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1. Introduction

Functions and of course continuous functions stand among the most im-
portant notions in the whole of mathematical science. Many different forms
of continuous functions have been introduced over the years. Various in-
teresting problems arise when one considers continuity. Its importance is
significant in various areas of mathematics and related sciences. Recently,
Hatir and Noiri [3] have introduced a weak form of open sets called -3-open
sets. The aim of this paper is to introduce and characterize a new class
of functions called quasi-d-3-continuous functions in topological spaces by
using Jd-B-open sets.

2. Preliminaries

Let A be a subset of a topological space (X, 7). We denote the closure of
A and the interior of A by CI(A) and Int(A), respectively. A subset A of a
topological space (X, 7) is said to be regular open [9] if A = Int(Cl(A)). A
set A C X is said to be d-open [10] if it is the union of regular open sets of X.
The complement of a regular open (resp. d-open) set is called regular closed
(resp. d-closed). The intersection of all d-closed sets of (X, 7) containing A
is called the d-closure [10] of A and is denoted by Cls(A). A point z € X is
called a O-cluster point of A if CI(V) N A # & for every open set V of X
containing x. The set of all #-cluster points of A is called the 6-closure of A
[10] and is denoted by Clg(A). If A = Clp(A), then A is said to be #-closed
[10]. The complement of f-closed set is said to be #-open [10]. The union
of all #-open sets contained in a subset A is called the #-interior of A and is
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denoted by Intg(A) [10]. A subset A of a topological space (X, 7) is said to
be ¢-5-open [3]) if S C Cl(Int(Cls(S))). The complement of a d-5-open set
is called 6-f-closed [3]. The intersection of all §-f-closed sets containing S
is called the J-3-closure of S and is denoted by g Cls(S). The §-B-interior of
S is defined by the union of all §-3-open sets contained in .S and is denoted
by gInts(S). The set of all 6-8-open sets of (X, 7) is denoted by 630 (X).
The set of all §-F-open sets of (X, 7) containing a point z € X is denoted
by 080(X,x). A subset B, of a topological space (X,7) is said to be a
0-B-neighbourhood [4] of a point z € X if there exists a d-$-open set U such
that x € U C B,.

Definition 1. A function f: (X,7) — (Y,0) is said to be:

(1) 6-B-continuous [4] at a point x € X if for each open subset V in'Y
containing f(x), there exists U € §BO(X,x) such that f(U) C V;

(ii) 0-B-continuous [4] if it has this property at each point of X .

Definition 2. A function f: (X,7) — (Y,0) is said to be:

(1) almost 6-B-continuous [2] at a point x € X if for each open subset
V in'Y containing f(z), there exists U € 60(X,x) such that f(U) C
Int(CL(V));

(73) almost 0-f3-continuous [2] if it has this property at each point of X.

Definition 3. A function f : (X,7) — (Y,0) is said to be faintly 6-3-
continuous [1] if for each x € X and for each 0-open set V of Y containing
f(z), then there exists U € 6BO(X, x) such that f(U) C V.

Definition 4. A topological space (X, T) is said to be:
(i) 0-B-T1 [4] if for each pair of distinct pointsz andy of X, there exists
0-B-open sets and U and V' such that x e U, y ¢ U andx ¢ V,y € V.
(i) 0-B-Ty [4] if for each pair of distinct points x and y of X, there
exists 0-f-open sets U and V such thatx e U,y €V and UNV = .
(7i1) almost reqular [7] if for any regular closed set F' of X and any point
x € X\F there exist disjoint open sets U and V such that x € U and F C V.

3. Quasi /-f-continuous functions

Definition 5. A function f : (X, 7) — (Y, 0) is said to be quasi d-F-conti-
nuous if for each x € X and each open set V. of Y containing f(x) there
exists U € 0O(X, x) such that f(U) C CI(V).

Theorem 1. If a function f: (X,7) = (Y, 0) is almost §-3-continuous,
then it is quasi §-3-continuous.

Proof. Let x € X and V C Y be an open set with f(z) € V. Then
since f(x) € V. .C CI(V), f(z) € Int(Cl(V)), which is regular open. Since
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f is almost J-S-continuous, there exists U € §BO0(X, z) such that f(U) C
Int(C1(V)) € CI(V). Therefore, f is quasi ¢-5-continuous. [ |

Remark 1. The converse of Theorem 1 is not true in general as can be
seen from the following example.

Example 1. Let X = {a,b,c}, 7 = {&, {b}, {c}, {b,c}, X} and 0 =
{2, {a}, {a,b}, X}. Then the identity function f : (X,7) — (X, 0) is quasi
0-B-continuous but not almost J-3-continuous.

Corollary 1. Every 0-8-continuous function is quasi §-3-continuous.

Theorem 2. If f : (X,7) — (Y,0) is a quasi 0-f-continuous function
and Y is almost reqular, then f is almost §-3-continuous.

Proof. Let z € X and let V be any open set of Y containing f(x).
By the almost regularity of Y, there exists a regular open set G of Y such
that f(x) € G C CI(G) C Int(Cl(V)) [[7], Theorem 2.2]. Since f is quasi
d-f-continuous, there exists U € §S0(X,z) such that f(U) C Cl(G) C
Int(Cl(V)). Therefore, f is almost J-3-continuous. [ |

Theorem 3. For a function f : (X, 7) — (Y, 0), the following statements
are equivalent:

(7) f s quasz' 0-B-continuous;

(i1) 5 Cls(f~1(Int(Clp(A)))) C f1(Clp(A)) for every subset A of Y;

(iii) 5 Cls(f~H(Int(CL(B)))) C f~(CU(B)) for every open set B of Y ;
(iv) 5 Cls(f~1(Int(C))) C f7YC) for every regular closed set C of Y ;
v) 8 CL;( YD)) c f~YCUD)) for every open set D of Y ;
(vi) f7HE) C gInts(f~H(CUE))) for every open set E of Y.

(f~

Proof. (i) = (ii): Let Abeasubset of Y and x € X\ f~!(Clyp(A)). Then
x ¢ f~1(Clp(A)), that is, f(z) ¢ Clg(A). This means that the existence of
an open set W of Y containing f(z) such that A N ClI(W) = @&. Hence
Clo(A) N W = 2. So, W C Y\ Clg(A), that is, CL(W) c CLY\ Cls(A)).
Since f is quasi 0-/3-continuous, there exists U € 630(X, x) such that f(U) C
Cl(W) c CI(Y'\ Clp(A)). So f(U) N (Y\ CL(Y'\ Clg(A))) = @. Then f(U) N
Int(Cly(A)) = @ and hence U N f~1(Int(Cly(A))) = @. This shows that = ¢4
Cls(f~1(Int(Clg(A)))). Therefore, gClg(f_l(Int(Clg( ) C fLH(Cle(A)).

(44) = (i44): This implication is follows from the fact that, Cly(A)=Cl(A)
for every open set B of Y.

(iii) = (iv): Let C be a regular closed subset of Y. Then g Cls(f~*(Int(C)))
= 5 Cls(f~ (It (CI(Ine(C))))) < f~H(CUInt(C)) = f-1(C)

(iv) = (v): Let D be an open subset of Y. Then CI(D) is regular closed
in Y. So, 5 Cls(f (D)) = 5 Cls(f~(Int(D))) € 5 Cls(f~(Int(CL(D)))) <
FHCUD)), by (iv).
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(v) = (vi): Let z € f~Y(E). Then f(x) € E and since £ N (Y\ CI(E))
= o, f(z) ¢ CI(Y\CI(E)) where z ¢ f~(CI(Y\CI(E))). Openness of
(Y'\ Cl(E)) gives from (v) that z ¢35 Cls(f~1(Y'\ C1(E))). This implies the
existence of U € §B0(X,z) such that U N =YY\ CI(E)) = @; that is,
f(U)N (Y\CI(E)) = @. Which assures that f(U) C CI(E) and hence
UcC f~YCIE)). Thus x € U C f~Y(CI(E)) and this indicates that z is a
§-B-interior point of f~1(CI(E)). Consequently, f~1(E) C 5 Ints(f~1(CI(E))).

(vi) = (i): Let x € X and V be an open subset of Y containing f(z) by
(vi), z € fHV) C gInts(f~H(CLV))). Let U = gInts(f~1(CL(V))). Then
U € 680(X,z). Now, f(U) = f(glnts(f~H(CLV)))) € f(f(CUV))) C
Cl(V). This shows that f is quasi §-f-continuous. [

Theorem 4. The following statements are equivalent for a function f :
(X,7) = (Y,0):

(1) f is quasi §-B-continuous;

(i7) (5015( )) C Clg(f(A)) for each subset A of X;
(iii) 5 Cls(f~1(B)) C f~Y(Cly(B)) for each subset B of Y ;
(iv) Clg(f HInt(Cly(B)))) C f~1(Cly(B)) for every subset B of Y.

Proof. (i) = (ii): Let A be any subset of X and x €3 Cls(A). Then
f(xz) € f(gCls(A)) Suppose that V' be an open set of Y containing f(z).
Then there exists U € 680(X,x) such that f(U) C CI(V). Since z €5
Cls(A), UN A # 0 and hence 00 # f(U) N f(A) C C(V) N f(A). Therefore,
we have f(z) € Clp(f(A)) and hence f(3Cl;(A)) C Clg(f(A)).

(i) = (4ii) : Let B be any subset of Y. We have f(3Cls(f~*(B))) C
Clp(B) and hence 5 Cls(f~1(B)) C f~1(Cly(B)).

(791) = (iv): Let B be any subset of Y. Since Clg(B) is closed in
Y we have g Cls(f~(Int(Clyp(B)))) C f~1(Clp(B)) = f~H(Cl(Int(Cly(B))))
f7H(Cly(B)).

(iv) = (i): Let V be any open subset of Y. Then V C Int(Cl(V)) =
Int(Cly(V)). Then 5 Cls(f~1(V)) c f~H(CLV)). It follows from Theorem 3

that is quasi J-S-continuous. |

Theorem 5. Let f : (X,7) = (Y,0) be a function and Y be regular.
Then the following statements are equivalent:
(i) f is 6-B-continuous;
(ii) f~1(Clp(B)) is 6-B-closed in X for every subset B of Y ;
(7i1) f is quasi 0-B-continuous;
(1v) f is faintly §-5-continuous.
Proof. (i) = (ii): Since Clp(B) is closed in Y for every subset B of ¥

then by (i), f~1(Clg(B)) is 6-f-closed in X.
(73) = (i17): Clear.
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(#ii) = (iv): Let F be any 6-closed set of Y. By Theorem 4 we have
5 Cls(f~Y(F)) c f7Y(Cly(F)) = f~1(F). Therefore, f~1(F) is 6-B-closed in
X and it follows that f is faintly -5-continuous.

(iv) = (i): Let V be any open set of Y. Since Y is regular, V is
-open in Y. By (iv), f~1(V) is 6-B-open in X. This shows that, f is
d-fB-continuous. [ |

Definition 6. A function f : (X,7) = (Y,0) is said to be weakly con-
tinuous [6] if for each x € X and an open set V in'Y containing f(x), there
exists an open set U of X containing x such that f(U) C CI(V).

Theorem 6. If f : (X,7) — (Y,0) is §-B-continuous and g : (Y,0) —
(Z,n) is weakly continuous, then the composition go f : (X,7) — (Z,n) is
quasi §-3-continuous.

Proof. Let x € X and W be an open subset of Z containing g(f(x)).
Since g is weakly continuous, then there exists an open set V of Y containing
f(z) such that g(V) € CI(W). Again since f is J-f-continuous, there exists
U € 0f0(X,z) such that f(U) C V. Then (go f)(U) C g(V) c CY(W).
This shows that go f: (X,7) — (Z,n) is quasi é-3-continuous. [

Theorem 7. If f : (X, 7) — (Y, 0) is quasi 0-3-continuous and g : (Y, o)
— (Z,n) is continuous, then the composition go f : (X, 7) — (Z,n) is quasi
d-B-continuous.

Proof. Let x € X and W be an open subset of Z containing g(f(z)) then
g~ 1(W) is an open set of Y containing f(x). Since f is quasi J-3-continuous,
there exists U € §30(X, z) such that f(U) C Cl(g~!(W)). Since g is con-
tinuous, we obtain (g o f)(U) C g(Cl(g~*(W))) € CY(W). Thus, go f is
quasi 6-f-continuous. [ |

Lemma 1. [}] Let A and B be subsets of a topological space (X, 7). If
A € §B0O(X) and B is 6-open in (X, ), then A N B € 680(B).

Lemma 2. If A C B C X and B is §-open in (X, ), then gCls(A) N
B =3 Clsp(A), where 3Clsp(A) denotes the 6-f-closure of A in the sub-
space B.

Theorem 8. If f : (X,7) — (Y,0) is quasi §-3-continuous and A is
a 6-open subset of X, then the restriction fi, : (A,7,) — (Y,0) is quasi
d-B-continuous.

Proof. Let z € A and V be an open subset of Y containing f(z) by
hypothesis there exists U € 680(X,x) such that f(U) c CI(V). Let U
= G N A, where G € 00(X,z). Then by Lemma 1, U € 680O(A). Also
(fil)W0) = (iGN A) = f(GNA) C f(G) € CI(V). This shows that
fia i (A1) = (Y, 0) is quasi 6-f-continuous. [ |
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Definition 7. The graph G(f) of a function f: (X,7) = (Y,0) is said
to be quasi §-f-closed if for each (z,y) € (X x Y)\G(f), there exist U €
0pO(X,x) and an open set V of Y containing y such that (U x C1(V)) N
G(f) = 2.

Lemma 3. The graph G(f) of f : (X,7) — (Y,0) is quasi 0-3-closed
in X XY if and only if for each (x,y) € (X x Y)\G(f), there exist U €
0pO(X,x) and an open set V of Y containing y such that f(U) N CY(V) =
J.

Proof. It follows immediately from the Definition 7. |

Theorem 9. If f: (X,7) — (Y,0) is quasi 6-B-continuous and Y is a
Urysohn space, then the graph G(f) of f is quasi §-B-closed in X x Y.

Proof. Let (z,y) ¢ G(f), then y # f(x). Since Y is Urysohn, there
exist open sets V; and V, of Y containing f(z) and y, respectively, such
that CI(V1) N Cl(V2) = @. Since f is quasi 0-S-continuous, there exists U
€ 0f0(X,x) such that f(U) C Cl(V}) and consequently f(U) N Cl(Va) =
@. This shows that graph G(f) is quasi J-S-closed in X x Y. |

Definition 8. A topological space (X, T) is said to be §-5-connected [4]
if it is not the union of two nonempty disjoint §-B-open sets.

Theorem 10. If (X, 1) is a §-5-connected space and f: (X, 7) — (Y, 0)
is a quasi §-B-continuous function with the quasi 0-3-closed graph G(f),
then f is constant.

Proof. Suppose that f is not constant. There exist disjoint points
z,y € X such that f(z) = f(y). Since (z, f(z)) ¢ G(f), by Lemma 3
there exist open sets U and V containing = and f(z), respectively, such
that f(U) N CL(V) = (. Since f is quasi 0-f-continuous, there exists G €
0B0O(X,y) such that f(G) C CI(V). Since U and V are disjoint J-3-open
sets of (X, 7), it follows that (X, 7) is not §-S-connected. Therefore, f is
constant. |

Theorem 11. Let f : (X,7) — (Y, 0) be a quasi §-B-continuous injective
function. If (Y, o) is Urysohn, then (X, 1) is 6-5-Tb.

Proof. Since f is injective, for any pair of distinct points x1,z9 € X,
f(z1) # f(x2). Since (Y, o) is Urysohn, there exist V1,V € o such that
f(z1) € Vi, f(z2) € Vo and CI(V3) N Cl(Vz) = @. This gives f~1(C1(1}))
N f~1(Cl(Vp))) = @. Since f is quasi J-B-continuous z; € f~H(V;) C
5 Ints(f~1(CL(V;)), @ = 1,2., by Theorem 3 and this indicates that (X,7)
is (5-ﬁ—T2. |



QUASI §-B-CONTINUOUS FUNCTIONS 111

Theorem 12. If for each pair of distinct x1 and xo in a topological space
(X, 7) there exists a function f of X into a Hausdorff space Y such that
(1) fz1) # f(x2),
(13) f is quasi 6-f-continuous at 1 and
(#i2) f is almost §-B-continuous at 2,

then X is §-B-T5.

Proof. Since Y is Hausdorff, there exist open sets V7 and V5 of Y such
that f(z1) € V1, f(x2) € Vo, and V1NV, = ; hence C1(V1)NInt(C1(Vz)) = 0.
Since f is quasi d-f-continuous at x, there exists U; € §SO(X,x1) such
that f(Up) € CI(V1). Since f is almost J-8-continuous at xa, there exists
Us € 680(X,x2) such that f(Uz) C Int(Cl(Va)). Therefore, we obtain
U; NUy = (. This shows that X is §-5-Tb. [ |

Lemma 4. [4] Let A be a subset of a space (X, 7). Then
(i) ACB =3 Ints(A) Cp Ints(B);
(Z’L) ACB =3 CL;(A) Cp CL;(B);
(13i) gInts(X\A) = X\gCl;(A);
(iv) g Cls(X\A) = X\gInts(A4);
(v) z €g Cls(A) if and only if AN U # @ for each U € 6f0(X, x);
(vi) A is 0-B-closed in (X, T) if and only if A = g Cls(A);
(vii) g Cls(A) is 6-p-closed in (X, T).

Theorem 13. If f : (X,7) — (Y,0) is quasi 0-B-continuous and A is
0-closed in X XY, then px (ANG(f)) is §-B-closed in X, where px represents
the projection of X XY onto X.

Proof. Let A be a f-closed subset of X x Y and z € gCls(px(4AN
G(f))). Let U € 7 containing z and V' € o containing f(z). Since f is quasi
§-B-continuous, by Theorem 3, z € f~1(V) C zInts(f~1(CL(V))). Then
U N gInts(f~1(CUV))) N px (AN G(f)) contains some point z of X. This
implies that (2, f(2)) € A and f(z) € CI(V). Thus we have @ # (U x Cl(V))
NA=Cl(Ux V)N A and hence (z, f(z)) € Cly(A). Since A is H-closed,
(z, f(z)) € AN G(f) and = € px(ANG(f)) by Lemma 4, px(ANG(f)) is
d-B-closed in (X, 7). [ |

Lemma 5 ([4]). The product of two 6-F-open sets is d--open.

Lemma 6. Let {A, : « € \} be a family of subsets in a topological space
(X, 7). Then gInts(Uyer Aa) D Uner pInts(Aq).

Proof. Since for each a, (J,c) Aa O Aa Dp Ints(Ay), the Lemma follows
from (i) of Lemma 4. [ |
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Theorem 14. Let (X1,71), (Xo,m2) and (X,7) be topological spaces.
Define a function f: (X, 7) = (X1 X Xo, 71 X 72) by f(z) = (f(x1), f(x2)).
Then f; : X — (Xi,7) (i = 1,2) is quasi 0-B-continuous if f is quasi
§-B-continuous.

Proof. It suffices to prove that f1 : X — (X;, ) (i = 1,2) is quasi
6-p-continuous. Let U; be open in X;. Then U; x Us is open in X7 x Xo.
Then clearly f{'(Uy) = f~5U; x Us) and f;*(CL(TL)) = f~H(CYUy) x
X5). Hence the quasi J-B-continuous of f gives, by Theorem 3, f; L)
= fl_l(Ul X XQ) C 5Int5(f_1(Cl(U1 X XQ))) = glnt(;(f_l(CI(Ul) X XQ)) =
sInts(f{ 1(CL(UY)). This implies that f; : X — (X;,7;) is quasi 6-3-conti-
nuous. |

Theorem 15. If f1 : (X1,7) — (Y,0) is quasi 6-B-continuous, fo :
(Xo,7) = (Y, 0) is almost §-3-continuous and (Y, o) is Hausdorff, then the
set {(x1,m9) € X1 X Xo|f1(x1) = fa(za)} is 0-B-closed in X1 x Xo.

Proof. Let A = {(561,562) € X1 x XQ’f(I‘l) = f(l‘Q)} If (xl,l‘g) S
(X1 x X2)\A, then we have f(z1) # f(x2). Since Y is Hausdorff, there exist
disjoint open sets V; and V5 in Y such that f(z1) € V5 and f(z3) € V2 and
Cl(V1) NInt(Cl(V2)) = @. Since f1 (resp. fa2) is quasi d-S-continuous (resp.
almost d-S-continuous), there exist U; € 080(X1,x1) such that f(U;) C
Cl(V1) (resp. Uz € 0B0O(X2,x2) such that f(3Cls(Us)) C (Int(Cl(V2)))).
Therefore, we obtain (z1,22) € Uy x Uy C (X7 x X2)\A. [ |
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