F A S C I C U L I M A T H E M A T I C I

Nr 47

Kuldip Raj and Sunil K. Sharma

WEIGHTED SUBSTITUTION OPERATORS BETWEEN L^{p}-SPACES OF VECTOR-VALUED FUNCTIONS

Abstract

In this paper we characterize weighted substitution operators between L^{p}-spaces of vector-valued functions and also make an attempt to characterize isometry and partial isometry of these operators. KEY words: weighted substitution operator, isometry, partial isometry, adjoint of an operator. AMS Mathematics Subject Classification: Primary 47B20, Secondary 47B38.

1. Introduction and preliminaries

Let (X, S, μ) be a σ-finite measure space. Then for $1 \leq p<\infty, L^{p}\left(X, \mathbb{C}^{n}\right)$ denotes the class of all S-measurable \mathbb{C}^{n}-valued functions whose pth power is integrable on X with respect to the measure μ i.e.

$$
L^{p}\left(X, \mathbb{C}^{n}\right)=\left\{f \mid f: X \rightarrow \mathbb{C}^{n} \text { is a measurable and } \int_{X}\|f(\cdot)\|^{p} d \mu<\infty\right\}
$$

Then $L^{p}\left(X, \mathbb{C}^{n}\right)$ is a Banach space under the norm,

$$
\|f\|=\left(\int_{X}\|f(\cdot)\|^{p} d \mu\right)^{\frac{1}{p}}
$$

and for $p=2, L^{2}\left(X, \mathbb{C}^{n}\right)$ is a Hilbert space under the inner product,

$$
\langle f, g\rangle=\int_{X}\langle f(\cdot), g(\cdot)\rangle d \mu
$$

Let $w: X \rightarrow \mathbb{C}^{n}$ be a vector-valued measurable function and let $T: X \rightarrow$ X be a non-singular measurable transformation. Then a bounded linear transformation $S_{w, T}: L^{p}\left(X, \mathbb{C}^{n}\right) \rightarrow L^{p}\left(X, \mathbb{C}^{n}\right)$ defined by

$$
\left(S_{w, T}, f\right)(x)=w(x) f(T(x))
$$

is called a weighted composition operator or a weighted substitution operator induced by the pair (w, T). If we take $w(x)=1$, the constant one function on X, we write $S_{w, T}$ as C_{T} and call it a composition operator or substitution operator induced by T. In case $T(x)=x$, for every $x \in X$, we write $S_{w, T}$ as M_{w} and call it a multiplication operator induced by w.

An atom of a measure μ is an element $A \in S$, if $F \subset A$ then either $\mu(F)=0$ or $\mu(F)=\mu(A)$. A measure with no atoms is called non atomic. We can easily check the following well known facts see [15].
(a) Every σ-finite measure space (X, S, μ) can be decomposed into disjoint sets B and Z, such that μ is non atomic over B and Z is atmost countable union of atoms A_{n} of finite measure. So we can write X as follows:

$$
X=B \cup\left(\cup_{n \in N}\left\{A_{n}\right\}\right)
$$

(b) For each $f \in L^{s}(X, S, \mu)$, there exists two functions $f_{1} \in L^{p}(X, S, \mu)$ and $f_{2} \in L^{q}(X, S, \mu)$ such that $f=f_{1} \cdot f_{2}$ and $\|f\|_{s}^{s}=\left\|f_{1}\right\|_{p}^{p}=\left\|f_{2}\right\|_{q}^{q}$ where $\frac{1}{p}+\frac{1}{q}=\frac{1}{s}$.
(c) Suppose $1 \leq p<q<\infty$. If a S_{0}-measurable set K, is non-atomic and s.t. $\mu(K)>0$, there exists a function $g_{0} \in L^{p}\left(X, S_{0}, \mu\right)$ with $\int_{K}\left|g_{0}\right|^{q} d \mu=\infty$.

Let (X, S, μ) be a σ-finite measure space and $S_{0} \subset S$ be a σ-finite subalgebra. Then the conditional expectation $E\left(\cdot \mid S_{0}\right)$ is defined as a linear transformation from certain S-measurable function spaces (i.e. L^{1}, L^{2} etc) into their S_{0}-measurable counterparts. In particular the conditional expectation with respect to the σ-algebra $T^{-1}(S)$ is a bounded projection from $L^{p}(X, S, \mu)$ onto $L^{p}\left(X, T^{-1}(S), \mu\right)$. We denote this transformation by E. The transformation E has the following properties:
(i) $E(f \cdot g \circ T)=E(f) \cdot(g \circ T)$
(ii) if $f \geq g$ almost everywhere, then $E(f) \geq E(g)$ almost everywhere
(iii) $E(1)=1$
(iv) $E(f)$ has the form $E(f)=g \circ T$ for exactly one σ-measurable function g. In particular $g=E(f) \circ T^{-1}$ is a well defined measurable function.
$(v)|E(f g)|^{2} \leq\left(E|f|^{2}\right)\left(E|g|^{2}\right)$
(vi) For $f>0$ almost everywhere, $E(f)>0$ almost everywhere.
(vii) If ϕ is a convex function, then $\phi(E(f)) \leq E(\phi(f)) \mu$-almost everywhere. For deeper study of the properties of E see [12].

Campbell ([1], [2]) made use of the expectation operator to study some properties of weighted composition operators on $L^{2}(X, \mathbb{C})$. Also T is a mapping from X into itself is a non-singular measurable transformation such that $\mu \circ T^{-1}$ is absolutely continuous with respect to μ (i.e. $\mu \circ T^{-1} \ll \mu$). Hence by Radon-Nikodym derivative theorem there exists a positive measurable function f_{0} such that $\mu\left(T^{-1}(E)\right)=\int_{E} f_{0} d \mu$, for every $E \in S$. The function
f_{0} is called the Radon-Nikodym derivative of the measure μT^{-1} with respect to the measure μ. It is denoted by $\frac{d \mu T^{-1}}{d \mu}$.

Boundedness of the composition operators in $L^{p}(X, S, \mu),(1 \leq p<\infty)$ spaces, where the measure spaces are σ - finite, appeared already in [13] and for two different L^{p}-spaces in [14]. Also boundedness of weighted operators on $C(X, E)$ has already been studied in [9]. More detailed classes of weighted composition operators on some function spaces are considered in ([3], [4], [5], [6], [9], [10], [11]). In this paper we plan to study weighted composition operators on vector valued L^{p}-spaces.

2. Weighted substitution operators

Theorem 1. Suppose $1 \leq p, q<\infty$. Every weighted substitution transformation $S_{w, T}: L^{p}\left(X, \mathbb{C}^{n}\right) \rightarrow L^{q}\left(X, \mathbb{C}^{n}\right)$ is always bounded.

Proof. It is easy to prove by using closed graph theorem and so we omit it.

Theorem 2. Let $S_{w, T}: L^{2}\left(X, \mathbb{C}^{n}\right) \rightarrow L^{2}\left(X, \mathbb{C}^{n}\right)$ be a linear transformation. Then $S_{w, T}$ is bounded if and only if $J \in L^{\infty}\left(X, \mathbb{C}^{n}\right)$, where $J=f_{0} E_{n \times n}\left(w^{*} w\right) \circ T^{-1}$.

Proof. The proof is given by Hornor and Jamison [[6], p-3124].
In the next theorem, we characterize the boundedness of weighted substitution operator for atomic measure spaces.

Theorem 3. $S_{w, T} \in \mathbb{C}\left(L^{2}\left(N, \mathbb{C}^{n}\right)\right)$ if and only if $J: N \rightarrow \mathbb{C}^{n \times n}$ is a bounded function, where

$$
J(n)=\sum_{m \in T^{-1}(\{n\})} \frac{\mu(m) w^{*}(m) w(m)}{\mu(n)}
$$

Proof. For any $f \in L^{2}\left(N, \mathbb{C}^{n}\right)$, consider

$$
\begin{aligned}
\left\|S_{w, T} f\right\|^{2} & =\sum_{n=1}^{\infty}\langle(w \cdot f \circ T)(n),(w \cdot f \circ T)(n)\rangle \mu(n) \\
& =\sum_{n=1}^{\infty}\langle w(n) f(T(n)), w(n) f(T(n))\rangle \mu(n) \\
& =\sum_{n=1}^{\infty} \sum_{m \in T^{-1}(\{n\})}\langle w(m) f(n), w(m) f(n)\rangle \mu(m)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \sum_{m \in T^{-1}(\{n\})}\left\langle w^{*}(m) w(m) f(n), f(n)\right\rangle \mu(m) \\
& =\sum_{n=1}^{\infty}\left\langle\sum_{m \in T^{-1}(\{n\})} \frac{\mu(m) w^{*}(m) w(m)}{\mu(n)} f(n), f(n)\right\rangle \mu(n) \\
& =\sum_{n=1}^{\infty}\langle J(n) f(n), f(n)\rangle \mu(n) \\
& =\left\|M_{J^{\frac{1}{2}}} f\right\|^{2} .
\end{aligned}
$$

Hence $S_{w, T}$ is a bounded operator if and only if $J: N \rightarrow \mathbb{C}^{n \times n}$ is a bounded function.

Theorem 4. Let $S_{w, T} \in \mathbb{C}\left(L^{2}\left(N, \mathbb{C}^{n}\right)\right)$. Define

$$
(A g)(n)=\frac{1}{\mu(n)} \sum_{m \in T^{-1}(\{n\})} \mu(m) w^{*}(m) g(m) \text { for every } g \in L^{2}\left(N, \mathbb{C}^{n}\right)
$$

Then $S_{w, T}^{*}=A$.
Proof. For any $f, g \in L^{2}\left(N, \mathbb{C}^{n}\right)$, consider

$$
\begin{aligned}
\left\langle S_{w, T} f, g\right\rangle & =\sum_{n=1}^{\infty}\langle(w \cdot f \circ T)(n), g(n)\rangle \mu(n) \\
& \left.=\sum_{n=1}^{\infty} \sum_{m \in T^{-1}(\{n\})}\langle w(m) f(T(m)), g(m))\right\rangle \mu(m) \\
& \left.=\sum_{n=1}^{\infty} \sum_{m \in T^{-1}(\{n\})}\left\langle f(n), w^{*}(m) g(m)\right)\right\rangle \mu(m) \\
& =\sum_{n=1}^{\infty}\left\langle f(n), \sum_{m \in T^{-1}(\{n\})} \frac{\mu(m) w^{*}(m) g(m)}{\mu(n)}\right\rangle \mu(n) \\
& =\sum_{n=1}^{\infty}\left\langle f(n),\left(S_{w, T}^{*} g\right)(n)\right\rangle \mu(n) \\
& =\langle f, A g\rangle .
\end{aligned}
$$

Hence $S_{w, T}^{*}=A$.
Theorem 5. Let $S_{w, T} \in \mathbb{C}\left(L^{2}\left(X, \mathbb{C}^{n}\right)\right)$. Then $S_{w, T}$ is a partial isometry if and only if J is an idempotent.

Proof. Suppose $S_{w, T}$ is a partial isometry. Then

$$
S_{w, T}=S_{w, T} S_{w, T}^{*} S_{w, T}
$$

and therefore

$$
S_{w, T}^{*} S_{w, T}=S_{w, T}^{*} S_{w, T} S_{w, T}^{*} S_{w, T}
$$

or

$$
M_{J}=M_{J^{2}}
$$

Hence we can conclude that J is an idempotent.
Conversely, if J is an idempotent mapping, then,since $\operatorname{ker} S_{w, T}=\operatorname{ker} M_{J}$, so for any $f \in\left(\operatorname{ker} S_{w, T}\right)^{\perp}=\overline{\operatorname{ran} M_{J}}$, we have

$$
\begin{aligned}
\left\langle S_{w, T}^{*} S_{w, T} f, g\right\rangle & =\int_{X}\langle w \cdot f \circ T, w \cdot g \circ T\rangle d \mu \\
& =\int_{X}\left\langle w^{*} w \cdot f \circ T, g \circ T\right\rangle d \mu \\
& =\int_{X}\left\langle h E_{n}\left(w^{*} w\right) \circ T^{-1} f, g\right\rangle d \mu \\
& =\int_{X}\langle J f, g\rangle d \mu \\
& =\langle f, g\rangle
\end{aligned}
$$

Hence $S_{w, T}$ is a partial isometry.
Theorem 6. Let $S_{w, T}: L^{2}\left(X, \mathbb{C}^{n}\right) \rightarrow L^{2}\left(X, \mathbb{C}^{n}\right)$ be a bounded operator. Then $S_{w, T}$ is an isometry if and only if $J^{\frac{1}{2}}(x)$ is an isometry for μ-almost all $x \in X$.

Proof. The proof follows from the equality,

$$
\left\|S_{w, T} f\right\|=\left\|M_{J^{\frac{1}{2}}} f\right\| \text { for every } f \in^{2}\left(X, \mathbb{C}^{n}\right)
$$

Theorem 7. Let $S_{w, T} \in \mathbb{C}\left(L^{p}\left(X, \mathbb{C}^{n}\right)\right)$. Then $S_{w, T}$ is an idempotent operator if and only if $w \cdot w \circ T=w$ and $T^{2}=T$ on $\operatorname{supp} w \cap \operatorname{supp}(w \circ T)$.

Proof. Suppose $S_{w, T}$ is an idempotent operator. Then for $e_{k} \in \mathbb{C}^{n}$, we have for any $E \in S$, with $\mu(E)<\infty$,

$$
S_{w, T} S_{w, T}\left(\chi_{E} e_{k}\right)=S_{w, T}\left(\chi_{E} e_{k}\right)
$$

which implies that

$$
w \cdot w \circ T\left(\chi_{\left(T^{2}\right)^{-1}(E)} e_{k}\right)=w\left(\chi_{T^{-1}(E)} e_{k}\right)
$$

Hence $T^{2}=T$ and $w \cdot w \circ T=w$ on $\operatorname{supp} w \cap \operatorname{supp} w \circ T$. The converse is easy to prove.

Example 1. Let $X=\mathbb{R}, T(x)=x+1$ and

$$
w(x)=\left\{\begin{array}{lll}
e^{\frac{1}{1-(x-1)^{2}}}, & \text { for } & |x|<1 \\
0, & \text { for } & |x| \geq 1
\end{array}\right.
$$

Then $T^{-1}(S)=S, f_{0}=1, E[f]=f$ for every $f \in L^{p}\left(X, \mathbb{C}^{n}\right)$. Now

$$
\left\|f_{0}^{\frac{1}{q}}|w| \circ T^{-1}\right\|_{r}^{r}=\int_{X}|w(x-1)|^{r} d \mu=1 .
$$

Hence $S_{w, T}$ is a weighted substitution operator from $L^{p}\left(X, \mathbf{C}^{n}\right)$ into $L^{p}\left(X, \mathbb{C}^{n}\right)$ in view of Theorem 2 .

Example 2. Let $X=[0,1], \ldots$

$$
T(x)= \begin{cases}2 x, & \text { if } \quad 0 \leq x \leq \frac{1}{2} \\ -2 x, & \text { if } \quad \frac{1}{2}<x \leq 1\end{cases}
$$

And $w(x)=2 x$ for every $x \in X$. Then $f_{0}=1$ almost everywhere, so

$$
\begin{aligned}
(E F)(x) & =\frac{1}{2}[f(x)+f(1-x)] \\
E(f) \circ T^{-1}(x) & =\frac{1}{2}\left[f(x)+f\left(\frac{1-x}{2}\right)\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left\|f_{0}^{\frac{1}{q}} E\left(|w| \circ T^{-1}\right)\right\|_{r}^{r} & =\int_{0}^{1} \mid E\left(\left.|w| \circ T^{-1}(x)\right|^{r} d \mu\right. \\
& =\int_{0}^{1} \frac{\left|w\left(\frac{x}{2}\right)+w\left(\frac{1-x}{2}\right)\right|^{r}}{2} d \mu=1
\end{aligned}
$$

Hence $S_{w, T}$ is a bounded operator.
If $w(x)$ is an isometry for almost all x, then we present a characterization for boundedness of weighted substitution operators by using the Radyon Nikodym derivative.

Theorem 8. Let $w: X \rightarrow \mathbb{C}^{n \times n}$ be a measurable function and let $T: X \rightarrow X$ be a non-singular transformation. Then for $1 \leq p, q<\infty$, $S_{w, T}: L^{p}\left(X, \mathbb{C}^{n}\right) \rightarrow L^{q}\left(X, \mathbb{C}^{n}\right)$ is continuous if and only if $v \in L^{\infty}\left(X, \mathbb{C}^{n}\right)$.

Proof. For each $E \in S$, set $\lambda(E)=\int_{T^{-1}(E)}\|w(x)\|^{q} d \mu(x)$. Then

$$
\begin{aligned}
\left\|S_{w, T} f\right\|^{q} & =\int_{X}\|w(x)(f \circ T)(x)\|^{q} d \mu(x) \\
& =\int_{X}\|w(x)\|^{q}\|f \circ T(x)\|^{q} d \mu(x) \\
& =\int_{X}\|f(T(x))\|^{q} d \lambda(x) \\
& =\int_{X}\|f(x)\|^{q} d \lambda T^{-1} \\
& =\int_{X}\|f(x)\|^{q} v(x) d \mu(x), \text { where } v=\frac{d \lambda T^{-1}}{d \mu}
\end{aligned}
$$

Hence, we can conclude that $S_{w, T}$ is a bounded linear transformation if and only if v is essentially bounded.

References

[1] Campbell J.T., Jamison J.E., On some classes of weighted composition operators, Glasgow Math. J., 32(1990), 87-94.
[2] Campbell J.T., Jamison J.E., The analysis of composition operators on L^{p} and Hopf Decomposition, J. Math. Anal. Appl., 159(1991), 520-531.
[3] Carlson J.W., Weighted Composition Operators on l^{2}, Ph.D. Thesis, Purdue Univ., 1985.
[4] Carlson J.W., Hyponormal and quasinormal weighted composition operators, Rocky Mountain Journal of Mathematics, 20(1990), 399-407.
[5] Ding J., Horvor W.E., A new approach to Frobenius-Perron operators, J. Math. Analysis Applicable, 187(1994), 1047-1058.
[6] Hornor W.E., Jamison J.E., Weighted compositio operator on Hilbert spaces of vector valued functions, Proc. Amer. Math. Soc., 124(1996), 3123 -3130.
[7] Hoover T., Lambert T., Quim J., The Morkov Process determined by a weighted compostion operator, Studia Math., LXXII(1982), 225-235.
[8] Jabbarzadeh M.R., Pourreza E., A note on weighted composition operator on L^{p} spaces, Bull. Iranian Mathematical Society, 29(1)(2003), 47-54.
[9] Jamison J.E., Rajagopalan M., Weighted compostion operators on C (X, E), Journal of Operator Theory, 19(1988), 307-317.
[10] Kamowitz H., Compact weighted endomorphism of $C(X)$, Proc. Amer. Math. Soc., 83(1981), 517-521.
[11] Komal B.S, Raj K., Gupta S., On operators of weighted substitution on the generalized spaces of entire functions, I. Math. Today, 15(1997), 3-10.
[12] Lambart A., Localising sets for sigma-algebras and related point transformations, Proc. Royal Soc. of Eolinburgh, ser. A, 118(191), 111-118.
[13] Singh R.K., Composition operators induced by rational functions, Proc. Amer. Math. Soc., 59(1976), 329-333.
[14] Takagi H., Yokouchi K., Multiplication and composition operators between two L^{p}-spaces, Contem. Math., 232(1999), 321-338.
[15] Zaanen A.C., Integration, 2nd ed., North Holland Amsterdam, 1967.

Kuldip Raj
School of Mathematics, Shri Mata Vaishno Devi University Katra - 182320, J\&K, India
e-mail: kuldeepraj68@rediffmail.com
Sunil K. Sharma
School of Mathematics, Shri Mata Vaishno Devi University Katra - 182320, J\&K, India
e-mail: sunilksharma42@yahoo.co.in

Received on 11.06.2010 and, in revised form, on 18.05.2011.

