$\frac{F \ A \ S \ C \ I \ C \ U \ L \ I \ M \ A \ T \ H \ E \ M \ A \ T \ I \ C \ I}{Nr \ 47}$

Maria Iwińska and Barbara Popowska

CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION BY GEOMETRIC COMPOUND

ABSTRACT. Under the reliability conditions IFRA/DFRA (NBU/ NWU), the exponential distribution is characterized by stochastic ordering properties which link the geometric compound with record values (spacing of record values). The index of record values is random.

KEY WORDS: characterization, exponential distribution, geometric compounding model, stochastic order, record values.

AMS Mathematics Subject Classification: 62E10.

1. Introduction

Let X be a nonnegative and nondegenerate random variable with distribution function $F(x) = P(X \le x), x \ge 0$. Let $\overline{F}(x) = P(X > x), x \ge 0$ denote the survival function of X.

We say that

a) $F \in EXP$ if

(1)
$$\overline{F}(x) = e^{-\lambda x} \text{ for } x > 0, \ \lambda > 0;$$

b) $F \in IFRA$ if $-\frac{1}{x} \ln \overline{F}(x)$ is nondecreasing in x > 0; c) $F \in DFRA$ if $-\frac{1}{x} \ln \overline{F}(x)$ is nonincreasing in x > 0; d) $F \in NBU$ if

(2)
$$\overline{F}(x+y) \le \overline{F}(x) \cdot \overline{F}(y)$$
 for all $x, y > 0;$

e) $F \in NWU$ if

(3)
$$\overline{F}(x+y) \ge \overline{F}(x) \cdot \overline{F}(y)$$
 for all $x, y > 0$.

Note that

$$EXP \subset IFRA \subset NBU,$$
$$EXP \subset DFRA \subset NWU.$$

It is known (see[2]) that

 $F \in IFRA$ if and only if

(4)
$$\overline{F}(\alpha x) \ge \left[\overline{F}(x)\right]^{\alpha}$$
 for all $0 < \alpha < 1$ and $x > 0$,

and $F \in DFRA$ if and only if

(5)
$$\overline{F}(\alpha x) \leq [\overline{F}(x)]^{\alpha}$$
 for all $0 < \alpha < 1$ and $x > 0$.

Let X and Y be two nonnegative random variables. We say

a) that X has the same distribution as Y (denoted $X \stackrel{d}{=} Y$) if

$$P(X > x) = P(Y > x)$$
 for all $x \ge 0$;

b) that X is smaller than Y in the stochastic order (denoted $X \leq_{st} Y$) if

$$P(X > x) \le P(Y > x)$$
 for all $x \ge 0$.

Let E(X) be the expected value of X.

Lemma 1 ([5]). Suppose that $X \leq_{st} Y$ and $F(f(X)) = E(f(Y)) \in (-\infty, \infty)$ for some strictly increasing function f on $[0, \infty)$. Then $X \stackrel{d}{=} Y$.

We say that v is geometrically distributed if

(6)
$$P(v=k) = p(1-p)^{k-1}, \quad k = 1, 2, \dots, \text{ for some } 0$$

Let X, X_1, X_2, \ldots be a sequence of independent and identically distributed (i.i.d.) nonnegative and nondegenerate random variables with common distribution function F. Assume that v, independent of X_1, X_2, \ldots , is geometrically distributed with parameter $p \in (0, 1)$. Then the random sum $S_v = \sum_{n=1}^{v} X_n$ is called a geometric compound of the sequence X_1, X_2, \ldots .

The geometric compounding model is useful in risk theory, queueing theory, reliability and distribution theory.

Under the compounding model, it is known ([1]) that

(7)
$$pS_{\upsilon} \stackrel{d}{=} X$$
 if and only if $F \in EXP$.

If $E(X) < \infty$, then $E(S_v) = E(v)E(X) = \frac{1}{p}E(X)$. Hence

(8)
$$E(pS_v) = E(X).$$

2. Characterizations of the exponential distribution

Let X_1, X_2, \ldots be a sequence of i.i.d. nonnegative random variables with common continuous distribution function F. Define the sequence of record times $L(1), L(2), \ldots$ as follows: $L(1) = 1, L(n+1) = \min\{j: j > L(n), X_j > X_{L(n)}\}$, for $n = 1, 2, \ldots$. Then $X_{L(1)}, X_{L(2)}, \ldots$ is called the record values of the sequence X_1, X_2, \ldots . Write $R_n = X_{L(n)}, n = 1, 2, \ldots$.

Lemma 2. Let X, X_1, X_2, \ldots be a sequence of i.i.d. nonnegative random variables with common continuous distribution function F. Let v be a geometric random variable (6) independent of X_1, X_2, \ldots .

(a) If $F \in IFRA$, then $pR_v \leq_{st} X$.

(b) If $F \in IFRA$, then $X \leq_{st} pR_v$.

Proof. (a) It is known ([4]) that

$$P(R_v > x) = \left[\overline{F}(x)\right]^p$$
 for all $x > 0$.

Hence

(9)
$$P(pR_v > x) = \left[\overline{F}\left(\frac{x}{p}\right)\right]^p \quad \text{for} \quad x > 0.$$

Since $F \in IFRA$, it follows from (4) that

$$\left[\overline{F}\left(\frac{x}{p}\right)\right]^p \le \overline{F}\left(p \cdot \frac{x}{p}\right) = \overline{F}(x) \quad \text{for} \quad x > 0.$$

Hence

$$P(pR_v > x) \le \overline{F}(x) = P(X > x)$$
 for all $x > 0$, i.e. $pR_v \le_{st} X$.

(b) Suppose $F \in DFRA$. From (5) we obtain

$$\left[\overline{F}\left(\frac{x}{p}\right)\right]^p \ge \overline{F}\left(p \cdot \frac{x}{p}\right) = \overline{F}(x) \quad \text{for } x > 0.$$

By formula (9) we conclude that $P(pR_v > x) \ge \overline{F}(x) = P(X > x)$ for x > 0. Namely, $X \leq_{st} pR_v$.

Using stochastic inequalities, we have the following characterization results.

Theorem 1. Assume that there are satisfied the assumptions of Lemma 2. (a) If $F \in IFRA$ and $S_v \leq_{st} R_v$, then $F \in EXP$.

(b) If $F \in IFRA$, $E(X) < \infty$ and $R_v \leq_{st} S_v$, then $F \in EXP$.

Proof. (a) Suppose that $F \in IFRA$. Then $E(X) < \infty$ ([2]). Suppose that $S_{v} \leq_{st} R_{v}$. Then $pS_{v} \leq_{st} pR_{v} \leq_{st} X$ by Lemma 2 (a). From (8) and Lemma 1 we obtain $X \stackrel{d}{=} pS_{v}$. This implies that $F \in EXP$.

(b) Suppose that $F \in DFRA$, $E(X) < \infty$ and $R_v \leq_{st} S_v$. Then by Lemma 2 (b), we have $X \leq_{st} pR_v \leq_{st} pS_v$. From (8) and Lemma 1 we conclude that $X \stackrel{d}{=} pS_v$ and hence $F \in EXP$. The proof of the theorem is complete.

Lemma 3. Let X, X_1, X_2, \ldots be a sequence of *i.i.d.* nonnegative random variables with common continuous distribution function F. Let $N \ge 1$ be an integer-valued random variable independent of X_1, X_2, \ldots .

- (a) If $F \in NBU$, then $R_{N+1} R_N \leq_{st} X$.
- (b) If $F \in NWU$, then $X \leq_{st} R_{N+1} R_N$.

Proof. Recall the Markov property of record values ([1])

$$P(R_{n+1} > x \mid R_n = y) = \frac{\overline{F}(x)}{\overline{F}(y)} \text{ for } x \ge y.$$

Then we have

$$P(R_{N+1} - R_N > x) = \sum_{n=1}^{\infty} P(N = n) P(R_{n+1} - R_n > x)$$

= $\sum_{n=1}^{\infty} P(N = n) \int_Q P(R_{n+1} > x + z \mid R_n = z) dH_n(z)$
= $\sum_{n=1}^{\infty} P(N = n) \int_Q \frac{\overline{F}(x + z)}{\overline{F}(z)} dH_n(z)$ for all $x > 0$,

in which H_n denotes the distribution function of R_n and Q is its support.

(a) Suppose that $F \in NBU$. From (2) we obtain

$$P(R_{N+1} - R_N > x) \le \sum_{n=1}^{\infty} P(N = n) \int_Q \overline{F}(x) dH_n(z) = \overline{F}(x) \quad \text{for } x > 0,$$

i.e. $R_{N+1} - R_N \leq_{st} X$.

(b) Suppose that $F \in NWU$. From (3) it follows that

$$P\left(R_{N+1} - R_N > x\right) \ge \sum_{n=1}^{\infty} P\left(N = n\right) \int_{Q} \overline{F}(x) dH_n(z) = \overline{F}(x) \quad \text{for } x > 0,$$

i.e. $X \le_{st} R_{N+1} - R_N.$

Theorem 2. Suppose that the assumptions of Lemmas 2 and 3 are satisfied.

- (a) If $F \in NBU$ and $pS_{v} \leq_{st} R_{N+1} R_N$, then $F \in EXP$.
- (b) If $F \in NWU$ and $E(X) < \infty$ and $R_{N+1} R_N \leq_{st} pS_v$, then $F \in EXP$.

Proof. (a) Suppose that $F \in NBU$. Then $E(X) < \infty$ ([2]). Suppose that $pS_v \leq_{st} R_{N+1} - R_N$. Then by Lemma 3 (a), we have $pS_v \leq_{st} R_{N+1} - R_N \leq_{st} X$. From (8), Lemma 1 and (7) we obtain $F \in EXP$.

(b) Suppose that $F \in NWU$, $E(X) < \infty$ and $R_{N+1} - R_N \leq_{st} pS_v$. Then by Lemma 3 (b), it may be concluded that $X \leq_{st} R_{N+1} - R_N \leq_{st} pS_v$. Next, analogously as in the proof of part (a), we get that $F \in EXP$. This completes the proof.

Corollary 1 ([3], Theorem 2.4). Suppose that the assumptions of Lemma 2 are satisfied.

- (a) If $F \in NBU$ and $pS_{v} \leq_{st} R_{n+1} R_n$ for some $n \geq 1$, then $F \in EXP$.
- (b) If $F \in NWU$, $E(X) < \infty$ and $R_{n+1} R_n \leq_{st} pS_v$ for some $n \geq 1$, then $F \in EXP$.

References

- [1] AZLAROV T.A., VOLODIN N.A., Characterization Problems Associated with the Exponential Distribution, Tashkent, 1982, (in Russian).
- [2] BARLOW R.E., PROSCHAN F., Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, Inc., 1975.
- [3] HU C.-Y., LIN G.D., Characterizations of the exponential distribution by stochastic ordering properties of the geometric compound, Ann. Inst. Statist. Math., 55(3)(2003), 499-506.
- [4] KAKOSYAN A.V., KLEBANOV L.B., MELAMED J.A., Characterization of Distributions by the Method of Intensively Monotone Operators, Springer-Verlang, Berlin, Heidelberg, New York, Tokyo, 1984.
- [5] LIN G.D., HU C.-Y., Characterizations of distributions via the stochastic ordering property of random linear forms, *Statist. Probab. Lett.*, 51(2001), 93-99.

MARIA IWIŃSKA INSTITUTE OF MATHEMATICS POZNAN UNIVERSITY OF TECHNOLOGY PIOTROWO 3A, 60-965 POZNAŃ, POLAND *e-mail:* maria.iwinska@put.poznan.pl BARBARA POPOWSKA INSTITUTE OF MATHEMATICS POZNAN UNIVERSITY OF TECHNOLOGY PIOTROWO 3A, 60-965 POZNAŃ, POLAND *e-mail:* barbara.popowska@put.poznan.pl

Received on 26.04.2011 and, in revised form, on 13.06.2011.