$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 46}$ 2011

O. RAVI, M.L. THIVAGAR AND R. LATHA

(\hat{g}, s) -CONTINUOUS FUNCTIONS BETWEEN TOPOLOGICAL SPACES

ABSTRACT. In this paper, we introduce (\hat{g}, s) -continuous functions between topological spaces, study some of its basic properties and discuss its relationships with other topological functions.

KEY WORDS: \hat{g} -closed set, regular open set, \hat{g} -T_{1/2} space, (\hat{g}, s) -continuous function.

AMS Mathematics Subject Classification: 54A05, 54D10, 54C05, 54C08, 54C10.

1. Introduction

It is well known that the concept of closedness is fundamental with respect to the investigation of general topological spaces. Levine [26] initiated the study of generalized closed sets. The concept of \hat{g} -closed sets was introduced by Veerakumar [46]. Recently, this notion is further studied by Ravi et al [40]. Initiation of contra-continuity was due to Dontchev [10]. Many different forms of contra-continuous functions have been introduced over the years by various authors [5, 12, 14, 15, 17, 18, 22, 38].

In this paper, new generalizations of contra-continuity by using \hat{g} -closed sets called (\hat{g}, s) -continuity are presented. Characterizations and properties of (\hat{g}, s) -continuous functions are discussed in detail. Finally, we obtain many important results in topological spaces.

2. Preliminaries

In this paper, spaces X and Y mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A) and int(A) represent the closure of A and the interior of A respectively.

A subset A of a space X is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))) [43]. The δ -interior [45] of a subset A of X is the union of all regular open sets of X contained in A and it is denoted by $\delta - int(A)$. A subset A is called δ -open [45] if $A = \delta - int(A)$. The complement of δ -open set is called δ -closed. The δ -closure of a set A in a space (X,τ) is defined by $\delta - cl(A) = \{x \in X : A \cap int(cl(U)) \neq \phi, U \in \tau$ and $x \in U\}$ and it is denoted by $\delta - cl(A)$.

The finite union of regular open sets is said to be π -open [48]. The complement of π -open set is said to be π -closed. A subset A is said to be semi-open [25] (resp. α -open [31], preopen [30], β -open [1] or semi-preopen [2]) if $A \subset$ cl(int(A)) (resp. $A \subset int(cl(int(A))), A \subset int(cl(A)), A \subset cl(int(cl(A))))$. The complement of semi-open (resp. α -open, preopen, β -open) is said to be semi-closed (resp. α -closed, preclosed, β -closed). The union (resp. intersection) of all α -open (resp. α -closed) sets, each contained in (resp. containing) a set S in a topological space X is called α -interior (resp. α -closure) of S and it is denoted by $\alpha int(S)$ (resp. $\alpha cl(S)$). The union (resp. intersection) of all semi-open (resp. semi-closed) sets, each contained in (resp. containing) a set S in a topological space X is called semi-interior (resp. semi-closure) of S and it is denoted by sint(S) (resp. scl(S)). The union (resp. intersection) of all preopen (resp. preclosed) sets, each contained in (resp. containing) a set S in a topological space X is called semi-interior (resp. semi-closure) of S and it is denoted by sint(S) (resp. scl(S)). The union (resp. intersection) of all preopen (resp. preclosed) sets, each contained in (resp. containing) a set S in a topological space X is called preinterior (resp. preclosure) of S and it is denoted by sint(S) (resp. scl(S)). The union (resp. intersection) of all preopen (resp. preclosed) sets, each contained in (resp. containing) a set S in a topological space X is called preinterior (resp. preclosure) of Sand it is denoted by pint(S) (resp. pcl(S)).

A subset A of a space X is said to be generalized closed (briefly, g-closed) [26] (resp. πg -closed [13], \hat{g} -closed [46] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open (resp. π -open, semi-open) in X. The complement of g-closed (resp. πg -closed, \hat{g} -closed) is said to be g-open (resp. πg -open, \hat{g} -open). The union (resp. intersection) of all \hat{g} -open (resp. \hat{g} -closed) sets, each contained in (resp. containing) a set S in a topological space X is called \hat{g} -interior (resp. \hat{g} -closure) of S and it is denoted by $\hat{g} - int(S)$ (resp. $\hat{g} - cl(S)$).

A point $x \in X$ is said to be a θ -semi-cluster point [23] of a subset A of X if $cl(U) \cap A \neq \phi$ for every semi-open set U containing x. The set of all θ -semi-cluster points of A is called the θ -semi-closure of A and is denoted by $\theta - s - cl(A)$. A subset A is called θ -semi-closed [23] if $A = \theta - s - cl(A)$. The complement of a θ -semi-closed set is called θ -semi-open.

The family of all δ -open (resp. \hat{g} -open, \hat{g} -closed, πg -open, πg -closed, regular open, regular closed, semi-open, closed) sets of X containing a point $x \in X$ is denoted by $\delta O(X, x)$ (resp. $\hat{G}O(X, x)$, $\hat{G}C(X, x)$, $\pi GO(X, x)$, $\pi GC(X, x)$, RO(X, x), RC(X, x), SO(X, x), C(X, x)). The family of all δ -open (resp. \hat{g} -open, \hat{g} -closed, πg -open, πg -closed, semi-open, β -open, preopen, regular open, regular closed) sets of X is denoted by $\delta O(X)$ (resp $\hat{G}O(X)$, $\hat{G}C(X)$, $\pi GO(X)$, $\pi GC(X)$, SO(X), $\beta O(X)$, PO(X), RO(X), RC(X)).

Definition 1. A space X is said to be

1. s-Urysohn [3] if for each pair of distinct points x and y in X, there exist $U \in SO(X, x)$ and $V \in SO(X, y)$ such that $cl(U) \cap cl(V) = \phi$;

2. weakly Hausdorff [41] if each element of X is an intersection of regular closed sets.

Definition 2 ([19]). Let B be a subset of a space X. The set $\cap \{A \in RO(X) : B \subset A\}$ is called the r-kernel of B and is denoted by r - ker(B).

Proposition 1 ([19]). The following properties hold for subsets A, B of a space X:

1. $x \in r - ker(A)$ if and only if $A \cap K \neq \phi$ for any regular closed set K containing x.

2. $A \subset r - ker(A)$ and A = r - ker(A) if A is regular open in X.

3. If $A \subset B$, then $r - ker(A) \subset r - ker(B)$.

Lemma 1 ([28]). If V is an open set, then scl(V) = int(cl(V)).

Definition 3. A space X is said to be

1. S-closed [44] if every regular closed cover of X has a finite subcover,

2. Countably S-closed [1] if every countable cover of X by regular closed sets has a finite subcover,

3. S-Lindelof [27] if every cover of X by regular closed sets has a countable subcover.

Theorem 1 ([46]). Union (intersection) of any two \hat{g} -closed sets is again \hat{g} -closed.

Remark 1 ([13], [46]). We have the following relations:

closed $\Rightarrow \hat{g}$ -closed $\Rightarrow g$ -closed $\Rightarrow \pi g$ -closed.

None of these implications are reversible. The subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of a function $f : X \to Y$ and is denoted by G(f).

3. Characterizations of \hat{g} -open sets

Lemma 2. For any subset K of a topological space X, $X \setminus \hat{g} - cl(K) = \hat{g} - int(X \setminus K)$.

Lemma 3. If a subset A is \hat{g} -closed in a space X, then $A = \hat{g} - cl(A)$.

Theorem 2. If A is \hat{g} -closed and semi-open set, then A is closed.

Theorem 3. A set A is \hat{g} -open in (X, τ) if and only if $F \subseteq int(A)$ whenever F is semi-closed in X and $F \subseteq A$.

Proof. Assume that A is \hat{g} -open, $F \subseteq A$ and F is semi-closed. Then $X \setminus F$ is semi-open and $X \setminus A \subseteq X \setminus F$. Since $X \setminus A$ is \hat{g} -closed, $cl(X \setminus A) \subseteq X \setminus F$. It implies that $X \setminus int(A) \subseteq X \setminus F$ and hence $F \subseteq int(A)$.

Conversely, put $X \setminus A = B$. Suppose $B \subseteq U$ where U is semi-open. Now if $X \setminus A \subseteq U$, then $F = X \setminus U \subseteq A$ and F is semi-closed. It implies that $F \subseteq int(A)$ and hence $X \setminus int(A) \subseteq X \setminus F = U$. Therefore $X \setminus int(X \setminus B) \subseteq U$ and consequently $cl(B) \subseteq U$. Hence B is \hat{g} -closed and therefore A is \hat{g} -open.

Theorem 4. Suppose that A is \hat{g} -open in X and that B is \hat{g} -open in Y. Then $A \times B$ is \hat{g} -open in $X \times Y$.

Proof. Suppose that *F* is closed and hence semi-closed in $X \times Y$ and that $F \subseteq A \times B$. By the previous theorem, it suffices to show that $F \subseteq int(A \times B)$.

Let $(x, y) \in F$. Then, for each $(x, y) \in F$, $cl(\{x\}) \times cl(\{y\}) = cl(\{x\} \times \{y\}) = cl(\{x, y\}) \subset cl(F) = F \subset A \times B$. Two closed sets $cl(\{x\})$ and $cl(\{y\})$ are contained in A and B respectively. It follows from the assumption that $cl(\{x\}) \subseteq int(A)$ and that $cl(\{y\}) \subseteq int(B)$. Thus $(x, y) \in cl(\{x\}) \times cl(\{y\}) \subseteq int(A) \times int(B) \subseteq int(A \times B)$. It means that, for each $(x, y) \in F$, $(x, y) \in int(A \times B)$ and hence $F \subseteq int(A \times B)$. Therefore $A \times B$ is \hat{g} -open in $X \times Y$.

Definition 4. A function $f : X \to Y$ is called pre \hat{g} -closed if f(V) is \hat{g} -closed set in Y for each \hat{g} -closed set V in X.

Theorem 5. If a function $f : X \to Y$ is pre \hat{g} -closed, then for each subset B of Y and each \hat{g} -open set U of X containing $f^{-1}(B)$, there exists a \hat{g} -open set V in Y containing B such that $f^{-1}(V) \subset U$.

Proof. Suppose that f is pre \hat{g} -closed. Let B be a subset of Y and $U \in \hat{G}O(X)$ containing $f^{-1}(B)$. Put $V = Y \setminus f(X \setminus U)$, then V is an \hat{g} -open set of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

4. Properties of (\hat{g}, s) -continuous functions

Definition 5. A function $f : X \to Y$ is called (\hat{g}, s) -continuous if the inverse image of each regular open set of Y is \hat{g} -closed in X.

Theorem 6. The following are equivalent for a function $f : X \to Y$: (1) f is (\hat{g}, s) -continuous,

(2) The inverse image of a regular closed set of Y is \hat{q} -open in X,

(3) $f^{-1}(int(cl(V)))$ is \hat{g} -closed in X for every open subset V of Y,

(4) $f^{-1}(cl(int(F)))$ is \hat{g} -open in X for every closed subset F of Y,

(5) $f^{-1}(cl(U))$ is \hat{g} -open in X for every $U \in \beta O(Y)$,

(6) $f^{-1}(cl(U))$ is \hat{g} -open in X for every $U \in SO(Y)$,

(7) $f^{-1}(int(cl(U)))$ is \hat{g} -closed in X for every $U \in PO(Y)$.

Proof. (1) \Leftrightarrow (2): Obvious.

(1) \Leftrightarrow (3): Let V be an open subset of Y. Since int(cl(V)) is regular open, $f^{-1}(int(cl(V)))$ is \hat{g} -closed. The converse is similar.

 $(2) \Leftrightarrow (4)$: Similar to $1) \Leftrightarrow 3$).

 $(2) \Rightarrow (5)$: Let U be any β -open set of Y. By Theorem 2.4 of [2] that cl(U) is regular closed. Then by (2) $f^{-1}(cl(U))$ is \hat{g} -open in X.

 $(5) \Rightarrow (6)$: Obvious from the fact that $SO(Y) \subset \beta O(Y)$.

 $(6) \Rightarrow (7)$: Let $U \in PO(Y)$. Then $Y \setminus int(cl(U))$ is regular closed and hence it is semi-open. Then, we have $X \setminus f^{-1}(int(cl(U))) = f^{-1}(Y \setminus int(cl(U)))$ $= f^{-1}(cl(Y \setminus int(cl(U))))$ is \hat{g} -open in X. Hence $f^{-1}(int(cl(U)))$ is \hat{g} -closed in X.

 $(7) \Rightarrow (1)$: Let U be any regular open set of Y. Then $U \in PO(Y)$ and hence $f^{-1}(U) = f^{-1}(int(cl(U)))$ is \hat{g} -closed in X.

Lemma 4 ([35]). For a subset A of a topological space (Y, σ) the following properties hold:

(1) $\alpha cl(A) = cl(A)$ for every $A \in \beta O(Y)$,

(2) pcl(A) = cl(A) for every $A \in SO(Y)$,

(3) scl(A) = int(cl(A)) for every $A \in PO(Y)$.

Corollary 1. The following are equivalent for a function $f: X \to Y$: (1) f is (\hat{g}, s) -continuous,

(2) $f^{-1}(\alpha cl(A))$ is \hat{g} -open in X for every $A \in \beta O(Y)$,

(3) $f^{-1}(pcl(A))$ is \hat{g} -open in X for every $A \in SO(Y)$,

(4) $f^{-1}(scl(A))$ is \hat{g} -closed in X for every $A \in PO(Y)$.

Proof. It follows from Lemma 4.

Theorem 7. Suppose that $\hat{G}C(X)$ is closed under arbitrary intersections. The following are equivalent for a function $f: X \to Y$:

(1) f is (\hat{g}, s) -continuous,

(2) the inverse image of a θ -semi-open set of Y is \hat{g} -open,

(3) the inverse image of a θ -semi-closed set of Y is \hat{g} -closed,

(4) $f(\hat{g} - cl(U)) \subset r - ker(f(U))$ for every subset U of X,

(5) \hat{g} -cl($f^{-1}(V)$) $\subset f^{-1}(r$ -ker(V)) for every subset V of Y,

(6) for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists a \hat{g} -open set U in X containing x such that $f(U) \subset cl(V)$,

(7) $f^{-1}(V) \subset \hat{g} - int(f^{-1}(cl(V)))$ for every $V \in SO(Y)$,

(8) $f(\hat{g} - cl(A)) \subset \theta - s - cl(f(A))$ for every subset A of X,

(9) $\hat{g} - cl(f^{-1}(B)) \subset f^{-1}(\theta - s - cl(B))$ for every subset B of Y,

(10) $\hat{g} - cl(f^{-1}(V)) \subseteq f^{-1}(\theta - s - cl(V))$ for every open subset V of Y,

(11) $\hat{g} - cl(f^{-1}(V)) \subseteq f^{-1}(scl(V))$ for every open subset V of Y,

(12) $\hat{g} - cl(f^{-1}(V)) \subseteq f^{-1}(int(cl(V)))$ for every open subset V of Y.

Proof. $(1) \Rightarrow (2)$: Since any θ -semi-open set is a union of regular closed sets, by using Theorem 6, (2) holds.

 $(2) \Rightarrow (6)$: Let $x \in X$ and $V \in SO(Y)$ containing f(x). Since cl(V) is θ -semi-open in Y, there exists a \hat{g} -open set U in X containing x such that $x \in U \subset f^{-1}(cl(V))$. Hence $f(U) \subset cl(V)$.

 $(6) \Rightarrow (7)$: Let $V \in SO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$. By (6), there exists a \hat{g} -open set U in X containing x such that $f(U) \subset cl(V)$. It follows that $x \in U \subset f^{-1}(cl(V))$. Hence $x \in \hat{g} - int(f^{-1}(cl(V)))$. Thus, $f^{-1}(V) \subset \hat{g} - int(f^{-1}(cl(V)))$.

 $(7) \Rightarrow (1)$: Let F be any regular closed set of Y. Since $F \in SO(Y)$, then by (7), $f^{-1}(F) \subset \hat{g} - int(f^{-1}(F))$. This shows that $f^{-1}(F)$ is \hat{g} -open in X. Hence, by Theorem 6, (1) holds.

 $(2) \Leftrightarrow (3)$: Obvious.

 $(1) \Rightarrow (4)$: Let U be any subset of X. Let $y \notin r - ker(f(U))$. Then there exists a regular closed set F containing y such that $f(U) \cap F = \phi$. Hence, we have $U \cap f^{-1}(F) = \phi$ and $\hat{g} - cl(U) \cap f^{-1}(F) = \phi$. Therefore, we obtain $f(\hat{g} - cl(U)) \cap F = \phi$ and $y \notin f(\hat{g} - cl(U))$. Thus, $f(\hat{g} - cl(U)) \subset r - ker(f(U))$. (4) \Rightarrow (5): Let V be any subset of Y. By (4), $f(\hat{g} - cl(f^{-1}(V))) \subset r - ker(V)$ and $\hat{g} - cl(f^{-1}(V)) \subset f^{-1}(r - ker(V))$.

 $(5) \Rightarrow (1)$: Let V be any regular open set of Y. By (5), $\hat{g} - cl(f^{-1}(V)) \subset f^{-1}(r - ker(V)) = f^{-1}(V)$ and $\hat{g} - cl((f^{-1}(V)) = f^{-1}(V))$. We obtain that $f^{-1}(V)$ is \hat{g} -closed in X.

 $(6) \Rightarrow (8)$: Let A be any subset of X. Suppose that $x \in \hat{g} - cl(A)$ and G is any semi-open set of Y containing f(x). By (6), there exists $U \in \hat{G}O(X, x)$ such that $f(U) \subset cl(G)$. Since $x \in \hat{g} - cl(A)$, $U \cap A \neq \phi$ and hence $\phi \neq f(U) \cap f(A) \subset cl(G) \cap f(A)$. Therefore, we obtain $f(x) \in \theta - s - cl(f(A))$ and hence $f(\hat{g} - cl(A)) \subset \theta - s - cl(f(A))$.

 $\begin{array}{l} (8) \Rightarrow (9): \text{ Let } B \text{ be any subset of } Y. \text{ Then } f(\hat{g} - cl(f^{-1}(B))) \subset \theta - s - cl(f(f^{-1}(B))) \subset \theta - s - cl(B) \text{ and } \hat{g} - cl(f^{-1}(B)) \subset f^{-1}(\theta - s - cl(B)). \end{array}$

(9) \Rightarrow (6): Let V be any semi-open set of Y containing f(x). Since $cl(V) \cap (Y \setminus cl(V)) = \phi$, we have $f(x) \notin \theta - s - cl(Y \setminus cl(V))$ and $x \notin f^{-1}(\theta - s - cl(Y \setminus cl(V)))$. By (9), $x \notin \hat{g} - cl(f^{-1}(Y \setminus cl(V)))$. Hence, there exists $U \in \hat{G}O(X, x)$ such that $U \cap f^{-1}(Y \setminus cl(V)) = \phi$ and $f(U) \cap (Y \setminus cl(V)) = \phi$. It follows that $f(U) \subset cl(V)$. Thus,(6) holds.

 $(9) \Rightarrow (10)$: Obvious.

 $(10) \Rightarrow (11)$: Obvious from the fact that $\theta - s - cl(V) = scl(V)$ for an open set V.

 $(11) \Rightarrow (12)$: Obvious from Lemma 1.

 $(12) \Rightarrow (1)$: Let $V \in RO(Y)$. Then by $(12) \ \hat{g} - cl(f^{-1}(V)) \subset f^{-1}(int(cl(V)))) = f^{-1}(V)$. Hence, $f^{-1}(V)$ is \hat{g} -closed which proves that f is (\hat{g}, s) -continuous.

Corollary 2. Assume that $\hat{GC}(X)$ is closed under arbitrary intersections. The following are equivalent for a function $f: X \to Y$:

(1) f is (\hat{g}, s) -continuous.

(2)
$$\hat{g} - cl(f^{-1}(B)) \subset f^{-1}(\theta - s - cl(B))$$
 for every $B \in SO(Y)$,
(3) $\hat{g} - cl(f^{-1}(B)) \subset f^{-1}(\theta - s - cl(B))$ for every $B \in PO(Y)$,
(4) $\hat{g} - cl(f^{-1}(B)) \subset f^{-1}(\theta - s - cl(B))$ for every $B \in \beta O(Y)$.

Proof. In Theorem 7, we have proved that the following are equivalent. (1) f is (\hat{g}, s) -continuous.

(2) $\hat{g} - cl(f^{-1}(B)) \subset f^{-1}(\theta - s - cl(B))$ for every subset B of Y. Hence the corollary is proved.

5. The related functions with (\hat{g}, s) -continuous functions

Definition 6. A function $f: X \to Y$ is said to be

1. perfectly continuous [33] if $f^{-1}(V)$ is clopen in X for every open set V of Y,

2. regular set-connected [11, 16] if $f^{-1}(V)$ is clopen in X for every $V \in RO(Y)$,

3. almost s-continuous [6, 37] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists an open set U in X containing x such that $f(U) \subset scl(V)$,

4. strongly continuous [24] if the inverse image of every set in Y is clopen in X,

5. RC-continuous [11] if $f^{-1}(V)$ is regular closed in X for each open set V of Y,

6. contra R-map [17] if $f^{-1}(V)$ is regular closed in X for each regular open set V of Y,

7. contra-super-continuous [22] if for each $x \in X$ and for each $F \in C(Y, f(x))$, there exists a regular open set U in X containing x such that $f(U) \subset F$,

8. almost contra-super-continuous [15] if $f^{-1}(V)$ is δ -closed in X for every regular open set V of Y,

9. contra continuous [10] if $f^{-1}(V)$ is closed in X for every open set V of Y,

10. contra g-continuous [5] if $f^{-1}(V)$ is g-closed in X for every open set V of Y,

11. (θ, s) -continuous [23, 38] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists an open set U in X containing x such that $f(U) \subset cl(V)$,

12. contra πg -continuous [18] if $f^{-1}(V)$ is πg -closed in X for each open set V of Y,

13. \hat{g} -continuous [46] if $f^{-1}(V)$ is \hat{g} -closed in X for each closed set V of Y,

14. (g, s)-continuous [14] if $f^{-1}(V)$ is g-closed in X for each regular open set V of Y, 15. $(\pi g, s)$ -continuous [14] if $f^{-1}(V)$ is πg -closed in X for each regular open set V of Y.

Definition 7. A function $f : X \to Y$ is said to be contra \hat{g} -continuous if $f^{-1}(V)$ is \hat{g} -closed in X for each open set V of Y.

Remark 2. The following diagram holds for a function $f : X \to Y$:

strongly continuous \Rightarrow	almost s-continuous
1)	Ų
perfectly continuous \Rightarrow	regular set-connected
Û	Ų
RC continuous \Rightarrow	contra R-map
Û,	Ų
contra-super-continuous \Rightarrow	almost contra-super-continuous
Ų	Ų
contra-continuous \Rightarrow	(θ, s)-continuous
Ų	Ų
contra ĝ-continuous \Rightarrow	(ĝ, s)-continuous
U	Ų
contra g-continuous \Rightarrow	(g, s)-continuous
U.	Ų
contra π g-continuous \Rightarrow	(πg, s)-continuous

None of these implications is reversible as shown in the following examples and in the related paper [14].

Example 1. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$. Then the identity function $f : X \to Y$ is both contra *g*-continuous and (\hat{g}, s) -continuous but it is not contra \hat{g} -continuous.

Example 2. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$. Then the identity function $f : X \to Y$ is contra \hat{g} -continuous but it is not contra continuous.

Example 3. Let $X = Y = \{a, b, c, d\}, \tau = \sigma = \{\phi, X = Y, \{c\}, \{a, d\}, \{a, c, d\}\}$. Then the function $f : X \to Y$ which is defined as f(a) = c, f(b) = c, f(c) = b, f(d) = b is (\hat{g}, s) -continuous but it is not (θ, s) -continuous.

Example 4. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$, $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\sigma = \{\phi, Y, \{p\}, \{q\}, \{p,q\}\}$. Then the function f: $X \to Y$ which is defined as f(a) = p; f(b) = p; f(c) = r is (g, s)-continuous but it is not (\hat{g}, s) -continuous.

A topological space (X, τ) is said to be extremely disconnected [4] if the closure of every open set of X is open in X.

Definition 8. A function $f : X \to Y$ is said to be almost \hat{g} -continuous if $f^{-1}(V)$ is \hat{g} -open in X for every regular open set V of Y.

Theorem 8. Let (Y, σ) be extremely disconnected. Then, the following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

(1) f is (\hat{g}, s) -continuous,

(2) f is almost \hat{g} -continuous.

Proof. (1) \Rightarrow (2): Let $x \in X$ and U be any regular open set of Y containing f(x). Since Y is extremely disconnected, by Lemma 5.6 of [39] U is clopen and hence U is regular closed. Then $f^{-1}(U)$ is \hat{g} -open in X. Thus, f is almost \hat{g} -continuous.

 $(2) \Rightarrow (1)$: Let K be any regular closed set of Y. Since Y is extremely disconnected, K is regular open and $f^{-1}(K)$ is \hat{g} -open in X. Thus, f is (\hat{g}, s) -continuous.

Definition 9. A space is said to be P_{Σ} [47] or strongly s-regular [21] if for any open set V of X and each $x \in V$, there exists $K \in RC(X, x)$ such that $x \in K \subset V$.

Definition 10. A space (X, τ) is called $\hat{g} - T_{1/2}$ if every \hat{g} -closed set is closed.

Theorem 9. Let $f : X \to Y$ be a function from a $\hat{g} - T_{1/2}$ - space X to a topological space Y. The following are equivalent.

(1) f is (θ, s) -continuous.

(2) f is (\hat{g}, s) -continuous.

Theorem 10. Let $f : X \to Y$ be a function. Then, if f is (\hat{g}, s) -continuous, X is $\hat{g} - T_{1/2}$ and Y is P_{Σ} , then f is continuous.

Proof. Let G be any open set of Y. Since Y is P_{Σ} , there exists a subfamily Φ of RC(Y) such that $G = \bigcup \{A : A \in \Phi\}$. Since X is $\hat{g} - T_{l/2}$ and f is (\hat{g}, s) -continuous, $f^{-1}(A)$ is open in X for each $A \in \Phi$ and $f^{-1}(G)$ is open in X. Thus, f is continuous.

Theorem 11. Let $f : X \to Y$ be a function from a $\hat{g} - T_{1/2}$ -space (X, τ) to an extremely disconnected space (Y, σ) . Then the following are equivalent.

- (1) f is (\hat{g}, s) -continuous.
- (2) f is (θ, s) -continuous.
- (3) f f is almost contra-super-continuous.
- (4) f is contra R-map.
- (5) f is regular set-connected.
- (6) f is almost s-continuous.

Proof. $(6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$: Obvious.

 $(1) \Rightarrow (6)$: Let V be any semi-open and semi-closed set of Y. Since V is semi-open, cl(V) = cl(int(V)) and hence cl(V) is open in Y. Since

V is semi-closed, $int(cl(V)) \subset V \subset cl(V)$ and hence int(cl(V)) = V = cl(V). Therefore, V is clopen in Y and $V \in RO(Y) \cap RC(Y)$. Since f is (\hat{g}, s) -continuous, $f^{-1}(V)$ is \hat{g} -open and \hat{g} -closed in X. Since X is $\hat{g} - T_{1/2}$ -space, $\tau = \hat{G}O(X)$. Thus, $f^{-1}(V)$ is clopen in X and hence f is almost s-continuous [36, Theorem 3.1].

Definition 11. A space is said to be weakly P_{Σ} [34] if for any $V \in RO(X)$ and each $x \in V$, there exists $F \in RC(X, x)$ such that $x \in F \subset V$.

Theorem 12. Let $f : (X, \tau) \to (Y, \sigma)$ be a (\hat{g}, s) -continuous function and $\hat{GC}(X)$ be closed under arbitrary intersections. If Y is weakly P_{Σ} and X is $\hat{g} - T_{1/2}$, then f is regular set-connected.

Proof. Let V be any regular open set of Y. Since Y is weakly P_{Σ} , there exists a subfamily Φ of RC(Y) such that $V = \bigcup \{A : A \in \Phi\}$. Since f is (\hat{g}, s) -continuous, $f^{-1}(A)$ is \hat{g} -open in X for each $A \in \Phi$ and $f^{-1}(V)$ is \hat{g} -open in X. Also $f^{-1}(V)$ is \hat{g} -closed in X since f is (\hat{g}, s) -continuous. Since X is $\hat{g} - T_{1/2}$ space, then $\tau = \hat{G}O(X)$. Hence $f^{-1}(V)$ is clopen in X and then f is regular set-connected.

Definition 12. A function $f : X \to Y$ is said to be \hat{g} -irresolute [46] if $f^{-1}(V)$ is \hat{g} -open in X for every $V \in \hat{GO}(X)$.

Theorem 13. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then, the following properties hold:

1. If f is \hat{g} -irresolute and g is (\hat{g}, s) -continuous, then gof : $X \to Z$ is (\hat{g}, s) -continuous.

2. If f is (\hat{g}, s) -continuous and g is contra R-map, then $gof : X \to Z$ is almost \hat{g} -continuous.

3. If f is \hat{g} -continuous and g is (θ, s) -continuous, then gof : $X \to Z$ is (\hat{g}, s) -continuous.

4. If f is (\hat{g}, s) -continuous and g is RC-continuous, then gof : $X \to Z$ is \hat{g} -continuous.

5. If f is almost \hat{g} -continuous and g is contra R-map, then $gof: X \to Z$ is (\hat{g}, s) -continuous.

Theorem 14. Let Y be a regular space and $f: X \to Y$ be a function. Suppose that the collection of \hat{g} -closed sets of X is closed under arbitrary intersections. Then if f is (\hat{g}, s) -continuous, f is \hat{g} -continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x). Since Y is regular, there exists an open set G in Y containing f(x) such that $cl(G) \subset V$. Since f is (\hat{g}, s) -continuous, there exists $U \in \hat{GO}(X, x)$ such that $f(U) \subset cl(G)$. Then $f(U) \subset cl(G) \subset V$. Hence, f is \hat{g} -continuous.

6. Fundamental properties

Definition 13. A space X is said to be

1. \hat{g} - T_2 if for each pair of distinct points x and y in X, there exist $U \in \hat{GO}(X, x)$ and $V \in \hat{GO}(X, y)$ such that $U \cap V = \phi$.

2. $\hat{g} - T_1$ if for each pair of distinct points x and y in X, there exist \hat{g} -open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Remark 3. The following implications are hold for a topological space *X*.

1. $T_2 \Rightarrow \hat{g} - T_2$.

2. $T_1 \Rightarrow \hat{g} - T_1$.

These implications are not reversible.

Example 5. Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then X is both $\hat{g} - T_2$ and $\hat{g} - T_1$ but it is neither T_1 nor T_2 .

Theorem 15. The following properties hold for a function $f: X \to Y$: 1. If f is a (\hat{g}, s) -continuous injection and Y is s-Urysohn, then X is $\hat{g} - T_2$.

2. If f is a (\hat{g}, s) -continuous injection and Y is weakly Hausdorff, then X is $\hat{g} - T_1$.

Proof. (1): Let Y be s-Urysohn. By the injectivity of $f, f(x) \neq f(y)$ for any distinct points x and y in X. Since Y is s-Urysohn, there exist $A \in SO(Y, f(x))$ and $B \in SO(Y, f(y))$ such that $cl(A) \cap cl(B) = \phi$. Since f is a (\hat{g}, s) -continuous, by Theorem 7, there exist \hat{g} -open sets C and D in X containing x and y, respectively, such that $f(C) \subset cl(A)$ and $f(D) \subset cl(B)$ such that $C \cap D = \phi$. Thus, X is $\hat{g} - T_2$.

(2): Let Y be weakly Hausdorff. For $x \neq y$ in X, there exist $A, B \in RC(Y)$ such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin B$ and $f(y) \in B$. Since f is (\hat{g}, s) -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are \hat{g} -open subsets of X such that $x \in f^{-1}(A), y \notin f^{-1}(A), x \notin f^{-1}(B)$ and $y \in f^{-1}(B)$. Hence, X is $\hat{g}-T_1$.

Theorem 16. A space X is $\hat{g} - T_2$ if and only if any pair of distinct points x, y of X there exist \hat{g} -open sets U and V such that $x \in U$ and $y \in V$ and $\hat{g} - cl(U) \cap \hat{g} - cl(V) = \phi$.

Proof. In $\hat{g} - T_2$, \hat{g} -open sets and \hat{g} -closed sets are coincide.

Definition 14. A graph G(f) of a function $f : X \to Y$ is said to be (\hat{g}, s) -graph if there exist a \hat{g} -open set A in X containing x and a semi-open set B in Y containing y such that $(A \times cl(B)) \cap G(f) = \phi$ for each $(x, y) \in (X \times Y) \setminus G(f)$.

Proposition 2. The following properties are equivalent for a function $f: X \to Y$:

1. G(f) is (\hat{g}, s) -graph,

2. For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a \hat{g} -open set A in X containing x and a semi-open set B in Y containing y such that $f(A) \cap cl(B) = \phi$.

3. For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a \hat{g} -open set A in X containing x and a regular closed set K in Y containing y such that $f(A) \cap K = \phi$.

Definition 15. A subset S of a space X is said to be S-closed relative to X [32] if for every cover $\{A_i : i \in I\}$ of S by semi-open sets of X, there exists a finite subset I_0 of I such that $S \subset \cup \{cl(A_i) : i \in I_0\}$.

Theorem 17. If a function $f : X \to Y$ has a (\hat{g}, s) -graph and the collection of \hat{g} -closed sets of X is closed under arbitrary intersections, then $f^{-1}(A)$ is \hat{g} -closed in X for every subset A which is S-closed relative to Y.

Proof. Suppose that A is S-closed relative to Y and $x \notin f^{-1}(A)$. We have $(x, y) \in (X \times Y) \setminus G(f)$ for each $y \in A$ and there exist \hat{g} -open set B_y containing x and a semi-open set C_y containing y such that $f(B_y) \cap cl(C_y)) = \phi$. Since $\{C_y : y \in A\}$ is a cover by semi-open sets of Y, there exists a finite subset $\{y_1, y_2, \ldots, y_n\}$ of A such that $A \subset \cup \{cl(C_{yi}) : i = 1, 2, \ldots, n\}$. Take $B = \cap \{B_{yi} : i = 1, 2, \ldots, n\}$. Then B is a \hat{g} -open containing x and $f(B) \cap A = \phi$. Thus, $B \cap f^{-1}(A) = \phi$ and hence $f^{-1}(A)$ is \hat{g} -closed in X.

Theorem 18. Let $f : X \to Y$ be a (\hat{g}, s) -continuous function. Then the following properties hold:

1. G(f) is a (\hat{g}, s) -graph if Y is an s-Urysohn.

2. f is almost \hat{g} -continuous if Y is s-Urysohn S-closed space and $\hat{GC}(X)$ is closed under arbitrary intersections.

Proof. (1): Let Y be s-Urysohn and $(x, y) \in (X \times Y) \setminus G(f)$. Then $f(x) \neq y$. Since Y is s-Urysohn, there exist $M \in SO(Y, f(x))$ and $N \in SO(Y, y)$ such that $cl(M) \cap cl(N) = \phi$. Since f is (\hat{g}, s) -continuous, by theorem there exists \hat{g} -open set A in X containing x such that $f(A) \subset cl(M)$. Hence, $f(A) \cap cl(N) = \phi$ and G(f) is (\hat{g}, s) -graph in $X \times Y$.

(2): Let F be a regular closed set in Y. By Theorem 3.3 and 3.4 [32], F is S-closed relative to Y. Hence, by Theorem 17 and (1), $f^{-1}(F)$ is \hat{g} -closed in X and hence f is almost \hat{g} -continuous.

Theorem 19. Let $f, g : X \to Y$ be functions and $\hat{g} - cl(S)$ be \hat{g} -closed for each $S \subset X$. If

1. f and g are (\hat{g}, s) -continuous,

2. Y is s-Urysohn, then $A = \{x \in X : f(x) = g(x)\}$ is \hat{g} -closed in X.

Proof. Let $x \in X \setminus A$, then it follows that $f(x) \neq g(x)$. Since Y is s-Urysohn, there exist $M \in SO(Y, f(x))$ and $N \in SO(Y, g(x))$ such that $cl(M) \cap cl(N) = \phi$. Since f and g are (\hat{g}, s) -continuous, there exist \hat{g} -open sets U and V containing x such that $f(U) \subset cl(M)$ and $g(V) \subset cl(N)$. Hence, $U \cap V = P \in \hat{G}O(X)$, $f(P) \cap g(P) = \phi$ and then $x \notin \hat{g} - cl(A)$. Thus, A is \hat{g} -closed in X.

Definition 16. A subset A of a topological space X is said to be \hat{g} -dense in X if $\hat{g} - cl(A) = X$.

Theorem 20. Let $f, g : X \to Y$ be functions and $\hat{g} - cl(S)$ be \hat{g} -closed for each $S \subset X$. If

1. Y is s-Urysohn,

2. f and g are (\hat{g}, s) -continuous,

3. f = g on \hat{g} -dense set $A \subset X$, then f = g on X.

Proof. Since f and g are (\hat{g}, s) -continuous and Y is s-Urysohn, by Theorem 19 $B = \{x \in X : f(x) = g(x)\}$ is \hat{g} -closed in X. We have f = g on \hat{g} -dense set $A \subset X$. Since $A \subset B$ and A is \hat{g} -dense set in X, then $X = \hat{g} - cl(A) \subset \hat{g} - cl(B) = B$. Hence f = g on X.

Definition 17. A space X is said to be

1. countably \hat{g} -compact if every countable cover of X by \hat{g} -open sets has a finite subcover,

2. \hat{g} -Lindelof if every \hat{g} -open cover of X has a countable subcover.

Theorem 21. Let $f : X \to Y$ be a (\hat{g}, s) -continuous surjection. Then the following statements hold:

1. if X is \hat{g} -Lindelof, then Y is S-Lindelof.

2. if X is countably \hat{g} -compact, then Y is countably S-closed.

Definition 18. A space X is called \hat{g} -connected if X is not the union of two disjoint nonempty \hat{g} -open sets.

Example 6. Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then X is not \hat{g} -connected.

Example 7. Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then X is \hat{g} -connected.

Theorem 22. Let $f : X \to Y$ be a (\hat{g}, s) -continuous surjection. If X is \hat{g} -connected, then Y is connected.

Proof. Assume that Y is not connected space. Then there exist nonempty disjoint open sets A and B such that $Y = A \cup B$. Also A and B are clopen in Y. Since f is (\hat{g}, s) -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are \hat{g} -open in X. Moreover $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty disjoint and $X = f^{-1}(A) \cup f^{-1}(B)$. This shows that X is not \hat{g} -connected. This contradicts the assumption that Y is not connected.

References

- ABD EL-MONSEF M.E., EL-DEEB S.N., MAHMOUD R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] ANDRIJEVIC D., Semipreopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] ARYA S.P., BHAMINI M.P., Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math., 18(1987), 1088-1093.
- [4] BOURBAKI N., General Topology, Part I, Addison Wesley, Reading, Mass 1996.
- [5] CALDAS M., JAFARI S., NOIRI T., SIMOES M., A new generalization of contra-continuity via Levine's g-closed sets, Chaos, Solitons and Fractals, 32(2007), 1597-1603.
- [6] CHO S.H., A note on almost s-continuous functions, Kyungpook Math. J., 42(2002), 171-175.
- [7] CORSON H., MICHAEL E., Metrizability of certain countable unions, *Illinois J. Math.*, 8(1964), 351-360.
- [8] CROSSLEY S.G., HILDEBRAND S.K., Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [9] DEVI R., MAKI H., BALACHANDRAN K., Semi-generalized closed maps and generalized semi-closed maps, *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, 14(1993), 41-54.
- [10] DONTCHEV J., Contra-continuous functions and strongly S-closed spaces, Int. J Math. Math. Sci., 19(2)(1996), 303-310.
- [11] DONTCHEV J., GANSTER M., REILLY I., More on almost s-continuity, Indian J. Math., 41(1999), 139-146.
- [12] DONTCHEV J., NOIRI T., Contra-semicontinuous functions, Math Pannonica, 10(1999), 159-168.
- [13] DONTCHEV J., NOIRI T., Quasi-normal and πg -closed sets, Acta Math Hungar., 89(3)(2000), 211-219.
- [14] EKICI E., On (g, s)-continuous and $(\pi g, s)$ -continuous functions, Sarajevo Journal of Mathematics, 3(15)(2007), 99-113.
- [15] EKICI E., Almost contra-super-continuous functions, Studii si Cercetari Stiintifice, Seria:Matematica, Univ. din Bacau, 14(2004), 31-42.
- [16] EKICI E., Properties of regular set-connected functions, Kyungpook Math. J., 44(2004), 395-403.
- [17] EKICI E., Another form of contra-continuity, Kochi J. Math., 1(2006), 21-29.
- [18] EKICI E., On contra πg -continuous functions, *Chaos, Solitons and Fractals*, 35(2008), 71-81.
- [19] EKICI E., On contra *R*-continuity and a weaker form, *Indian J. Math.*, 46 (2-3)(2004), 267-281.

- [20] EKICI E., BAKER C.W., On πg -closed sets and continuity, Kochi J. Math., 2(2007), 35-42.
- [21] GANSTER M., On strongly s-regular spaces, Glasnik Mat., 25(45)(1990), 195-201.
- [22] JAFARI S., NOIRI T., Contra-super-continuous functions, Ann. Univ. Sci. Budapest Eotvos Sect. Math., 42(1999), 27-34.
- [23] JOSEPH J.E., KWACK M.H., On S-closed spaces, Proc. Amer. Math. Soc., 80(1980), 341-348.
- [24] LEVINE N., Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960), 269.
- [25] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [26] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [27] MAIO G.D., S-closed spaces, S-sets and S-continuous functions, Accad. Sci. Torino, 118(1984), 125-134.
- [28] MAIO G.D., NOIRI T., On s-closed spaces, Indian J. Pure Appl. Math., 18(1987), 226-223.
- [29] MAKI H., DEVI R., BALACHANDRAN K., Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [30] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEB S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [31] NJASTAD O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [32] NOIRI T., On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat Natur., 8(64)(1978), 157-162.
- [33] NOIRI T., Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(1984), 241-250.
- [34] NOIRI T., A note on S-closed spaces, Bull. Inst. Math. Acad. Sinica, 12(1984), 229-235.
- [35] NOIRI T., On almost continuous functions, Indian J. Pure Appl. Math., 20 (1989), 571-576.
- [36] NOIRI T., A note on s-regular spaces, Glasnik Mat., 13(33)(1987), 107-110.
- [37] NOIRI T., AHMAD B., KHAN M., Almost s-continuous functions, Kyungpook Math. J., 35(1995), 311-322.
- [38] NOIRI T., JAFARI S., Properties of (θ, s) -continuous functions, *Topology* Appl., 123(2002), 167-179.
- [39] PAL M.C., BHATTACHARYYA P., Faint precontinuous functions, Soochow J. Math., 21(1995), 273-289.
- [40] RAVI O., SOUPRAMANIEN T., THIVAGAR M.L., Weak and strong forms of \hat{g} -irresolute functions, (*submitted*).
- [41] SOUNDARARAJAN T., Weakly Hausdorff Spaces and the Cardinality of Topological Spaces, in: General Topology and its Relation to Modern Analysis and Algebra III, Proc. Conf. Kanpur 1968, Academia, Prague 1971, 301-306.

- [42] STEEN L.A., SEEBACH JR J.A., Counter Examples in Topology, Holt, Rinerhart and Winston, New York 1970.
- [43] STONE M.H., Applications of the theory of Boolean rings to general topology, TAMS, 41(1937), 375-381.
- [44] THOMPSON T., S-closed spaces, Proc. Amer. Math. Soc., 60(1976), 335-338.
- [45] VELICKO N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
- [46] VEERAKUMAR M.K.R.S., ĝ-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
- [47] WANG G.J., On S-closed spaces, Acta Math Sinica, 24(1981), 55-63.
- [48] ZAITSEV V., On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.

Ochanathevar Ravi Department of Mathematics P.M. Thevar College, Usilampatti Madurai, Tamil Nadu, India *e-mail:* siingam@yahoo.com

Mariam Lellis Thivagar Department of Mathematics Arul Anandar College Karumathur, Madurai, Tamil Nadu, India *e-mail:* mlthivagar@yahoo.co.in

RATHINAKUMAR LATHA DEPARTMENT OF MATHEMATICS PRINCE SVP ENGINEERING COLLEGE PONMAR, CHENNAI-48, TAMIL NADU, INDIA *e-mail:* ar.latha@gmail.com

Received on 20.01.2010 and, in revised form, on 02.08.2010.