O. RAVI, S.P. MISSIER AND T.S. PARKUNAN

DECOMPOSITION OF BITOPOLOGICAL (1,2)*-HOMEOMORPHISMS

ABSTRACT. In this study, two new classes of generalized $(1,2)^*$ homeomorphisms are introduced. We investigate their relationship with other known generalized homeomorphisms. Moreover, some properties of these two $(1,2)^*$ -homeomorphisms are obtained.

KEY WORDS: $(1,2)^*$ -homeomorphism, $(1,2)^*$ -sg-closed set, $(1,2)^*$ -gsg-homeomorphism, $(1,2)^*$ -gs-closed set, $(1,2)^*$ -sgs-homeomorphism.

AMS Mathematics Subject Classification: 54E55.

1. Introduction

Levine [10] has generalized the concept of closed sets to generalized closed sets. Bhattacharyya and Lahiri [3] have generalized the concept of closed sets to semi-generalized closed sets with the help of semi-open sets and obtained various topological properties. Arya and Nour [2] have defined generalized semi-open sets with the help of semi-openness and used them to obtain some characterizations of s-normal spaces. Devi et al [9] defined two classes of maps called semi-generalized homeomorphisms and generalized semi-homeomorphisms and also defined two classes of maps called sgc-homeomorphisms and gsc-homeomorphisms. In [1], sgs-homeomorphisms and gsg-homeomorphisms were recently introduced and investigated by Ozcelik and Narli.

In this paper, we introduce two classes of maps called $(1,2)^*$ -sgs-homeomorphisms and $(1,2)^*$ -gsg-homeomorphisms and study their properties. These bitopological notions are generalized from the topological notions in [1]. These generalizations are substantiated with suitable examples and investigated with utmost care.

2. Preliminaries

Throughout the present paper, (X, τ_1, τ_2) and (Y, σ_1, σ_2) denote bitopological spaces on which no separation axioms are assumed unless explicitly stated.

Definition 1 ([13]). Let A be a subset of X. Then A is said to be $\tau_{1,2}$ open if $A = M \cup N$ where $M \in \tau_1$ and $N \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Definition 2 ([13]). Let A be a subset of X. Then

(i) The $\tau_{1,2}$ -interior of A, denoted by $\tau_{1,2} - int(A)$, is defined as $\cup \{F : F \subseteq A \text{ and } F \text{ is } \tau_{1,2} - open\};$

(ii) The $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2} - cl(A)$, is defined as $\cap \{F : A \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-}closed\}$.

Note 1 ([13]). Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 3. Let A be a subset of X. Then A is said to be

(i) $(1,2)^*$ -semi-open [13] if $A \subseteq \tau_{1,2}cl(\tau_{1,2}int(A));$

(*ii*) $(1,2)^*$ -semi-closed [13] if $\tau_{1,2}int(\tau_{1,2}cl(A)) \subseteq A$.

The complement of $(1,2)^*$ -semi-open set is called $(1,2)^*$ -semi-closed.

Result 1 ([13]). (i) Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -semi-closed but not conversely.

(*ii*) Every $\tau_{1,2}$ -open set is $(1,2)^*$ -semi-open but not conversely.

Definition 4 ([13]). A map $f : X \to Y$ is called

(i) $(1,2)^*$ -closed if f(F) is $\sigma_{1,2}$ -closed in Y for each $\tau_{1,2}$ -closed set $F \in X$;

(ii) $(1,2)^*$ -open if f(F) is $\sigma_{1,2}$ -open in Y for each $\tau_{1,2}$ -open set F in X; (iii) $(1,2)^*$ -semi-closed if f(F) is $(1,2)^*$ -semi-closed in Y for each $\tau_{1,2}$ closed set F in X.

Result 2. Every $(1,2)^*$ -closed map is $(1,2)^*$ -semi-closed but not conversely.

Definition 5 ([13]). Let A be a subset of X. Then

(i) $(1,2)^*$ -sint $(A) = \bigcup \{G_i : G_i \text{ is } (1,2)^*$ -semi-open in X and $G_i \subset A\}$; (ii) $(1,2)^*$ -scl $(A) = \cap \{H_i : H_i \text{ is } (1,2)^*$ -semi-closed in X and $H_i \supset A\}$.

Definition 6 ([13]). Let A be a subset of X. Then A is said to be $(1,2)^*$ -sg-closed if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi -open.

The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open.

The family of all $(1,2)^*$ -sg-closed sets of X is denoted by $(1,2)^*$ -sgc(X).

Result 3 ([13]). Every $(1, 2)^*$ -semi-closed set is $(1, 2)^*$ -sg-closed but not conversely.

Definition 7 ([12]). Let A be a subset of X. Then A is said to be $(1,2)^*$ -gs-closed if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open. The complement of $(1,2)^*$ -gs-closed set is $(1,2)^*$ -gs-open.

The family of all $(1,2)^*$ -gs-closed sets of X is denoted by $(1,2)^*$ -gsc(X).

Result 4 ([12]). Every $(1,2)^*$ -sg-closed set is $(1,2)^*$ -gs-closed but not conversely.

Definition 8 ([12],[13],[14]). A map $f: X \to Y$ is called

(i) $(1,2)^*$ -continuous if $f^{-1}(V)$ is $\tau_{1,2}$ -closed in X for each $\sigma_{1,2}$ -closed set V in Y;

(ii) $(1,2)^*$ -sg-continuous if $f^{-1}(V)$ is $(1,2)^*$ -sg-closed in X for each $\sigma_{1,2}$ -closed set V of Y;

(iii) $(1,2)^*$ -gs-continuous if $f^{-1}(V)$ is $(1,2)^*$ -gs-closed in X for each $\sigma_{1,2}$ -closed set V of Y;

(iv) $(1,2)^*$ -sg-closed if f(F) is $(1,2)^*$ -sg-closed in Y for each $\tau_{1,2}$ -closed set F of X;

(v) $(1,2)^*$ -sg-open if f(F) is $(1,2)^*$ -sg-open in Y for each $\tau_{1,2}$ -open set F of X.

Result 5 ([13]). Every $(1, 2)^*$ -semi-closed map is a $(1, 2)^*$ -sg-closed.

Definition 9 ([12]). A map $f : X \to Y$ is called

(i) $(1,2)^*$ -gs-open if f(F) is $(1,2)^*$ -gs-open in Y for each $\tau_{1,2}$ -open set F of X;

(ii) $(1,2)^*$ -gs-closed if f(F) is $(1,2)^*$ -gs-closed in Y for each $\tau_{1,2}$ -closed set F of X.

Result 6 ([12]). Every $(1, 2)^*$ -sg-closed map is $(1, 2)^*$ -gs-closed.

Definition 10 ([13],[14]). A map $f: X \to Y$ is called

(i) $(1,2)^*$ -sg-irresolute if $f^{-1}(V)$ is $(1,2)^*$ -sg-closed in X for each $(1,2)^*$ -sg-closed set V in Y;

(ii) $(1,2)^*$ -gs-irresolute if $f^{-1}(V)$ is $(1,2)^*$ -gs-closed in X for each $(1,2)^*$ -gs-closed set V in Y.

Definition 11 ([13],[14]). A bijective map $f: X \to Y$ is called

(i) $(1,2)^*$ -homeomorphism if f is both $(1,2)^*$ -continuous and $(1,2)^*$ -open;

(ii) $(1,2)^*$ -sg-homeomorphism if f is both $(1,2)^*$ -sg-continuous and $(1,2)^*$ -sg-open;

(iii) $(1,2)^*$ -sgc-homeomorphism if f is $(1,2)^*$ -sg-irresolute and f^{-1} is $(1,2)^*$ -sg-irresolute;

(iv) $(1,2)^*$ -gs-homeomorphism if f is both $(1,2)^*$ -gs-continuous and $(1,2)^*$ -gs-open;

(v) $(1,2)^*$ -gsc-homeomorphism if f is $(1,2)^*$ -gs-irresolute and f^{-1} is $(1,2)^*$ -gs-irresolute.

Result 7. (i) Every $(1, 2)^*$ -sgc-homeomorphism is $(1, 2)^*$ -sg-homeomorphism but not conversely [14];

(*ii*) Every $(1,2)^*$ -sg-homeomorphism is $(1,2)^*$ -gs-homeomorphism but not conversely [14];

(*iii*) Every $(1, 2)^*$ -gsc-homeomorphism is $(1, 2)^*$ -gs-homeomorphism but not conversely [12].

Definition 12 ([12]). A space X is called

(i) $(1,2)^* - T_{1/2}$ if and only if every $(1,2)^* - gs$ -closed set is $(1,2)^* - semi$ -closed; (ii) $(1,2)^* - T_b$ if every $(1,2)^* - gs$ -closed set is $\tau_{1,2}$ -closed.

We introduce the following definitions.

Definition 13. A map $f : X \to Y$ is called $(1,2)^*$ -gsg-irresolute if $f^{-1}(F)$ is $(1,2)^*$ -sg-closed in X for each $(1,2)^*$ -gs-closed in Y.

Definition 14. A bijective map $f : X \to Y$ is called $(1, 2)^*$ -gsg-homeomorphism if f and f^{-1} are both $(1, 2)^*$ -gsg-irresolute.

If there exists a $(1,2)^*$ -gsg-homeomorphism from X to Y, then the spaces X and Y are said to be $(1,2)^*$ -gsg-homeomorphic.

The family of all $(1,2)^*$ -gsg-homeomorphisms of X is denoted by $(1,2)^*$ -gsgh(X).

Definition 15. A map $f : X \to Y$ is called a $(1,2)^*$ -sgs-irresolute if f^{-1} (A) is $(1,2)^*$ -gs-closed in X for each $(1,2)^*$ -sg-closed set A of Y.

Definition 16. A bijective map $f: X \to Y$ is called a $(1,2)^*$ -sgs-homeomorphism if f and f^{-1} are both $(1,2)^*$ -sgs-irresolute.

If there exists a $(1,2)^*$ -sgs-homeomorphism from X to Y, then the spaces X and Y are said to be $(1,2)^*$ -sgs-homemorphic spaces.

3. Properties of $(1,2)^*$ -gsg-homeomorphism

Remark 1. The following two examples show that the concepts of $(1,2)^*$ -homeomorphism and $(1,2)^*$ -gsg-homeomorphism are independent of each other.

Example 1. Let $X = \{a, b, c\}, \tau_1 = \{\varphi, X\}$ and $\tau_2 = \{\varphi, X, \{a\}\}$. Then the sets in $\{\varphi, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\varphi, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $I_x : (X, \tau_1, \tau_2) \to (X, \tau_1, \tau_2)$ be the identity map. Clearly, I_x is a $(1, 2)^*$ -homeomorphism but it is not a $(1, 2)^*$ -gsg-homeomorphism.

Example 2. Let $X = \{a, b\}, \tau_1 = \{\varphi, X, \{b\}\}, \tau_2 = \{\varphi, X, \{a\}\}, \sigma_1 = \{\varphi, X\}$ and $\sigma_2 = \{\varphi, X\}$. Then the sets in $\{\varphi, X, \{a\}, \{b\}\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed; and the sets in $\{\phi, X\}$ are $\sigma_{1,2}$ -open and

 $\sigma_{1,2}$ -closed. Let $I_x : (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2)$ be the identity map. Clearly, I_x is a $(1,2)^*$ -gsg-homeomorphism but it is not a $(1,2)^*$ -homeomorphism.

Example 3. Every $(1, 2)^*$ -gsg-homeomorphism implies both a $(1, 2)^*$ -gsc-homeomorphism and a $(1, 2)^*$ -sgc-homeomorphism.

However the converse is not true as shown by the following example.

Example 4. Let $X = \{a, b, c\}, \tau_1 = \{\varphi, X, \{b\}\}$ and $\tau_2 = \{\varphi, X\}$. Then the sets in $\{\varphi, X, \{b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\varphi, X, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. We have $(1, 2)^*$ -sgc $(X) = \{\varphi, X, \{a\}, \{c\}, \{a, c\}\}$ and $(1, 2)^*$ -gsc $(X) = \{\varphi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

Let $I_x : (X, \tau_1, \tau_2) \to (X, \tau_1, \tau_2)$ be the identity map. Clearly I_x is both $(1, 2)^*$ -gsc-homeomorphism and $(1, 2)^*$ -sgc-homeomorphism. Since the set $\{b, c\}$ is $(1, 2)^*$ -gs-closed but the set $I_x^{-1}(\{b, c\}) = \{b, c\}$ is not $(1, 2)^*$ -sg-closed, the identity map I_x is not a $(1, 2)^*$ -gsg-homeomorphism on X.

Remark 2. Every $(1,2)^*$ -gsg-homeomorphism implies both a $(1,2)^*$ -gs-homeomorphism and a $(1,2)^*$ -sg-homeomorphism.

However the converse is not true as shown by the following example.

Example 5. In Example 4, Clearly I_x is both $(1, 2)^*$ -gs-homeomorphism and $(1, 2)^*$ -sg-homeomorphism. However, I_x is not $(1, 2)^*$ -gsg-homeomorphism.

4. Properties of $(1, 2)^*$ -sgs-homeomorphism

Remark 3. Every $(1, 2)^*$ -sgc-homeomorphism and $(1, 2)^*$ -gsc-homeomorphism implies a $(1, 2)^*$ -sgs-homeomorphism.

However the converse is not true as shown by the following examples.

Example 6. Let $X = Y = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\varphi, X, \{b\}, \{b, c\}\}, \sigma_1 = \{\varphi, Y, \{b\}\} \text{ and } \sigma_2 = \{\varphi, Y, \{a, b\}\}.$ Then the sets in $\{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\varphi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Moreover the sets in $\{\varphi, Y, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\varphi, Y, \{c\}, \{a, c\}\}$ are called $\sigma_{1,2}$ -closed. Moreover the sets in $\{\varphi, Y, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\varphi, Y, \{c\}, \{a, c\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ -sgc $(X) = (1, 2)^*$ -sgc $(X) = P(X) \setminus \{\{b\}, \{a, b\}\}$ where P(X) is the power set of X and $(1, 2)^*$ -sgc $(Y) = \{\varphi, X, \{a\}, \{c\}, \{a, c\}\}$ and $(1, 2)^*$ -sgc $(Y) = P(Y) \setminus \{\{b\}, \{a, b\}\}$. Clearly the identity map $I_X : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a $(1, 2)^*$ -sgs-homeomorphism but it is not a $(1, 2)^*$ -sgc-homeomorphism.

Example 7. Let $X = Y = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}\}, \tau_2 = \{\varphi, X\}, \sigma_1 = \{\varphi, Y, \{b\}\} \text{ and } \sigma_2 = \{\varphi, Y, \{a, b\}\}.$ We have $(1, 2)^*$ -sgc $(X) = \{\varphi, X, \{b\}, \{c\}, \{b, c\}\}, (1, 2)^*$ -sgc $(X) = \{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}, (1, 2)^*$ -sgc(Y)

= { φ , Y, {a}, {c}, {a, c}} and (1, 2)*-gsc(Y) = { φ , Y, {a}, {c}, {a, c}, {b, c}}. Define $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = b; f(b) = a; f(c) = c. Clearly f is a $(1, 2)^*$ -sgs-homeomorphism but it is not a $(1, 2)^*$ -gsc-homeomorphism.

Result 8. Every $(1, 2)^*$ -homeomorphism is a $(1, 2)^*$ -sgs-homeomorphism.

However the converse is not true as seen from the following example.

Example 8. In Example 7, clearly f is $(1, 2)^*$ -sgs-homeomorphism but it is not a $(1, 2)^*$ -homeomorphism.

Remark 4. Every $(1, 2)^*$ -sgs-homeomorphism is a $(1, 2)^*$ -gs-homeomorphism.

However the converse is not true as seen from the following example.

Example 9. Let $X = Y = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a, b\}\}, \tau_2 = \{\varphi, X\}, \sigma_1 = \{\varphi, Y, \{b\}\} \text{ and } \sigma_2 = \{\varphi, Y, \{a, b\}\}.$ We have $(1, 2)^* \operatorname{sgc}(X) = (1, 2)^* \operatorname{gsc}(X) = \{\varphi, X, \{c\}, \{a, c\}, \{b, c\}\}.$ We have $(1, 2)^* \operatorname{sgc}(X) = (1, 2)^* \operatorname{gsc}(X) = \{\varphi, X, \{c\}, \{a, c\}, \{b, c\}\}.$ Then, the identity map $I : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a $(1, 2)^* \operatorname{sgs-homeomorphism}$ but it is not $(1, 2)^* \operatorname{sgs-homeomorphism}.$

Example 10. The map $I : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is given by Example 9 is a $(1, 2)^*$ -sg-homeomorphism but it is not a $(1, 2)^*$ -sg-homeomorphism.

Result 9. (i) From the Example 10, we can see that any $(1, 2)^*$ -sg-homeomorphism is not a $(1, 2)^*$ -sgs-homeomorphism.

(*ii*) Every $(1, 2)^*$ -gsg-homeomorphism is a $(1, 2)^*$ -sgs-homeomorphism and the converse is not true as seen from the following example.

Example 11. Let $X = Y = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}\}, \tau_2 = \{\varphi, X, \{a, b\}\}, \sigma_1 = \{\varphi, Y, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma_2 = \{\varphi, Y, \{b, c\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined by f(a) = b, f(b) = a and f(c) = c. Clearly f is a $(1, 2)^*$ -sgs-homeomorphism but it is not a $(1, 2)^*$ -gsg-homeomorphism.

Theorem 1. (i) Every $(1,2)^*$ -sgs-homeomorphism from a $(1,2)^*$ - $T_{1/2}$ space onto itself is a $(1,2)^*$ -gsg-homeomorphism. This implies that $(1,2)^*$ -sgs-homeomorphism and $(1,2)^*$ -gsc-homeomorphism and $(1,2)^*$ -gsc-homeomorphism.

(ii) Every $(1,2)^*$ -sgs-homeomorphism from a $(1,2)^*$ - T_b space onto itself is a $(1,2)^*$ -homeomorphism. This implies that $(1,2)^*$ -sgs-homeomorphism is a $(1,2)^*$ -gs-homeomorphism, a $(1,2)^*$ -sg-homeomorphism, a $(1,2)^*$ -gsg-homeomorphism. meomorphism, a $(1,2)^*$ -gsc-homeomorphism and a $(1,2)^*$ -gsg-homeomorphism. **Proof.** (i) In a $(1,2)^*$ - $T_{1/2}$ space, every $(1,2)^*$ -gs-closed set is $(1,2)^*$ -se-miclosed.

(*ii*) In a $(1,2)^*$ - T_b space, every $(1,2)^*$ -gs-closed set is $\tau_{1,2}$ -closed.

5. Conclusion

where

- (1) $(1,2)^*$ -gsg-homeomorphism
- (2) $(1,2)^*$ -sgc-homeomorphism
- (3) $(1,2)^*$ -gsc-homeomorphism
- (4) $(1,2)^*$ -sgs-homeomorphism
- (5) $(1,2)^*$ -sg-homeomorphism
- (6) $(1,2)^*$ -gs-homeomorphism

References

- OZCELIK A.Z., NARLI S., Decomposition of homeomorphism on topological spaces, *Internat. J. Math. Sci.*, 1(1)(2007), 72-75.
- [2] ARYA S.P., NOUR T.M., Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21(8)(1990), 717-719.
- [3] BHATTACHARYYA P., LAHIRI B.K., Semi-generalized closed sets in topology, *Indian J. Math.*, 29(3)(1987), 376-382.
- [4] BISWAS N., On characterizations of semi-continuous functions, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 48(8)(1970), 399-402.
- [5] BISWAS N., On some mappings in topological spaces, Bull. Cal. Math. Soc., 61(1969) 127-135.
- [6] CROSSLEY S.G., HILDEBRAND S.K., Semi-closure, Texas J. Sci., 22(1971) 99-112.
- [7] CROSSLEY S.G., HILDEBRAND S.K., Semi-topological-properties, Fund. Math., 74(1972) 233-254.
- [8] DEVI R., MAKI H., BALACHANDRAN K., Semi-generalized closed maps and generalized semi-closed maps, *Mem. Fac. Sci. Kochi. Univ. (Math.)*, 14(1993), 41-54.
- [9] DEVI R., BALACHANDRAN K., MAKI H., Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, *Indian J. Pure Appl. Math.*, 26(3)(1995), 271-284.

- [10] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [11] NOIRI T., A generalization of closed mappings, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 8(54)(1973), 412-415.
- [12] RAVI O., MISSIER P.S., PARKUNAN S.T., On bitopological (1,2)*-generalized Homeomorphisms, Int. J. Contemp. Math. Sciences, 5(11)(2010), 543-557.
- [13] RAVI O., THIVAGAR M.L., A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2)29(1)(2006), 79-88.
- [14] RAVI O., MISSIER P.S., PARKUNAN S.T., Remarks on (1,2)*-semi-generalized homeomorphism in bitopological spaces, (*submitted*).
- [15] SUNDARAM P., MAKI H., BALACHANDRAN K., Semi-generalized continuous maps and semi-T1/2 spaces, Bull. Fukuoka Univ. Edu., Part III, 40(1991) 33-40.

Ochanathevar Ravi Department of Mathematics P.M. Thevar College Usilampatti, Madurai Dt., Tamil Nadu, India *e-mail:* siingam@yahoo.com

> STANIS PIOUS MISSIER DEPARTMENT OF MATHEMATICS V.O. CHIDAMBARAM COLLEGE TUTICORIN, TAMIL NADU, INDIA *e-mail:* spmissier@yahoo.com

Thangavelu Salai Parkunan Department of Mathematics Arul Anandar College Karumathur, Madurai District, Tamil Nadu, India *e-mail:* parkunan@yahoo.com

Received on 19.08.2010 and, in revised form, on 15.01.2011.