1 such
that n+ l odd and (3) holds for some t ≥ t1 ≥ t0. Let l ∈ {1, 2, · · · , n− 1}.
Then from (9) and (11), we have

y(t) ≥ 1

(l − 1)! · (n− l − 1)!

∫ t

t1

(t− s)l−1
∫ ∞
s

(u− s)n−l−1p(u)y(g(u)) du ds.
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We can find a t2 ≥ t1 so that g−1(t) > t1 for t ≥ t2. Thus, for t ≥ t2 the
above integral inequality yields

1 ≥ 1

(l − 1)! · (n− l − 1)!

∫ t

t1

(t− s)l−1
∫ ∞
s

(u− s)n−l−1p(u) du ds,

which contradicts (12). Hence l = 0. Consequently, (1) has property A.
This completes the proof of the theorem. �

Remark 2. In [1], Agarwal and Grace have proved the following different
result (see Theorem 10 with α = 1 and f(y) = y in [1]): Let

∫∞
t p(s)ds < ∞.

If

(13) lim sup
t→∞

tn−1
∫ ∞
t

p(s) ds > (n− 1)!,

then for n even, every solution of (1) oscillates. In addition, if

(14)

∫ ∞
sn−1

∫ ∞
s

p(u) du ds =∞

holds, then for n odd, every solution y(t) of (1) either oscillates or y(i)(t)→ 0
monotonically as t→∞, i = 0, 1, · · · , n− 1.

Example 1. By Theorem 2

y
′′′

(t) +
3

t3
y(2t) = 0, t ≥ 2

has property A. However, since (13) fails to hold, Theorem 3.5 in [1] cannot
be applied to this example.

Example 2. Consider the equation

(15) y
′′′

(t) +
7

t3
y(2t) = 0, t ≥ 1.

By Theorem 2, (15) has property A. On the other hand, Theorem 1 cannot
be applied to (15).

Remark 3. Let the advanced argument g(t) = 2t in (15) be replaced by
g(t) = 11t

10 . Then we get

(16) y
′′′

(t) +
7

t3
y(

11t

10
) = 0, t ≥ 1.

It is easy to check that the condition (12) fails to hold to the Eq.(16). It
seems that if g(t) is closer to t, then (12) fails to hold and hence Theorem 2
cannot be applied to (16). However, by Theorem 1, (16) has property A.
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Theorem 3. Let g
′
(t) > 0. If for every l ∈ {1, 2, · · · , n− 1},

(17)

∫ ∞
Hl(t) dt =∞,

holds, where

(18) Hn−1(t) = tn−1g
′
(t)p(g(t))− (n− 1) · (n− 1)! · 2n−4.tn−3

g′(t)gn−2(t)

and

(19) Hl(t) =
tlg
′
(t)

(n− l − 2)!

∫ ∞
g(t)

(s− g(t))n−l−2p(s) ds− l · l! · tl−2 · 2l−3

g′(t)gl−1(t)

for l ∈ {1, 2, · · · , n−2}, then for n even, every solution of (1) oscillates and
for n odd every solution of (1) either oscillates or tends to zero as t→∞.

Proof. Suppose that (1) does not have property A. Then (1) admits
a nonoscillatory solution y(t) such that (3) holds for l ∈ {1, 2, · · · , n − 1}
for some t ≥ t1 ≥ σ. We may assume, without any loss of generality, that
y(t) > 0 for t ≥ t1.

Let l = n−1. Setting z(t) = tn−1y(n−1)(g(t))
y(g(t)) we see that z(t) > 0 for t ≥ t1

and

(20) z
′
(t) ≤ −tn−1p(g(t))g

′
(t) +

n− 1

t
z(t)− y

′
(g(t))

y(g(t))
g
′
(t)z(t).

Putting i = 1 and l = n− 1 in (8), we obtain

y
′
(t) ≥ 1

(n− 2)!
(t− t1)n−2y(n−1)(t).

Hence for t ≥ 2t1, we get

y
′
(t) ≥ 1

(n− 2)! · 2n−2
tn−2y(n−1)(t).

Thus for t ≥ t2 > 2t1, we have

(21)
y
′
(g(t))

y(g(t))
≥ gn−2(t)

(n− 2)! · 2n−2
z(t)

tn−1
.

Using (21) in (20), we have

(22) z
′
(t) ≤ −Fn−1(t),
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where

Fn−1(t) = tn−1p(g(t))g
′
(t)− n− 1

t
z(t) +

g
′
(t)gn−2(t)

(n− 2)! · 2n−2 · tn−1
z2(t),

which attains the minimum Hn−1(t) as given in (18). Integration of (22)
from t2 to t yields z(t) < 0 for large t, a contradiction.

Next, let l ∈ {1, 2, · · · , n− 2}. Setting z1(t) = tly(l)(g(t))
y(g(t)) , we observe that

z1(t) > 0 for t ≥ t1 and

(23) z
′
1(t) =

tlg
′
(t)y(l+1)(g(t))

y(g(t))
+
l

t
z1(t)−

g
′
(t)y

′
(g(t))z1(t)

y(g(t))
.

Putting i = 1 in (8), we obtain for t ≥ t1

y
′
(t) ≥ tl−1

(l − 1)! · 2l−1
y(l)(t)

and hence for t ≥ t2 ≥ 2t1, the above inequality yields

(24)
y
′
(g(t))

y(g(t))
≥ gl−1(t)

tl · (l − 1)! · 2l−1
z1(t).

Next putting i = l + 1 and k = n and (t2 ≤)t < s and letting s→∞ in

(25) y(i)(t) =
k−1∑
j=i

(t− s)j−i

(j − i)!
y(j)(s) +

1

(k − i− 1)!

∫ t

s
(t− u)k−i−1y(k)(u) du,

we obtain

(26)
y(l+1)(g(t))

y(g(t))
≤ − 1

(n− l − 2)!

∫ ∞
g(t)

(s− g(t))n−l−2p(s) ds.

Using (24) and (26) in (23), we obtain

(27) z
′
1(t) ≤ −Fl(t)

where

Fl(t) =
g
′
(t)gl−1(t)

tl · (l − 1)! · 2l−1
z21(t)− l

t
z1(t)

+
tlg
′
(t)

(n− l − 2)!

∫ ∞
g(t)

(s− g(t))n−l−2p(s) ds

which attains the minimum Hl(t) as given in (19). Hence integration of (27)
from t2 to t yields a contradiction. �
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The theorem is proved for n even. Clearly, l = 0 implies that n is odd.
Our theorem will be completed if we can show that y(t) → 0 as t → ∞.
Since l = 0, then limt→∞ y(t) = λ, 0 ≤ λ < ∞. If 0 < λ < ∞, then for
0 < ε < λ, there exists a t3 ≥ t2 such that y(g(t)) > λ − ε for t ≥ t3. Now
putting i = 0, k = n and s > t = t3 and letting s→∞ in (25), we obtain

y(t3) > (λ− ε)
∫ ∞
t3

(u− t3)n−1p(u) du

which in turn gives ∫ ∞
t3

(u− t3)n−1p(u) du <∞.

On the other hand, the integral condition (17) with l = n − 1 yields that∫∞
t3
tn−1p(t) dt = ∞, a contradiction. Hence λ = 0. Thus the theorem is

proved.

Example 3. By Theorem 3,

(28) y
′′′

(t) +
24(t+ 1)2

t5
y(t+ 1) = 0, t ≥ 1

has property A. In particular, y(t) = 1
t2

is a nonoscillatory solution of the
equation with y(t)→ 0 as t→∞.

Remark 4. If we set z(t) = gn−1(t)y(n−1)(g(t))
y(g(t)) for l = n − 1 and z1(t) =

gl(t)y(l)(g(t))
y(g(t)) for l = 1, 2, · · · , n− 2 and proceed as in the proof of Theorem 3,

we obtain:

Theorem 4. Let g
′
(t) > 0. If for every l ∈ {1, 2, · · · , n− 1},∫ ∞

Kl(t) dt =∞

where

Kn−1(t) = gn−1(t)g
′
(t)p(g(t))− (n− 1) · (n− 1)! · 2n−4

g(t)g′(t)

and

Kl(t) =
gl(t)g

′
(t)

(n− l − 2)!

∫ ∞
g(t)

(s− g(t))n−l−2p(s) ds− l · l! · 2l−3

g(t)g′(t)

then the conclusion of Theorem 3 holds.
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Remark 5. When g(t) = t, then Hl(t) = Kl(t), 1 ≤ l ≤ n − 1. On the
other hand, if g(t) > t, from the second terms of the right hand sides of
Hl(t) and Kl(t), 1 ≤ l ≤ n− 1, it follows that the conditions of Theorems 3
and 4 are different. If g(t) = t and n = 2, then Theorem 3 or Theorem 4
solves the following open problem proposed by Kiguradze [9].

Problem: Let Mn∗ = max(λ(λ− 1)(λ− 2) . . . (λ− n+ 1)). If∫ ∞
tn−1

[
p(t)− Mn∗

tn
]
dt =∞,

then (1) with g(t) = t has property A.

Remark 6. In [12], Koplatadze et al. has obtained a sufficient condition
for the property A of (1). This is given below: for example, see. It states
that

Theorem 5 (Theorem 2.2, [12]). Let g(t) be nondecreasing, n be even,∫∞
tn−1p(t) dt =∞ and

lim sup
t→∞

{g(t)

∫ ∞
g(t)

sn−2p(s) ds+

∫ g(t)

t
sn−1p(s) ds(29)

+ (g(t))−1
∫ t

0
sn−1g(s)p(s) ds} > (n− 1)!

hold, then (1) has property A.

The following example shows that our Theorem 3 can be applied where
Theorem 5 fails to hold.

Example 4. Consider the equation

y′′(t) +
1

2.1 t2
y(

11t

10
) = 0, t ≥ 1.

Clearly p(t) = 2.1
t2

, g(t) = 11t
10 > t, g−1(t) = 10t

11 and (g(t))−1 = 10
11t . Here

n = 2. Hence l = 1. Now a simple calculation shows that

H1(t) =
10

11t

{
1

2.1
− 1

4

}
holds, which in turn implies that (17) holds. Hence Theorem 3 can be
applied to this example. On the other hand,

g(t)

∫ ∞
g(t)

sn−2p(s) ds +

∫ g(t)

t
sn−1p(s) ds

+ (g(t))−1
∫ t

0
sn−1g(s)p(s) ds =

2.0953

2.1
< 1
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implies that (29) fails to hold. Consequently, Theorem 5 cannot be applied
to this example.

Theorem 6. Let n ≥ 3 and g(t) > t. Further suppose that the third
order ordinary differential equation

(30) u
′′′

+Gl(t)u = 0

is oscillatory for l = 1, 2, · · · , n− 1, where

(31) Gn−1(t) =
1

(n− 3)!
(g(t)− t)n−3p(t)

and

(32) Gl(t) =
1

(l − 1)! · (n− l − 2)!
(g(t)− t)l−2(

∫ ∞
t

(s− t)n−l−2p(s) ds)

for l = 1, 2, · · · , n− 2. Then (1) has property A.

Remark 7. Clearly, there are third order differential equations which
admit both oscillatory and nonoscillatory solutions. A third order ordinary
differential equation is said to be oscillatory if it has an oscillatory solution;
otherwise, it is called nonoscillatory.

Proof of Theorem 6. Let y(t) be a solution of (1). If y(t) is oscillatory,
then there is nothing to prove. Let y(t) be nonoscillatory. We may assume,
without any loss of generality, that y(t) > 0 for t ≥ t0 > σ. Then y(g(t)) > 0
and y(n)(t) ≤ 0 for t ≥ t0. There exists a positive integer l ∈ {0, 1, 2, · · · , n−
1} such that n+ l is odd and (3) holds for some t ≥ t1 ≥ t0. We claim that
l = 0. If not, then l ∈ {1, 2, · · · , n − 1}. First, suppose that l = n − 1.

Let x(t) = y(n−3)(t). Set z(t) = x
′
(t)

x(t) . Then z(t) > 0 for t ≥ t1 and

z
′
(t) = x

′′
(t)

x(t) − z
2(t). Further, assuming u(t) = exp(

∫ t
t1
z(s) ds) and using

y(g(t)) ≥ 1

(n− 3)!
(g(t)− t)n−3y(n−3)(t)

we obtain
u
′′′

+Gn−1(t)u ≤ 0

for t ≥ t1. This in turn implies, by Lemma 4 in [6], that (30) with l = n− 1
is disconjugate, a contradiction. Next, suppose that l ∈ {1, 2, · · · , n − 2}.
Putting i = l + 1, k = n and (t1 ≤)t < S and letting s → ∞ in (25), we
obtain

y(l+1)(t) +
1

(n− l − 2)!
(

∫ ∞
t

(s− t)n−l−2p(s) ds)y(g(t)) ≤ 0.
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This inequality and

y(g(t)) ≥ (g(t)− t)l−2

(l − 1)!
y(l−2)(t)

imply that v(t) = y(l−2)(t) is a solution of

v
′′′

+Gl(t)v ≤ 0

with v(t) > 0, v
′
(t) > 0, v′′(t) > 0 and v′′′(t) < 0 for t ≥ t1. This in turn

implies by Lemma 4 in [6], that (30) with l = 1, 2, · · · , n−2 is disconjugate,
a contradiction. Hence l = 0. This completes the proof of the theorem. �

Example 5. Since the third order ordinary differential equation

x
′′′

+ e
1
2x = 0

is oscillatory, then by Theorem 6, the equation

(33) y
′′′

+ e
1
2 y(t+

1

2
) = 0

has property A. In particular, y(t) = e−t is a nonoscillatory solution of (33).

The next comparison theorem gives property A of Eq.(1).

Theorem 7. If the ordinary differential equation

(34) x(n)(t) + p(t)x(t) = 0

has property A, then (1) has property A.

The proof of the theorem is in the lines of Theorem 2.7 due to Parhi and
Padhi [15] for the delay differential equations. However, for completeness,
we retain the proof of the theorem.

Proof of Theorem 7. If (1) does not have property A, then there exists
a nonoscillatory solution y(t) of (1) and an integer l, 1 ≤ l ≤ n−1 such that
n+ l is odd and y(t) satisfies (3) for some t ≥ t1 ≥ σ.

From (9) we have, for t ≥ t1

(35) y(l)(t) ≥ 1

(n− l − 1)!

∫ ∞
t

(s− t)n−l−1p(s)y(g(s))) ds.

Further, putting i = 0 in (8), we obtain

(36) y(t) ≥ λ+
1

(l − 1)!

∫ t

t1

(t− s)l−1y(l)(s) ds,
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where λ = y(t1) > 0. Hence from (35) and (36), we obtain

y(t) ≥ λ+
1

(l − 1)! · (n− l − 1)!

∫ t

t1

(t−s)l−1
∫ ∞
s

(u−s)n−l−1p(u)y(g(u)) du ds.

Since g(t) > t, then the above integral inequality gives

y(t) ≥ λ+
1

(l − 1)! · (n− l − 1)!

∫ t

t1

(t− s)l−1
∫ ∞
s

(u− s)n−l−1p(u)y(u) du ds.

Further, since∫ ∞
t1

(u− t1)n−l−1p(u)y(u) du ≤
∫ ∞
t1

(u− t1)n−l−1p(u)y(g(u)) du

≤ (n− l − 1)!y(l)(t1) <∞,

then by Lemma 2, it follows that the integral equation

x(t) = λ+
1

(l − 1)! · (n− l − 1)!

×
∫ t

t1

(t− s)l−1
∫ ∞
s

(u− s)n−l−1p(u)x(u) du ds, t ≥ t1

has a solution x ∈ C([t1,∞), (0,∞)) satisfying λ ≤ x(t) ≤ y(t). Repeated
integration of the above integral equation yields that x(t) is a positive so-
lution of (34) such that (3) holds for some l ∈ {1, 2, · · · , n − 1}, which
contradicts the assumption of the theorem. Hence (1) has property A. This
completes the proof of the theorem. �

Remark 8. Let p(t) = p > 0 be a constant and g(t) = t+ g, g > 0 be a
constant. Then (1) becomes

(37) y(n)(t) + py(t+ g) = 0.

The characteristic equation associated with (37) is given by

(38) λn + pegλ = 0.

Let F (λ) = λn + pegλ. Then F (0) = p > 0 and F
′
(λ) = nλn−1 + pgegλ > 0

for λ ≥ 0. Furthermore, for n even, F (λ) > 0 for λ < 0. Hence (38) has
no real root when n is even. Consequently, all solutions of Eq.(37) oscillates
when n is even. Next, suppose that n is odd. Then limλ→−∞ F (λ) = −∞
implies that (38) has a negative real root. This in turn implies that (37) has
a nonoscillatory solution which together with all its derivatives tend to zero
as t→∞. It would be interesting to improve the above observation to the
advanced differential equation (1). However we have not succeeded yet.
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3. Main Results-II

This section deals with the asymptotic behaviour of nonoscillatory solu-
tions of the advanced differential equations of the forms (2) and (6).

Theorem 8. If for every l ∈ {1, 2, · · · , n − 2} with n + l even, the
following conditions

(39)

∫ ∞
σ

tn−l−2p(t) dt <∞ and

∫ ∞
σ

tn−l−1p(t) dt =∞

hold, then (2) has property B.

Proof. Suppose that (2) does not have property B. Then there ex-
ists a nonoscillatory solution y(t) of (2) such that (3) is satisfied for l ∈
{1, 2, · · · , n− 2}, n+ l even. Without any loss of generality, we may assume
that y(t) > 0 and (3) holds for t ≥ t0 ≥ σ.

Repeated integration of (2) from t(≥ t0) to ∞ yields

(40) y(l)(t) ≤ y(l)(t1)−
y(g(t1))

(n− l − 2)!

∫ t

t1

∫ ∞
s

(u− s)n−l−2p(u) du ds.

A simple integration shows that (39) implies

lim
t→∞

∫ t

t1

∫ ∞
s

(u− s)n−l−2p(u) du ds =∞.

Hence from (40) it follows that y(l)(t) < 0 for large t, a contradiction. Hence
(2) has property B. This completes the proof of the theorem. �

Example 6. The equation

y
′′′

(t)− 1

t2
y(t+ 1) = 0, t ≥ 1

has property B, by Theorem 8.

Remark 9. Consider the equation

y′′′(t) +
1

3t2
y(2t) = 0, t ≥ 1.

Theorem 8 can be applied to this example, while Theorem 6.12 due to [11]
cannot be applied to this example. Thus Theorem 8 cannot be treated as a
particular case of Theorem 6.12 in [11].

If we proceed as in the lines of the proof of Theorem 8, we obtain the
following result for the delay differential equation (6):
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Theorem 9. If for every l ∈ {1, 2, · · · , n− 2} with n+ l even,∫ ∞
σ

tn−l−2q(t) dt <∞

and ∫ ∞
σ

tn−l−1q(t) dt =∞

hold, then (6) has property B.

Since Theorem 8 and Theorem 9 hold for their corresponding ordinary
differential equations, it is interesting to find out sufficient conditions for
the property B of (2) and (6) by retaining the functions g(t) and τ(t).

Theorem 10. Let g(t) > t. If for every l ∈ {1, 2, · · · , n− 2} with n+ l
even

lim sup
t→∞

(t− g−1(t))l−1(g−1(t)− T )2
∫ ∞
2g−1(t)

(s− 2g−1(t))n−l−2p(s) ds(41)

> 2 · (l − 1)! · (n− l − 2)!

holds for every T ≥ σ, then (2) has property B.

Proof. Suppose, for the sake of contradiction, that (2) does not have
property B. Then there exists a nonoscillatory solution y(t) of (2) such
that (3) is satisfied for l ∈ {1, 2, · · · , n− 2}, n+ l even. Without any loss of
generality, we may assume that y(t) > 0 and (3) holds for t ≥ t0 ≥ σ.

Integrating dy(l)(t)
dt = y(l+1)(t) from t(≥ t0) to 2t, we obtain

y(l)(t) ≥ −ty(l+1)(2t).

Further integration from t0 to t gives

(42) y(l−1)(t) ≥ −(t− t1)2

2
y(l+1)(2t).

Next, putting i = l + 1, k = n and s > t(≥ t0) and letting s → ∞ in (25),
we get

(43) y(l+1)(t) ≤ − y(g(t))

(n− l − 2)!

∫ ∞
t

(s− t)n−l−2p(s) ds.

Hence from (42) and (43), we get

(44) y(l−1)(t) ≥ (t− t1)2

2 · (n− l − 2)!
y(g(t))

∫ ∞
2t

(s− 2t)n−l−2p(s) ds.
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Next, using

y(t) ≥ (t− g−1(t))l−1

(l − 1)!
y(l−1)(g−1(t)),

and (44), we obtain

1 ≥ (t− g−1(t))l−1(g−1(t)− t1)2

2 · (n− l − 2)! · (l − 1)!

∫ ∞
2g−1(t)

(s− 2g−1(t))n−l−2p(s) ds.

Taking lim sup both sides in the above inequality, we get a contradiction to
the above assumption. The proof is complete. �

We have the following result for Eq.(6) similar to Theorem 10:

Theorem 11. Let τ(t) < t and if for every l ∈ {1, 2, · · · , n− 2}

lim sup
t→∞

(τ(t)− T )2(t− τ(t))l−1
∫ ∞
2τ−1(t)

(s− 2τ(t))n−l−2p(s) ds

> 2 · (l − 1)! · (n− l − 2)!

for every T ≥ σ, then (6) has property B.

Using Lemma3 we can obtain the following result:

Theorem 12. Let τ(t) < t and l ∈ {1, 2, · · · , n − 2}. If for every
µ ∈ (0, 1) and T ≥ σ

lim sup
t→∞

τ(t)(t− T )2(t− τ(t))l−1

t

∫ ∞
2t

(s− 2t)n−l−2p(s) ds

>
2 · (n− l − 2)! · (l − 1)!

µ

holds, then (6) has property B.

Remark 10. Theorem 11 holds also when n = 3 and τ(t) = t. In fact,
for n = 3 and τ(t) ≤ t, it is easy to prove the following result (see [14]).

Theorem 13. Let n = 3, τ(t) ≤ t and

lim sup
t→∞

(t− T )2
∫ ∞
2τ−1(t)

p(s) ds > 2

for every T ≥ σ, then (6) has property B.

Clearly, for the specific case n = 3, Theorem 11 is not as good as Theorem
13. Thus Theorem 11 is yet to be improved.
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