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MEAN-VALUE TYPE EQUALITIES WITH

INTERCHANGED FUNCTION AND DERIVATIVE

Abstract. According to a new mean value-theorem, if a func-
tion f satisfies the classical conditions ensuring the existence and
uniqueness of Lagrange’s mean, then there also exists a unique
mean M such that

f(x)− f(y)

x− y
= M (f ′(x), f ′(y)) .

The main result gives necessary and sufficient conditions for the
equality

f ′(x)− f ′(y)

x− y
= M (f(x), f(y)) .

The relevant equality for the Lagrange mean-value theorem is also
considered.
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1. Introduction

Recall that a function M : I2 → R is a mean in an interval I ⊆ R, if

min(x, y) ≤M(x, y) ≤ max(x, y), x, y ∈ I.

If for all x, y ∈ I, x 6= y, these inequalities are strict, M is called strict ; and
symmetric, if M(x, y) = M(y, x). Clearly, any mean M is reflexive, i.e.

M(x, x) = x, x ∈ I.

It is obvious that every reflexive function M : I2 → R which is (strictly)
increasing with respect to each variable is a (strict) mean in I.

In [1] the following counterpart of the Lagrange mean-value theorem has
been proved. If a real function f defined on an interval I is differentiable,
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and f ′ is one-to-one, then there exists a unique mean function M : f ′ (I)×
f ′ (I)→ f ′ (I) such that

(1)
f(x)− f(y)

x− y
= M

(
f ′(x), f ′(y)

)
, x, y ∈ I, x 6= y,

The following problem was considered in [2]. Given a mean M, determine
all differentiable real functions f : I → R such that equality (1) is satisfied.

At this background one can ask if in equation (1), for some functions f
and means M , the roles of f and f ′ can be interchanged, that is if there
exist a function f and a mean M such that

f ′(x)− f ′(y)

x− y
= M (f(x), f(y)) , x, y ∈ I, x 6= y.

In section 1 we give an answer to this question. The main result, The-
orem 2, says that, under natural regularity assumptions, this equation is
satisfied if, and only if,

f(x) = ae−x + bex

for some a, b ∈ R, a2 + b2 > 0, and

M(u, v) :=

√
u2 + c−

√
v2 + c

log
(
u +
√
u2 + c

)
− log

(
u +
√
v2 + c

) , u 6= v,

where c = 4ab. Moreover the maximal domain of the mean M , depending
on a and b, is established.

In section 2 we consider the equation

(2)
f ′(x)− f ′(y)

x− y
= f(M(x, y)), x, y ∈ I, x 6= y,

which appears when we interchange the roles of the function and its deriva-
tive in the Lagrange mean-value theorem. It turnes out that in this case
the function f must be of the same form as in case of equation (1). The
respective family of means has more complicated form (2).

Let us note that, in particular, the sinh and cosh satisfy both equations.

2. Equation (1)

We shall need the following easy to verify

Remark 1. Let I be an interval. If a function M : I2 → R is such that

1. for any fixed y ∈ I,
(−∞, y) ∩ I 3 x → M(x, y) is (strictly) increasing, and M(x, y) ≤ y for
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x < y,
(y,∞)∩I 3 x→M(x, y) is (strictly) increasing, and y ≤M(x, y) for x > y;

2. for any fixed x ∈ I,
(−∞, x) ∩ I 3 y → M(x, y) is (strictly) increasing, and M(x, y) ≤ x for
y < x,
(x,∞)∩I 3 y →M(x, y) is (strictly) increasing, and x ≤M(x, y) for y > x,

3. If M is reflexive then M is an (strictly) increasing (and strict) mean
in I.

Applying this remark we prove

Theorem 1. (i) For any c > 0, the function Mc : R2 → R defined by

(3) Mc(u, v) :=


√
u2+c−

√
v2+c

log u+
√

u2+c

v+
√

v2+c

for u 6= v

u for u = v

is a strict, symmetric, continuous, and increasing mean in R; moreover

lim
c→∞

Mc(u, v) = A(u, v) for all u, v ∈ R,

lim
c→0

Mc(u, v) = L(u, v) for all u, v ∈ R such that uv > 0,

where A(u, v) := u+v
2 , and L :

{
(0,∞)2 ∪ (−∞, 0)2

}
→ R\{0} given by

L(u, v) :=

{
u−v
log u

v
for u 6= v

u for u = v
, uv > 0,

is the logarithmic mean in each of the intervals (0,∞) and (−∞, 0).

(ii) for any c < 0, the function Mc :
{

(
√
−c,∞)2 ∪ (−∞,

√
−c)2

}
→

R\{0} defined by formula (3) is a symmetric, continuous, strictly increasing
mean in; moreover

lim
c→∞

Mc(u, v) = A(u, v)

lim
c→0

Mc(u, v) = L(u, v)
, for all u, v such that uv > 0.

Proof. Assume that c > 0 and take u, v ∈ R, u 6= v. A simple calculation
gives

∂Mc

∂u
(u, v) =

u
[
log
(
u +
√
u2 + c

)
−log

(
v +
√
v2 + c

)]
−
√
u2 + c +

√
v2 + c

√
u2 + c

[
log
(
u +
√
u2 + c

)
−log

(
v +
√
v2 + c

)] .
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Thus ∂Mc
∂u (u, v) > 0 iff

u
[
log
(
u +
√
u2 + c

)
− log

(
v +
√
v2 + c

)]
−
√
u2 + c +

√
v2 + c

log
(
u +
√
u2 + c

)
− log

(
v +
√
v2 + c

)
= u−

√
u2 + c−

√
v2 + c

log
(
u +
√
u2 + c

)
− log

(
v +
√
v2 + c

)
= u−Mc(u, v) > 0.

Put g(t) :=
√
t2 + c, h(t) := log

(
t +
√
t2 + c

)
. Since

g′(t)

h′(t)
=

t√
t2+c

t+ t√
t2+c

t+
√
t2+c

= t,

by the Cauchy mean-value theorem,

Mc(u, v) =

√
u2 + c−

√
v2 + c

log
(
u +
√
u2 + c

)
− log

(
v +
√
v2 + c

)
is located between v and u, that is

min(u, v) = v < Mc(u, v) < u = max(u, v).

It follows that u − Mc(u, v) > 0 and, consequently, ∂Mc
∂u (u, v) > 0. This

proves that for any fixed v, the function

Mc(·, v) is increasing in the interval (−∞, v).

In the same way we can verify that conditions 1-2 of Remark 1 are satisfied.
Since M(u, u) = u for all u ∈ R, by Remark 1, the function M is an

increasing mean. The continuity of Mc at every point (u, v) such that u 6= v
is obvious. Since, for any w ∈ R, by the Cauchy mean-value theorem and
the definition of Mc on the diagonal,

lim
v→w,v→w

Mc(u, v) = lim
v→w,v→w

√
u2 + c−

√
v2 + c

log
(
u +
√
u2 + c

)
− log

(
u +
√
v2 + c

)
= lim

v→w,v→w
Mc(u, v) = w = Mc(w,w),

the mean Mc is continuous everywhere. The symmetry of Mc is obvious.
Since the proof in the case when c < 0 is similar, we omit it. �

The main result of his section reads as follows.
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Theorem 2. Let I ⊆ R be an interval. Suppose that f : I → R is a
differentiable function, f ′(x) 6= 0 for x ∈ I, J := f(I) and M : J2 → J is a
mean that is continuous on the diagonal ∆ := {(u, u) : u ∈ J}. Then

(4)
f ′(x)− f ′(y)

x− y
= M (f(x), f(y)) , x, y ∈ I, x 6= y,

if, and only if, there are a, b ∈ R, a2 + b2 > 0, such that

f(x) = ae−x + bex, x ∈ I.

Moreover, assuming that I is a maximal interval such that f ′(x) 6= 0 for all
x ∈ I,

(i) if a = 0 and b > 0, or a > 0 and b = 0, then I = R, J = (0,∞) and

M (u, v) = L(u, v), u, v > 0, u 6= v;

(ii) if a = 0 and b < 0, or a < 0 and b = 0, then I = R, J = (−∞, 0)
and

M (u, v) = L(u, v), u, v < 0, u 6= v;

(iii) if a > 0 and b > 0 then either I =
(
1
2 log

(
a
b

)
,∞
)

or I = (−∞ ,
1
2 log

(
a
b

))
; in both cases J = (2

√
ab,∞) and

M(u, v) = M4ab, u, v ∈ J, u 6= v;

(iv) if a < 0 and b < 0 then either I =
(
1
2 log

(
a
b

)
,∞
)

or I = (−∞ ,
1
2 log

(
a
b

))
; in both cases J =

(
−∞, 2

√
ab
)

and

M(u, v) = M4ab, u, v ∈ J, u 6= v;

(v) if ab < 0 then I = R and M = M4ab.

Proof. Suppose that a differentiable function f : I → J and a mean
M : J2 → J , continuous on the diagonal ∆, satisfy equation (1). Hence,
letting y → x ∈ I in (1), by the reflexivity of the mean and the continuity
of f , the right-hand side of (1) tends to M (f(x), f(x)) = f(x). Moreover,
equality (1) implies that f is twice differentiable at x, and we get

f ′′(x) = f(x), x ∈ I,

whence, for some a, b ∈ R,

f(x) = ae−x + bex, x ∈ I.

Since, by assumption, f ′(x) 6= 0 for x ∈ I, we get a2 + b2 > 0.
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Let I ⊂ R be the maximal interval such that f ′(x) 6= 0 for x ∈ I. Then,
setting this function into equation (1), we get

(5) M
(
ae−x + bex, ae−y + bey

)
=

(−ae−x + bex)− (−ae−y + bey)

x− y
,

x, y ∈ I, x 6= y.
To prove the ”moreover” part we consider several possible cases. We

begin with
Cases when a = 0 or b = 0.

Assume, for instance, that a = 0. Since b 6= 0, we have

f(x) = bex, f ′(x) = bex, x ∈ I,

I = R, and from (4),

(6) M (bex, bey) =
bex − bey

x− y
, x, y ∈ I, x 6= y.

If b > 0 then, obviously, J = (0,∞) and, for arbitrary u, v > 0, u 6= v,
setting here x := log u

b , y := log v
b , we get

M (u, v) =
u− v

log u− log v
=

u− v

log (u/v)
.

If b < 0 then J = (−∞, 0) and, for arbitrary u, v < 0, u 6= v, setting in (5)
x := log u

b , y := log v
b , we get

M (u, v) =
u− v

log(−u)− log(−v)
=

u− v

log (u/v)
.

We omit similar reasoning in the case b = 0.

Case (iii) when a > 0 and b > 0.
It is easy to verify that, in this case, f ′(x0) = −ae−x0 + bex0 = 0 iff

x0 =
1

2
log

a

b
,

the function f is strictly increasing in the interval (x0,∞) , strictly decreas-
ing in the interval (−∞, x0), attains a global minimum 2

√
ab at the point

x0, and
lim
x→∞

f(x) = lim
x→−∞

f(x) =∞.

It follows that either I = (x0,∞) and J =
(

2
√
ab,∞

)
, or I = (−∞, x0)

and J =
(

2
√
ab,∞

)
.



Mean-value type equalities with . . . 25

Assume that I = (x0,∞) and take arbitrary u, v ∈ f (I) , u 6= v. Setting

ae−x + bex = u, ae−y + bey = v

we conclude that

ex =
u +
√
u2 − 4ab

2b
, ey =

v +
√
v2 − 4ab

2b
;

x = f−1 (u) = log
u +
√
u2 − 4ab

2b
, y = f−1 (v) = log

v +
√
v2 − 4ab

2b
.

Hence, applying (4), after simple calculations, we obtain

M(u, v) =

√
u2 − 4ab−

√
v2 − 4ab

log
(
u +
√
u2 − 4ab

)
− log

(
v +
√
v2 − 4ab

) .
Assume that I = (−∞, x0) . Now, taking arbitrary u, v ∈ J, u 6= v, and
setting

ae−x + bex = u, ae−y + bey = v

we conclude that

ex =
u−
√
u2 − 4ab

2b
, ey =

v −
√
v2 − 4ab

2b
;

x = f−1 (u) = log
u−
√
u2 − 4ab

2b
, y = f−1 (v) = log

v −
√
v2 − 4ab

2b
.

Applying (4), and taking into account that

log
(
u−

√
u2 − 4ab

)
− log

(
v −

√
v2 − 4ab

)
= log

u−
√
u2 − 4ab

v −
√
v2 − 4ab

= log
v +
√
v2 − 4ab

u +
√
u2 − 4ab

,

after simple calculations, we obtain

M(u, v) =

√
u2 − 4ab−

√
v2 − 4ab

log
(
u−
√
u2 − 4ab

)
− log

(
v −
√
v2 − 4ab

) ,
the same formula as in the case when I = (x0,∞).

Case (iv) when a < 0 and b < 0.
Since the considerations are anologous is in the case (iii), we omit them.

Case (v) when ab < 0.
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In this case f ′(x) = −ae−x + bex 6= 0 for all x ∈ R. Consequently, f is
strictly monotonic in I = R and, obviously, J = R. Simple calculations give

M(u, v) =

(
−u−

√
u2−4ab
2 + u+

√
u2−4ab
2

)
−
(
−v−

√
v2−4ab
2 + v+

√
v2−4ab
2

)
log
(
u+
√
u2−4ab
2b

)
− log

(
v+
√
v2−4ab
2b

)
=

√
u2 − 4ab−

√
v2 − 4ab

log
(
u +
√
u2 − 4ab

)
− log

(
v +
√
v2 − 4ab

) = M−4ab(u, v).

�

Remark 2. If a = −1 and b = 1 then f = sinh and

Msinhu, v) := M4(u, v) =

√
u2 + c−

√
v2 + c

log u+
√
u2+c

v+
√
v2+c

, for u, v ∈ R, u 6= v.

2. Equation (2)

In this section we prove the following

Theorem 3. Let I ⊆ R be an interval. Suppose that f : I → J is a
differentiable function, such that f ′(x) 6= 0 for x ∈ I, and M : I2 → I is a
mean that is continuous on the diagonal ∆ := {(x, x) : x ∈ J}. Then

(2)
f ′(x)− f ′(y)

x− y
= f (M (x, y)) , x, y ∈ I, x 6= y,

if, and only if, there are a, b ∈ R, a2 + b2 > 0, such that

f(x) = ae−x + bex, x ∈ I,

and, for all x, y ∈ I, x 6= y,

(7) M (x, y) =



log ex−ey
x−y , if a = 0,

x + y − log ex−ey
x−y , if b = 0,

log

(
ex−ce−x−ey+ce−y

2(x−y) +

√(
ex−ce−x−ey+ce−y

2(x−y)

)2
− c

)
,

if ab 6= 0

where
c :=

a

b
.

Moreover, if c < 0 then M in formula (6) is a mean in R; if c > 0 then M
is a mean on (0,∞).
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Proof. Suppose that a differentiable function f : I → J is and a mean
M : J2 → J , continuous on the diagonal ∆, satisfy equation (2). Letting
y → x ∈ I in (2), similarly as in the previous proof, we get f ′′(x) = f(x) for
x ∈ I,whence

f(x) = ae−x + bex, x ∈ I.

for some a, b ∈ R. Substituting this function into (2) gives

ae−M(x,y) + beM(x,y) =
−ae−x + bex + ae−y − bex

x− y
, x, y ∈ I, x 6= y.

Hence for b = 0, we get

M (x, y) = x + y − log
ex − ey

x− y
, x, y ∈ I, x 6= y.

Assume that b 6= 0. Setting c := a
b and dividing both sides of equality (2)

by b we get

ce−M(x,y) + eM(x,y) =
−ce−x + ex + ce−y − ey

x− y
, x, y ∈ I, x 6= y.

Taking into account that M is reflexive, after simple calculations, we obtain

M(x, y) = log

ex − ce−x − ey + ce−y

2 (x− y)
+

√(
ex − ce−x − ey + ce−y

2 (x− y)

)2

− c


for all x, y ∈ I, x 6= y. The converse implication is obvious. �
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