Takashi Noiri and Valeriu Popa

FURTHER PROPERTIES OF QUASI M-CONTINUOUS FUNCTIONS

ABSTRACT. We obtain the further properties of quasi *M* continuous functions which were introduced and investigated in order to establish the unified theory for several variations of quasi-continuity between bitopological spaces.

KEY WORDS: quasi-open, m_X -open, m-structure, quasi m-structure, quasi mg-closed, locally quasi mg-closed, quasi M-continuous, bitopological space.

AMS Mathematics Subject Classification: 54C08, 54E55.

1. Introduction

The notion of quasi-open sets in bitopological spaces is introduced by Datta [10] and studied in [21] and [41]. Some properties of quasi-open sets are studied in [21]. The notion of quasi-continuity between bitopological spaces is introduced and studied in [6]. Quasi-semi-open sets and quasi-semi-continuous functions are introduced in [22] and studied in [15] and [37]. Popa [36] introduced and investigated the notions of quasi preopen sets and quasi precontinuity between bitopological spaces. Thakur and Paik introduced and studied the notion of quasi- α -open sets in [43] and [44]. Moreover, Thakur and Verma [45] introduced and studied the notion of quasi semipreopen sets in bitopological spaces.

The present authors introduced the notions of minimal structures, m-spaces, M-continuity in [38] and [39]. Recently, in [7], by using these concepts we introduced the notion of quasi M-continuous functions which establish the unified theory for several variations of quasi continuity between bitopological spaces. In this paper, we obtain the further properties of quasi M-continuous functions which have been investigated in [7].

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be α -open [32] (resp. semi-open [17], preopen [26], β -open [1] or semi-preopen [3]) if $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$ (resp. $A \subset \text{Cl}(\text{Int}(A)), A \subset$ $\text{Int}(\text{Cl}(A)), A \subset \text{Cl}(\text{Int}(\text{Cl}(A)))).$

The family of all semi-open (resp. preopen, α -open, β -open, semi-preopen) sets in X is denoted by SO(X) (resp. PO(X), $\alpha(X)$, $\beta(X)$, SPO(X)).

Definition 2. The complement of a semi-open (resp. preopen, α -open, β -open, semi-preopen) set is said to be semi-closed [8] (resp. preclosed [11], α -closed [27], β -closed [1], semi-preclosed [3]).

Definition 3. The intersection of all semi-closed (resp. preclosed, α -closed, β -closed, semi-preclosed) sets of X containing A is called the semi-closure [8] (resp. preclosure [11], α -closure [27], β -closure [2], semi-preclosure [3]) of A and is denoted by sCl(A) (resp. pCl(A), α Cl(A), β Cl(A), spCl(A)).

Definition 4. The union of all semi-open (resp. preopen, α -open, β -open, semi-preopen) sets of X contained in A is called the semi-interior (resp. preinterior, α -interior, β -interior, semi-preinterior) of A and is denoted by sInt(A) (resp. pInt(A), $\alpha Int(A)$, $\beta Int(A)$, spInt(A)).

Throughout the present paper, (X, τ) and (Y, σ) always denote topological spaces and (X, τ_1, τ_2) and (Y, σ_1, σ_2) denote bitopological spaces.

3. Minimal structures

Definition 5. A subfamily m_X of the power set $\mathcal{P}(X)$ of a nonempty set X is called a minimal structure (or briefly m-structure) [38], [39] on X if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) (or briefly (X, m)), we denote a nonempty set X with a minimal structure m_X on X and call it an *m*-space. Each member of m_X is said to be m_X -open (or briefly *m*-open) and the complement of an m_X -open set is said to be m_X -closed (or briefly *m*-closed).

Remark 1. Let (X, τ) be a topological space. Then the families τ , SO(X), PO(X), $\alpha(X)$, $\beta(X)$ and SPO(X) are all *m*-structures on X.

Definition 6. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [25] as follows:

(a) $m_X - Cl(A) = \cap \{F : A \subset F, X - F \in m_X\},\$

(b) m_X -Int $(A) = \bigcup \{U : U \subset A, U \in m_X\}$. m_X -Cl(A) and m_X -Int(A) are briefly denoted by mCl(A) and mInt(A), respectively.

Remark 2. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$, SPO(X)), then we have (a) m_X -Cl(A) = Cl(A) (resp. sCl(A), pCl(A), α Cl(A), β Cl(A), spCl(A)), (b) m_X -Int(A) = Int(A) (resp. sInt(A), pInt(A), α Int(A), β Int(A), spInt(A)).

Lemma 1 (Maki et al. [25]). Let (X, m_X) be an *m*-space. For subsets A and B of X, the following properties hold:

- (a) $\operatorname{mCl}(X A) = X \operatorname{mInt}(A)$ and $\operatorname{mInt}(X A) = X \operatorname{mCl}(A)$,
- (b) If $(X-A) \in m_X$, then $\operatorname{mCl}(A) = A$ and if $A \in m_X$, then $\operatorname{mInt}(A) = A$,
- (c) $\mathrm{mCl}(\emptyset) = \emptyset, \mathrm{mCl}(X) = X, \, \mathrm{mInt}(\emptyset) = \emptyset \text{ and } \mathrm{mInt}(X) = X,$
- (d) If $A \subset B$, then $\operatorname{mCl}(A) \subset \operatorname{mCl}(B)$ and $\operatorname{mInt}(A) \subset \operatorname{mInt}(B)$,
- (e) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mInt}(A) \subset A$,
- (f) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2 (Popa and Noiri [38]). Let (X, m_X) be an *m*-space and *A* a subset of *X*. Then $x \in m_X$ -Cl(*A*) if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing *x*.

Definition 7. A minimal structure m_X on a nonempty set X is said to have property \mathcal{B} [25] if the union of any family of subsets belonging to m_X belongs to m_X .

Remark 3. Let (X, τ) be a topological space, then τ , SO(X), PO(X), $\alpha(X)$, $\beta(X)$, SPO(X) are all *m*-structures on X having property \mathcal{B} .

Lemma 3 (Popa and Noiri [40]). Let (X, m_X) be an *m*-space and m_X satisfy property \mathcal{B} . Then for a subset A of X, the following properties hold:

(a) $A \in m_X$ if and only if m_X -Int(A) = A,

(b) A is m_X -closed if and only if m_X -Cl(A) = A,

(c) m_X -Int $(A) \in m_X$ and m_X -Cl(A) is m_X -closed.

Definition 8. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (a) quasi open [10], [21] if $A = B \cup C$, where $B \in \tau_1$ and $C \in \tau_2$,

(b) quasi semi-open [15], [22] if $A = B \cup C$, where $B \in SO(X, \tau_1)$ and $C \in SO(X, \tau_2)$,

(c) quasi preopen [36] if $A = B \cup C$, where $B \in PO(X, \tau_1)$ and $C \in PO(X, \tau_2)$,

(d) quasi semipreopen [45] if $A = B \cup C$, where $B \in \text{SPO}(X, \tau_1)$ and $C \in \text{SPO}(X, \tau_2)$,

(e) quasi α -open [43] if $A = B \cup C$, where $B \in \alpha(X, \tau_1)$ and $C \in \alpha(X, \tau_2)$.

The family of all quasi open (resp. quasi semi-open, quasi preopen, quasi semipreopen, quasi α -open) sets of (X, τ_1, τ_2) is denoted by QO(X) (resp. QSO(X), QPO(X), QSPO(X), $Q\alpha(X)$).

Definition 9. Let (X, τ_1, τ_2) be a bitopological space and m_X^1 (resp. m_X^2) an *m*-structure on the topological space (X, τ_1) (resp. (X, τ_2)). The family

 $qm_X = \{A \subset X : A = B \cup C, where B \in m_X^1 \text{ and } C \in m_X^2\}$

is called a quasi m-structure on X. Each member $A \in qm_X$ is said to be quasi m_X -open (or briefly quasi m-open). The complement of a quasi m_X -open set is said to be quasi m_X -closed (or briefly quasi m-closed).

Remark 4. Let (X, τ_1, τ_2) be a bitopological space.

(a) If m_X^1 and m_X^2 have property (\mathcal{B}) , then qm_X is an *m*-structure with property (\mathcal{B}) .

(b) If $m_X^1 = \tau_1$ and $m_X^2 = \tau_2$ (resp. SO (X, τ_1) and SO (X, τ_2) , PO (X, τ_1) and PO (X, τ_2) , SPO (X, τ_1) and SPO (X, τ_2) , $\alpha(X, \tau_1)$ and $\alpha(X, \tau_2)$), then $qm_X = QO(X)$ (resp. QSO(X), QPO(X), QSPO(X), Q α O(X)).

(c) Since $SO(X, \tau_i)$, $PO(X, \tau_i)$, $SPO(X, \tau_i)$ and $\alpha(X, \tau_i)$ have property (\mathcal{B}) , QSO(X), QPO(X), QSPO(X) and $Q\alpha O(X)$ have property (\mathcal{B}) .

Definition 10. Let (X, τ_1, τ_2) be a bitopological space. For a subset A of X, the quasi m_X -closure of A and the quasi m_X -interior of A are defined as follows:

(a) $qmCl(A) = \cap \{F : A \subset F, X - F \in qm_X\},\$

(b) $qmInt(A) = \bigcup \{U : U \subset A, U \in qm_X\}.$

Remark 5. Let (X, τ_1, τ_2) be a bitopological space and A a subset of X. If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), QSPO(X), $Q\alpha O(X)$), then we have

(a) qmCl(A) = qCl(A) (resp. qsCl(A) [15], qpCl(A) [36], qspCl(A) [45], $q\alpha Cl(A)$ [43]),

(b) $\operatorname{qmInt}(A) = \operatorname{qInt}(A)$ (resp. $\operatorname{qsInt}(A)$, $\operatorname{qpInt}(A)$, $\operatorname{qspInt}(A)$, $\operatorname{qaInt}(A)$).

4. Quasi *mg*-closed sets in bitopological spaces

Definition 11. Let (X, τ) be a topological space. A subset A of X is said to be

(a) g-closed [18] if $\operatorname{Cl}(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,

(b) $g\alpha$ -closed [24] if α Cl(A) $\subset U$ whenever $A \subset U$ and $U \in \alpha(X)$,

(c) sg-closed [4] if $sCl(A) \subset U$ whenever $A \subset U$ and $U \in SO(X)$,

(d) pg-closed [34] if $pCl(A) \subset U$ whenever $A \subset U$ and $U \in PO(X)$,

(e) spg-closed if $\operatorname{spCl}(A) \subset U$ whenever $A \subset U$ and $U \in \operatorname{SPO}(X)$.

Definition 12. Let (X, m_X) be an m-space. A subset A of X is said to be mg-closed [33] if m_X -Cl(A) $\subset U$ whenever $A \subset U$ and $U \in m_X$. The complement of an mg-closed set is said to be mg-open. The collection of all mg-open sets of (X, m_X) is denoted by mGO(X). Then mGO(X) is a new minimal structure on X.

Remark 6. Let (X, τ) be a topological space and m_X an *m*-structure on X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, SPO(X)), then, an *mg*-closed set is a *g*-closed (resp. *sg*-closed, *pg*-closed, *g* α -closed, *spg*-closed) set.

Definition 13. Let (X, τ_1, τ_2) be a bitopological space. A subset A of X is said to be

(a) quasi g-closed or (1,2)g-closed [16] if $qCl(A) \subset U$ whenever $A \subset U$ and $U \in QO(X)$,

(b) quasi αg -closed if $q \alpha Cl(A) \subset U$ whenever $A \subset U$ and $U \in Q \alpha O(X)$,

(c) quasi sg-closed if $qsCl(A) \subset U$ whenever $A \subset U$ and $U \in QSO(X)$,

(d) quasi pg-closed if $qpCl(A) \subset U$ whenever $A \subset U$ and $U \in QPO(X)$,

(e) quasi spg-closed if $\operatorname{qspCl}(A) \subset U$ whenever $A \subset U$ and $U \in \operatorname{QSPO}(X)$.

Definition 14. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X. A subset A is said to be quasi mg-closed in (X, τ_1, τ_2) if A is mg-closed in (X, qm_X) .

A subset A is said to be quasi mg-open if the complement of A is quasi mg-closed. The collection of all quasi g-open (resp. quasi sg-open, quasi pg-open, quasi αg -open, quasi spg-open) sets of (X, τ_1, τ_2) is denoted by QGO(X) (resp. QSGO(X), QPGO(X), $Q\alpha GO(X)$, QSPGO(X)).

Remark 7. Let (X, τ_1, τ_2) be a bitopological space.

(a) If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), $Q\alpha(X)$, QSPO(X)), then, a quasi mg-closed set is a quasi g-closed (resp. quasi sg-closed, quasi pg-closed, quasi αg -closed, quasi spg-closed) set.

(b) The families QGO(X), QSGO(X), QPGO(X), $Q\alpha GO(X)$ and QSPGO(X) are all minimal structures on X which do not have property \mathcal{B} in general.

Lemma 4 (Noiri [33]). Let (X, m_X) be an m-space. For subsets A, B of X, the following properties hold:

(a) if A is m-closed, then A is mg-closed,

(b) if m_X has property \mathcal{B} and A is mg-closed and m-open, then A is m-closed,

(c) if A is mg-closed and $A \subset B \subset \mathrm{mCl}(A)$, then B is mg-closed.

Theorem 1. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X. For subsets A, B of X, the following properties hold:

(a) if A is quasi m-closed, then A is quasi mg-closed,

(b) if qm_X has property \mathcal{B} and A is quasi mg-closed and quasi m-open, then A is quasi m-closed,

(c) if A is quasi mg-closed and $A \subset B \subset \operatorname{qmCl}(A)$, then B is quasi mg-closed.

Proof. The proof follows from Definition 14 and Lemma 4.

Corollary 1. Let (X, τ_1, τ_2) be a bitopological space. For subsets A, B of X, the following properties hold:

- (a) if A is quasi-closed, then A is quasi g-closed,
- (b) if A is quasi g-closed and quasi-open, then A is quasi-closed,

(c) if A is quasi g-closed and $A \subset B \subset qCl(A)$, then B is quasi g-closed.

Lemma 5 (Noiri [33]). Let (X, m_X) be an m-space. Then, for each $x \in X$, either $\{x\}$ is m-closed or $\{x\}$ is mg-open.

Theorem 2. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi *m*-structure on X. Then, for each $x \in X$, either $\{x\}$ is quasi *m*-closed or $\{x\}$ is quasi *mg*-open.

Proof. The proof follows from Definition 14 and Lemma 5.

Corollary 2. Let (X, τ_1, τ_2) be a bitopological space. Then, for each $x \in X$, either $\{x\}$ is quasi closed or $\{x\}$ is quasi g-open.

Lemma 6 (Noiri [33]). Let (X, m_X) be an m-space. Then, a subset A of X is mg-open if and only if $F \subset \operatorname{mInt}(A)$ whenever $F \subset A$ and F is m-closed.

Theorem 3. Let (X, τ_1, τ_2) be a bitopological space and qm_X a minimal structure on X. Then, a subset A of X is quasi mg-open if and only if $F \subset qmInt(A)$ whenever $F \subset A$ and F is quasi m-closed.

Proof. The proof follows from Definition 14 and Lemma 6.

Corollary 3. A subset A of (X, τ_1, τ_2) is quasi g-open if and only if $F \subset qInt(A)$ whenever $F \subset A$ and F is quasi closed.

Lemma 7 (Noiri [33]). For subsets A, B of X, the following properties hold:

(a) if A is m-open, then A is m-open,

(b) if m_X has property \mathcal{B} and A is mg-open and m-closed, then A is m-open,

(c) if A is mg-open and $mInt(A) \subset B \subset A$, then B is mg-open.

Theorem 4. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X. For subsets A, B of X, the following properties hold:

(a) if A is quasi m-open, then A is quasi mg-open,

(b) if qm_X has property \mathcal{B} and A is quasi mg-open and quasi m-closed, then A is quasi m-open,

(c) if A is quasi mg-open and $qmInt(A) \subset B \subset A$, then B is quasi mg-open.

Proof. The proof follows from Definition 14 and Lemma 7.

Corollary 4. For subsets A, B of (X, τ_1, τ_2) , the following properties hold:

(a) if A is quasi-open, then A is quasi g-open,

(b) if A is quasi g-open and quasi-closed, then A is quasi-open,

(c) if A is quasi g-open and $qInt(A) \subset B \subset A$, then B is quasi g-open.

Lemma 8 (Noiri [33]). Let (X, m_X) be an *m*-space, where m_X have property \mathcal{B} . Then, for a subset A of X, the following properties are equivalent.

(a) A is mg-closed;

(b) mCl(A) - A does not contain any nonempty m-closed set;

(c) mCl(A) - A is mg-open.

Theorem 5. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X having property \mathcal{B} . Then, for a subset A of X, the following properties are equivalent:

(a) A is quasi mg-closed;

- (b) $\operatorname{qmCl}(A) A$ does not contain any nonempty quasi m-closed set;
- (c) $\operatorname{qmCl}(A) A$ is quasi mg-open.

Proof. The proof follows from Definition 14 and Lemma 8.

Corollary 5. For a subset A of of a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (a) A is quasi g-closed;
- (b) qCl(A) A does not contain any nonempty quasi closed set;

(c) qCl(A) - A is quasi g-open.

Lemma 9 (Noiri [33]). Let (X, m_X) be an m-space. A subset A of X is mg-closed if and only if $mCl(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is m-closed.

Theorem 6. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X. Then, a subset A of X is quasi mg-closed if and only if $qmCl(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is quasi m-closed.

Proof. The proof follows from Definition 14 and Lemma 9.

Corollary 6. Let (X, τ_1, τ_2) be a bitopological space. Then, a subset A of X is quasi g-closed if and only if $qCl(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is quasi closed.

Lemma 10 (Noiri [33]). Let (X, m_X) be an m-space, where m_X has property \mathcal{B} . A subset A of X is mg-closed if and only if $mCl(\{x\}) \cap A \neq \emptyset$ for each $x \in mCl(A)$.

Theorem 7. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X having property \mathcal{B} . Then, a subset A of X is quasi mg-closed if and only if $qmCl(\{x\}) \cap A \neq \emptyset$ for each $x \in qmCl(A)$.

Proof. The proof follows from Definition 14 and Lemma 10.

Corollary 7. Let (X, τ_1, τ_2) be a bitopological space. Then, a subset A of X is quasi g-closed if and only if $qCl(\{x\}) \cap A \neq \emptyset$ for each $x \in qCl(A)$.

Definition 15. A subset A of an m-space (X, m_X) is said to be locally m-closed [33] if $A = U \cap F$, where $U \in m_X$ and F is m-closed.

Remark 8. Let (X, τ) be a topological space. If $m_X = \tau$ (resp. SO(X), $\alpha(X)$, SPO(X), PO(X)), then a locally *m*-closed set is said to be locally closed [12] (resp. semi-locally closed [42], α -locally closed [13], β -locally closed [14], locally pre-closed).

Lemma 11 (Noiri [33]). Let (X, m_X) be an *m*-space and m_X have property \mathcal{B} . For a subset A of X, the following properties are equivalent:

(a) A is locally m-closed;

- (b) $A = U \cap \mathrm{mCl}(A)$ for some $U \in m_X$;
- (c) mCl(A) A is m-closed;
- (d) $A \cup (X \mathrm{mCl}(A)) \in m_X$;
- (e) $A \subset mInt[A \cup (X mCl(A))].$

Definition 16. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X. A subset A of X is said to be locally quasi m-closed if A is locally m-closed in (X, qm_X) , equivalently if $A = U \cap B$, where $U \in qm_X$ and B is quasi m-closed.

Remark 9. Let (X, τ_1, τ_2) be a bitopological space and $qm_X = QO(X)$ (resp. QSO(X), QPO(X), Q $\alpha(X)$, QSPO(X)). If a subset A of X is locally quasi *m*-closed, then A is locally quasi closed (resp. locally quasi semi-closed, locally quasi preclosed, locally quasi α -closed, locally quasi semi-preclosed).

Theorem 8. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X having property \mathcal{B} . For a subset A of X, the following properties are equivalent:

(a) A is locally quasi m-closed; (b) $A = U \cap \operatorname{qmCl}(A)$ for some $U \in qm_X$; (c) $\operatorname{qmCl}(A) - A$ is quasi m-closed; (d) $A \cup (X - \operatorname{qmCl}(A)) \in qm_X$; (e) $A \subset \operatorname{qmInt}[A \cup (X - \operatorname{qmCl}(A))]$.

Proof. The proof follows from Definition 14 and Lemma 11.

Corollary 8. Let (X, τ_1, τ_2) be a bitopological space. For a subset A of X, the following properties are equivalent:

- (a) A is locally quasi closed;
 (b) A = U ∩ qCl(A) for some quasi open set U of X;
 (c) qCl(A) A is quasi closed;
 (d) A ∪ (X qCl(A)) is quasi closed;
 - (e) $A \subset qInt[A \cup (X qCl(A))].$

Lemma 12 (Noiri [33]). Let (X, m_X) be an m-space and m_X have property \mathcal{B} . Then a subset A of X is m-closed if and only if A is mg-closed and locally m-closed.

Theorem 9. Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi minimal structure on X having property \mathcal{B} . Then a subset A of X is quasi m-closed if and only if A is quasi mg-closed and locally quasi m-closed.

Proof. The proof follows from Definition 14 and Lemma 12.

Corollary 9. Let (X, τ_1, τ_2) be a bitopological space and A a subset of X. Then,

(a) A is quasi closed if and only if it is quasi g-closed and locally quasi closed,

(b) A is quasi semi-closed if and only if it is quasi sg-closed and locally quasi semi-closed,

(c) A is quasi preclosed if and only if it is quasi pg-closed and locally quasi preclosed.

(d) A is quasi α -closed if and only if it is quasi α g-closed and locally quasi α -closed,

(e) A is quasi β -closed if and only if it is quasi spg-closed and locally quasi β -closed.

5. Some properties of *M*-continuity

Definition 17. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be M-continuous at a point $x \in X$ [38] if for each m_Y -open sets V of Y containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$.

A function $f : (X, m_X) \to (Y, m_Y)$ is said to be *M*-continuous if f is *M*-continuous at each point x of X.

Remark 10. Let (X, τ) and (Y, σ) be topological spaces.

(a) If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, SPO(X)) and $f : (X, m_X) \to (Y, \sigma)$ is *M*-continuous, then *f* is continuous (resp. semi-continuous [17] or quasi continuous [23], precontinuous [26], α -continuous [27], semi-precontinuous [3] or β -continuous [1]).

(b) If $m_X = SO(X)$ (resp. PO(X), $\alpha(X)$, SPO(X)), $m_Y = SO(Y)$ (resp. PO(Y), $\alpha(Y)$, SPO(Y)) and $f : (X, m_X) \to (Y, m_Y)$ is *M*-continuous, then f is irresolute [9] (resp. preirresolute [28], α -irresolute [20], β -irresolute [29]).

(c) If $m_X = \tau$, $m_Y = \text{SO}(Y)$ (resp. $\alpha(Y)$, SPO(Y)) and f is M-continuous, then f is s-continuous [5] (resp. strongly α -irresolute [19], strongly β -irresolute [31]).

Theorem 10 (Noiri and Popa [35]). For a function $f : (X, m_X) \rightarrow (Y, m_Y)$, the following properties are equivalent:

(a) f is M-continuous at $x \in X$;

(b) $x \in mInt(f^{-1}(V))$ for every $V \in m_Y$ containing f(x);

- (c) $x \in f^{-1}(\operatorname{mCl}(f(A)))$ for every subset A of X with $x \in \operatorname{mCl}(A)$;
- (d) $x \in f^{-1}(\mathrm{mCl}(B))$ for every subset B of Y with $x \in \mathrm{mCl}(f^{-1}(B))$;
- (e) $x \in \operatorname{mInt}(f^{-1}(B))$ for every subset B of Y with $x \in f^{-1}(\operatorname{mInt}(B))$;

(f) $x \in f^{-1}(K)$ for every m_Y -closed set K of Y such that $x \in \operatorname{mCl}(f^{-1}(K))$.

For a function $f: (X, m_X) \to (Y, m_Y)$, we define $D_M(f)$ as follows:

 $D_M(f) = \{x \in X : f \text{ is not } M \text{-continuous at} x\}.$

Theorem 11 (Noiri and Popa [35]). For a function $f : (X, m_X) \rightarrow (Y, m_Y)$, the following properties hold:

$$D_M(f) = \bigcup_{G \in m_Y} \{f^{-1}(G) - \operatorname{mInt}(f^{-1}(G))\}$$
$$= \bigcup_{B \in \mathcal{P}(\mathcal{Y})} \{f^{-1}(\operatorname{Int}(B)) - \operatorname{mInt}(f^{-1}(B))\}$$
$$= \bigcup_{B \in \mathcal{P}(\mathcal{Y})} \{\operatorname{mCl}(f^{-1}(B)) - f^{-1}(\operatorname{mCl}(B))\}$$
$$= \bigcup_{A \in \mathcal{P}(\mathcal{X})} \{\operatorname{mCl}(A) - f^{-1}(\operatorname{mCl}(f(A)))\}.$$

Definition 18. Let A be a subset of an m-space (X, m_X) . The m-frontier of A, mFr(A), is defined by $mFr(A) = mCl(A) \cap mFr(X - A) = mCl(A) - mInt(A)$.

Theorem 12. Let $f : (X, m_X) \to (Y, m_Y)$ be a function. Then the set $D_M(f)$ is equal to the union of m-frontiers of the inverse images of m-open sets of Y containing f(x).

Proof. Suppose that $x \in D_M(f)$. There exists $V \in m_Y$ containing f(x) such that f(U) is not contained in V for every $U \in m_X$ containing x. Then $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every $U \in m_X$ containing x and hence by Lemma 3.2 $x \in \operatorname{mCl}(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V) \subset \operatorname{mCl}(f^{-1}(V))$ and hence $x \in \operatorname{mFr}(f^{-1}(V))$.

Conversely, suppose that f is M-continuous at $x \in X$ and let V be any m_Y -open set of Y containing f(x). Then, by Theorem 5.1, we have $f^{-1}(V) \subset \operatorname{mInt}(f^{-1}(V))$. Therefore, $x \notin \operatorname{mFr}(f^{-1}(V))$ for each m_Y -open set of Y containing f(x).

Lemma 13 (Popa and Noiri [38]). For a function $f : (X, m_X) \rightarrow (Y, m_Y)$, the following properties are equivalent:

(a) f is M-continuous;

(b) $f^{-1}(V) = m_X$ -Int $(f^{-1}(V))$ for every m_Y -open set V of Y;

(c) m_X -Cl $(f^{-1}(F)) = f^{-1}(F)$ for every m_Y -closed set F of Y;

(d) m_X -Cl $(f^{-1}(B)) \subset f^{-1}(m_Y$ -Cl(B)) for every subset B of Y;

- (e) $f(m_X \operatorname{Cl}(A)) \subset m_Y \operatorname{Cl}(f(A))$ for every subset A of X;
- (f) $f^{-1}(m_Y \operatorname{-Int}(B)) \subset m_X \operatorname{-Int}(f^{-1}(B))$ for every subset B of Y.

Corollary 10 (Popa and Noiri [38]). Let (X, m_X) be an *m*-space and m_X satisfy property \mathcal{B} . For a function $f : (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

- (a) f is M-continuous;
- (b) $f^{-1}(V)$ is m_X -open for every m_Y -open set V of Y;
- (c) $f^{-1}(F)$ is m_X -closed for every m_Y -closed set F of Y.

Definition 19. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be M^* -continuous [30] if $f^{-1}(V)$ is m-open in X for each m-open set V of Y.

Remark 11. (a) If $f: (X, m_X) \to (Y, m_Y)$ is M^* -continuous, then it is M-continuous. But the converse may not be true by Example 3.4 of [30].

(b) If m_X has property \mathcal{B} , then *M*-continuity is equivalent to M^* -continuity.

Definition 20. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be mg-continuous if $f : (X, mGO(X)) \to (Y, m_Y)$ is M^* -continuous, equivalently if $f^{-1}(V)$ is mg-closed for each m-closed set V of Y.

Definition 21. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be locally mc-continuous if $f^{-1}(K)$ is locally m-closed in X for each m-closed set K of Y.

Theorem 13. A function $f : (X, m_X) \to (Y, m_Y)$, where m_X has property \mathcal{B} , is *M*-continuous if and only if it is mg-continuous and locally mc-continuous.

Proof. The proof follows from Definitions 20 and 21 and Lemma 12. ■

Definition 22. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be contra M^* -continuous if $f^{-1}(K)$ is m-closed in X for each m-open set K of Y.

Theorem 14. A function $f : (X, m_X) \to (Y, m_Y)$, where m_X has property \mathcal{B} , is mg-continuous and contra M^* -continuous, then f is M-continuous.

Proof. Let V be any m-open set of Y. Since f is mg-continuous, $f^{-1}(V)$ is mg-open. Since f is contra M^* -continuous, $f^{-1}(V)$ is m-closed. By Lemma 7, $f^{-1}(V)$ is m-open. Therefore, by Corollary 10 f is M-continuous.

6. Quasi *M*-continuity in bitopological spaces

Definition 23. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

(a) quasi-continuous [6] (resp. quasi semi-continuous [22], quasi almostcontinuous [36], quasi semi-precontinuous [7]) if $f^{-1}(V)$ is quasi-open (resp. quasi semi-open, quasi preopen, quasi semi-preopen) in (X, τ_1, τ_2) for each quasi-open set V of (Y, σ_1, σ_2) ,

(b) quasi irresolute [22] if $f^{-1}(V)$ is quasi semi-open in (X, τ_1, τ_2) for each quasi semi-open set V of (Y, σ_1, σ_2) .

Definition 24. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

(a) quasi M-continuous (resp. quasi M-continuous at $x \in X$) [7] if $f : (X, qm_X) \to (Y, m_Y)$ is quasi M-continuous (resp. quasi M-continuous at $x \in X$),

(b) M^* -continuous if $f: (X, qm_X) \to (Y, m_Y)$ is M^* -continuous.

Remark 12. (a) Let qm_X be a quasi structure on (X, τ_1, τ_2) having property \mathcal{B} . Then a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is quasi *M*-continuous if and only if $f^{-1}(V)$ is quasi *m*-open in *X* for each quasi *m*-open set *V* of *Y*.

(b) If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), QSPO(X)) and $qm_Y = QO(Y)$, then a quasi *M*-continuous function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is quasi-continuous (resp. quasi semi-continuous, quasi almost continuous, quasi semi-precontinuous).

Lemma 14 (Chae, Noiri and Popa [7]). Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent: (a) f is quasi M-continuous;

(b) $f^{-1}(V) = \operatorname{qmInt}(f^{-1}(V))$ for every quasi-m-open set V of Y;

(c) $\operatorname{qmCl}(f^{-1}(F)) = f^{-1}(F)$ for every quasi-m-closed set F of Y;

(d) $\operatorname{qmCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{qmCl}(B))$ for every subset B of Y;

(e) $f(\operatorname{qmCl}(A)) \subset \operatorname{qmCl}(f(A))$ for every subset A of X;

(f) $f^{-1}(\operatorname{qmInt}(B)) \subset \operatorname{qmInt}(f^{-1}(B))$ for every subset B of Y.

Corollary 11 (Chae, Noiri and Popa [7]). Let (X, τ_1, τ_2) be a bitopological space and qm_X a quasi m-structure on X satisfying property \mathcal{B} . For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent: (a) f is quasi M-continuous;

(b) $f^{-1}(V)$ is quasi-m-open for every quasi-m-open set V of Y;

(c) $f^{-1}(F)$ is quasi-m-closed for every quasi-m-closed set F of Y.

Theorem 15. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). For a function $f:(X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

(a) f is quasi M-continuous at $x \in X$;

(b) $x \in \operatorname{qmInt}(f^{-1}(V))$ for every $V \in qm_Y$ containing f(x);

(c) $x \in f^{-1}(\operatorname{qmCl}(f(A)))$ for every subset A of X with $x \in \operatorname{qmCl}(A)$;

(d) $x \in f^{-1}(\operatorname{qmCl}(B))$ for every subset B of Y with $x \in \operatorname{qmCl}(f^{-1}(B))$;

(e) $x \in \operatorname{qmInt}(f^{-1}(B))$ for every subset B of Y with $x \in f^{-1}(\operatorname{qmInt}(B))$;

(f) $x \in f^{-1}(K)$ for every quasi m-closed set K of Y such that $x \in \operatorname{qmCl}(f^{-1}(K))$.

Proof. The proof follows from Definition 24 and Theorem 10.

For a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, we define $D_{aM}(f)$ as follows:

 $D_{qM}(f) = \{x \in X : f \text{ is not quasi } M \text{-continuous at } x\}.$

Theorem 16. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). Then, for a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following equilities hold:

$$\begin{aligned} D_{qM}(f) &= \bigcup_{G \in qM_Y} \{f^{-1}(G) - \operatorname{qmInt}(f^{-1}(G))\} \\ &= \bigcup_{B \in \mathcal{P}(\mathcal{Y})} \{f^{-1}(\operatorname{qmInt}(B)) - \operatorname{qmInt}(f^{-1}(B))\} \\ &= \bigcup_{B \in \mathcal{P}(\mathcal{Y})} \{\operatorname{qmCl}(f^{-1}(B)) - f^{-1}(\operatorname{qmCl}(B))\} \\ &= \bigcup_{A \in \mathcal{P}(\mathcal{X})} \{\operatorname{qmCl}(A) - f^{-1}(\operatorname{qmCl}(f(A)))\}. \end{aligned}$$

For a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, we define $D_q(f)$ as follows:

$$D_q(f) = \{x \in X : f \text{ is not quasi continuous at } x\}.$$

Corollary 12. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following equities hold:

$$\begin{split} D_q(f) &= \bigcup_{G \in QO(Y)} \{f^{-1}(G) - \operatorname{qInt}(f^{-1}(G))\} \\ &= \bigcup_{B \in \mathcal{P}(\mathcal{Y})} \{f^{-1}(\operatorname{qInt}(B)) - \operatorname{qInt}(f^{-1}(B))\} \\ &= \bigcup_{B \in \mathcal{P}(\mathcal{Y})} \{\operatorname{qCl}(f^{-1}(B)) - f^{-1}(\operatorname{qCl}(B))\} \\ &= \bigcup_{A \in \mathcal{P}(\mathcal{X})} \{\operatorname{qCl}(A) - f^{-1}(\operatorname{qCl}(f(A)))\}. \end{split}$$

Definition 25. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be quasi g-continuous (resp. quasi sg-continuous, quasi pg-continuous, quasi α g-continuous, quasi spg-continuous) if $f^{-1}(K)$ is quasi g-closed (resp. quasi g-semi-closed, quasi g-preclosed, quasi g- α -closed, quasi g-semipreclosed) set in (X, τ_1, τ_2) for each quasi closed set K of (Y, σ_1, σ_2) .

Definition 26. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be quasi mg-continuous if $f : (X, qm_X) \to (Y, qm_Y)$ is mg-continuous, equivalently if $f^{-1}(K)$ is quasi mg-closed set in X for each quasi closed set K of Y.

Remark 13. If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), $Q\alpha O(X)$, QSPO(X))) and $qm_Y = QO(Y)$, then by Definition 26 we obtain Definition 25.

Definition 27. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be locally quasi mc-continuous if $f : (X, qm_X) \to (Y, qm_Y)$ is locally mc-continuous, equivalently if $f^{-1}(K)$ is locally quasi mg-closed set in X for each quasi m-closed set K of Y.

Remark 14. If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), $Q\alpha O(X)$, QSPO(X)), $qm_Y = QO(Y)$ and $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally quasi *mc*-continuous, then f is locally quasi continuous (resp. locally quasi semi-continuous, locally quasi precontinuous, locally quasi α -continuous, locally quasi semi-precontinuous).

By Definitions 26 and 27 and Theorem 13, we obtain the following decomposition theorem of quasi M-continuity in bitopological spaces.

Theorem 17. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y), where qm_X has property \mathcal{B} . A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is quasi M-continuous if and only if f is quasi mg-continuous and locally quasi mc-continuous.

Corollary 13. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function. Then the following properties hold:

(a) f is quasi continuous if and only if it is quasi g-continuous and locally quasi continuous,

(b) f is quasi semi-continuous if and only if it is quasi sg-continuous and locally quasi semi-continuous,

(c) f is quasi precontinuous if and only if it is quasi pg-continuous and locally quasi precontinuous,

(d) f is quasi α -continuous if and only if it is quasi α g-continuous and locally quasi α -continuous,

(e) f is quasi semi-precontinuous if and only if it is quasi spg-continuous and locally quasi semi-precontinuous.

Definition 28. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. Let qm_X (resp. qm_Y) be a quasi m-structure on X (resp. Y). A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is contra quasi M^* -continuous if $f: (X, qm_X) \to (Y, qm_Y)$ is contra M^* -continuous, equivalently if $f^{-1}(V)$ is quasi m-closed set in X for each quasi m-open set V of Y.

Remark 15. If $qm_X = QO(X)$ (resp. QSO(X), QPO(X), $Q\alpha O(X)$, QSPO(X)), $qm_Y = QO(Y)$ and $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is contra quasi M^* -continuous, then f is contra quasi continuous (resp. contra quasi semi-continuous, contra quasi precontinuous, contra quasi α -continuous, contra quasi semi-precontinuous).

By Definition 28 and Theorem 14, we obtain the following theorem.

Theorem 18. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces and let qm_X (resp. qm_Y) be a quasi *m*-structure on X (resp. Y), where qm_X has property \mathcal{B} . A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is quasi mg-continuous and contra quasi M^* -continuous, then f is quasi M-continuous.

Corollary 14. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function. Then the following properties hold:

(a) f is quasi continuous if it is quasi g-continuous and contra quasi continuous,

(b) f is quasi semi-continuous if it is quasi sg-continuous and contra quasi semi-continuous,

(c) f is quasi precontinuous if it is quasi pg-continuous and contra quasi precontinuous,

(d) f is quasi α -continuous if it is quasi α g-continuous and contra quasi α -continuous,

(e) f is quasi semi-precontinuous if it is quasi spg-continuous and contra quasi semi-precontinuous.

Proof. The proof follows from Theorem 18 and $qm_Y = QO(Y)$.

References

- ABD EL-MONSEF M.E., EL-DEEP S.N., MAHMOUD R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77–90.
- [2] ABD EL-MONSEF M.E., MAHMOUD R.A., LASHIN E.R., β-closure and β-interior, J. Fac. Ed. Ain Shams Univ., 10(1986), 235–245.
- [3] ANDRIJEVIĆ D., Semi-preopen sets, Mat. Vesnik, 38(1986), 24–32.
- [4] BHATTACHARYYA P., LAHIRI B.K., Semi-generalized closed sets in topology, *Indian J. Math.*, 25(1987), 375–382.
- [5] CAMERON D.E., WOODS G., S-continuity and s-open functions, (preprint).
- [6] CHAE G.I., HONG K.P., On the continuity in a bitopological spaces, Ulsan Inst. Tech. Rep., 12(1981), 147–150.
- [7] CHAE G.I., NOIRI T., POPA V., Quasi M-continuous functions in bitopological spaces, J. Natur. Sci. Ulsan Univ., 16(2007), 23–33.
- [8] CROSSLEY S.G., HILDEBRAND S.K., Semi-closure, Texas J. Sci., 22(1971), 99–112.
- [9] CROSSLEY S.G., HILDEBRAND S.K., Semi-topological properties, Fund. Math., 74(1972), 233–254.
- [10] DATTA M.C., Contributions to the Theory of Bitopological Spaces, Ph. D. Thesis, Pilan (India), 1971.
- [11] EL-DEEB S.N., HASANEIN I.A., MASHHOUR A.S., NOIRI T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75)(1983), 311–315.
- [12] GANSTER M., REILLY I.L., Locally closed sets and LC-continuous functions, Internat. J. Math. Math. Sci., 12(1989), 417–424.
- [13] GRANAMBAL Y., Studies on Generalized Pre-regular Closed Sets and Generalizations of Locally Closed Sets, Ph. D. Thesis, Bharathiar Univ., Coinbatore, 1998.
- [14] GRANAMBAL Y., BALACHANDRAN K., β-locally closed sets and β-LC-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 19(1998), 35–44.
- [15] LEE J.Y., LEE J.J., Quasi-semi-open sets and quasi-semi-continuity, Ulsan Inst. Tech. Rep., 13(1982), 171–173.
- [16] THIVAGAR M.L., RAJESWAR R.R., EKICI E., On extension of semi-preopen sets in bitopological spaces, *Kochi J. Math.*, 3(2008), 55–60.
- [17] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36–41.
- [18] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89–96.
- [19] FARO G.L., On strongly α-irresolute mappings, Indian J. Pure Appl. Math., 18(1987), 146–151.
- [20] MAHESHWARI S.N., THAKUR S.S., On α-irresolute mappings, Tamkang J. Math., 11(1980), 209–214.
- [21] MAHESHWARI S.N., JAIN P.C., CHAE G.I., On quasiopen sets, Ulsan Inst. Tech. Rep., 11(1980), 291–292.
- [22] MAHESHWARI S.N., CHAE G.I., THAKUR S.S., Some new mappings in bitopological spaces, Ulsan Inst. Tech. Rep., 12(1981), 301–304.

- [23] MARCUS S., Sur les fonctions quasicontinues au sence de S. Kempisty, Colloq. Math., 8(1961), 47–53.
- [24] MAKI H., DEVI R., BALACHANDRAN K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. III, 42(1993), 13–21.
- [25] MAKI H., RAO K.C., GANI A.N., On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49(1999), 17–29.
- [26] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEP S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47–53.
- [27] MASHHOUR A.S., HASANEIN I.A., EL-DEEB S.N., α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213–218.
- [28] MASHHOUR A.S., ABD EL-MONSEF M.E., HASANEIN I.A., On pretopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 23(76)(1984), 39–45.
- [29] MASHHOUR A.S., ABD EL-MONSEF M.E., β-irresolute and β-topological invariants, Proc. Pakistan Acad. Sci., 27(1990), 285–291.
- [30] MIN W.K., M^* -continuity and product minimal structure, (*submitted*).
- [31] NASEF A.A., NOIRI T., Strongly β-irresolute mappings, J. Natur. Sci., 36 (1996), 199–206.
- [32] NJÅSTAD O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961–970.
- [33] NOIRI T., A unified theory of modifications of g-closed sets, Rend. Circ. Mat. Palermo (2), 56(2007), 171–184.
- [34] NOIRI T., MAKI H., UMEHARA J., Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 19(1998), 13–20.
- [35] NOIRI T., POPA V., A generalization of some forms of g-irresolute functions, Europ. J. Pure Appl. Math., 2(2009), 473–493.
- [36] POPA V., Quasi preopen sets and quasi almost continuity in bitopological spaces, Stud. Cerc. Bacău, (1984), 180–184.
- [37] POPA V., On some properties of quasi semi-separate spaces, Lucr. St. Mat. Fis. Inst. Petrol-Gaze, Ploiesti (1990), 71–76.
- [38] POPA V., NOIRI T., On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor. (2), 18(23)(2000), 31–41.
- [39] POPA V., NOIRI T., On the definitions of some be generalized forms of continuity be under minimal conditions, *Mem. Fac. Sci. Kochi Univ. Ser. A Math.*, 22(2001), 9–18.
- [40] POPA V., NOIRI T., A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51(2002), 439–464.
- [41] SARSAC M.S., On quasi continuous functions, J. Indian Acad. Math., 27 (2006), 407–414.
- [42] SUNDARAM P., BALACHANDRAN K., Semi generalized locally closed sets in topological spaces, (*preprint*).
- [43] THAKUR S.S., PAIK P., Quasi α-sets, J. Indian Acad. Math., 7(1985), 91–95.
- [44] THAKUR S.S., PAIK P., Quasi α-connectedness in bitopological spaces, J. Indian Acad. Math., 9(1987), 98–102.
- [45] THAKUR S.S., VERMA P., Quasi semi preopen sets, Vikram Math. J., 11 (1991), 57–61.

Takashi Noiri and Valeriu Popa

Takashi Noiri 2949-1 Shiokita-Cho, Hinagu Yatsushiro-Shi, Kumamoto-Ken 869-5142 Japan *e-mail:* t.noiri@nifty.com

VALERIU POPA DEPARTMENT OF MATHEMATICS UNIV. VASILE ALECSANDRI OF BACĂU 600115 BACĂU, ROMANIA *e-mail:* vpopa@ub.ro

Received on 08.11.2010 and, in revised form, on 11.01.2011.