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1. Introduction

In 1984, Dhage [1] introduced the concept of D-metric space. The situ-
ation for a D-metric space is quite different from 2-metric spaces. Geomet-
rically, a D-metric D(x,y, z) represent the perimeter of the triangle with
vertices z, y and z in R?. Recently, Mustafa and Sims [2] showed that most
of the results concerning Dhage’s D-metric spaces are invalid. Therefore,
they introduced a improved version of the generalized metric space struc-
ture, which they called it as G-metric spaces, one can refer to the papers
[3]-[6].

Now, we give preliminaries and basic definitions which are used through-
out the paper.

In 2004, Mustafa and Sims [3] introduced the concept of G-metric spaces
as follows:

Definition 1 ([3]). Let X be a nonempty set, and let, G: X x X x X —
R* be a function satisfying the following axioms:

(G1) G(z,y,2) =0 ifx =y =z,

(G2) 0 < G(z,z,y), for all z,y € X with x # y,

(Gs) G(z,z,y) < G(x,y, 2), for all z,y,z € X with z # y,

(G4) G(z,y,2) = G(z,z,y) = G(y,z,x) = --- (symmetry in all three
variables),

(G5) G(z,y,2) = G(z,a,a) + G(a,y, z) for all x,y,z,a € X, (rectangle
inequality)



128 R.K. VATS, S. KUMAR AND V. SIHAG

then the function G is called a generalized metric, or, more specifically a
G-metric on X and the pair (X, G) is called a G-metric space.

Definition 2 ([5]). Let (X,G) be a G-metric space and let {x,} be a
sequence of points in X, a point x in X is said to be the limit of the sequence
{zn} if G(x,2pn, ) = 0, and one says that sequence {x,} is G-convergent
tox. Thus, if t, — x or x, = x asn — o0, in a G-metric space (X, G), then
for each € > 0, there exists a positive integer N such that G(x, Ty, zpy) < €
for allm,n € N.

Now, we state some results from the papers ([2]-[6]) which are helpful for
proving our main results.

Proposition 1 ([5]). Let (X, G) be a G-metric space. Then the following
are equivalent:
(1) {zn} is G-convergent to x,
(17) G(xp, xn, ) — 0 as n — oo,
(i7i) G(xn,z,z) — 0 as n — oo,
(1v) G(Tm, Tn, ) = 0 as m,n — 0.

Definition 3 ([4]). Let (X,G) be a G-metric space. A sequence {xy}
is called G-Cauchy if, for each € > 0, there exists a positive integer N such
that G(zp, Tm,x1) < €, for all n,m,l € N, i.e., if G(xp,Tm,z;) — 0 as
n,m,l — oo.

Definition 4 ([4)). If (X,G) and (X',G") be two G-metric space and
let f:(X,G) = (X',G') be a function, then f is said to be G-continuous
at a point xg € X if given £ > 0, there exists 6 > 0 such that for x,y €
X and G(xo,z,y) < 6 implies G'(f(xo), f(z), f(y)) < e. A function f
1s G-continuous at X if and only if it is G-continuous at all xg € X or
function f is said to be G-continuous at a point xg € X if and only if it is
G-sequentially continuous at xq, that is, whenever {x,} is G-convergent to
zo, {f(zn)} is G-convergent to f(xg).

Proposition 2 ([3]). Let (X, G) be a G-metric space. Then the function
G(z,y, z) is jointly continuous in all three of its variables.

Definition 5 ([5]). A G-metric space (X,G) is called a symmetric
G-metric space if G(x,y,y) = G(y,z,x) for all z,y € X.

Proposition 3 ([5]). Every G-metric space (X, G) will defines a metric
space (X, dg) by
(1) dg(z,y) = G(z,y,y) + G(y,x,x) for all x,y € X.
If (X, Q) is a symmetric G-metric space, then
(17) da(z,y) = 2G(x,y,y) for all z,y € X.
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However, if (X, G) is not symmetric, then it follows from the G-metric prop-
erties that

(iii) 3G(z,y,y) < dg(z,y) < 3G(x,y,y) for all z,y € X.

Definition 6 ([4]). A G-metric space (X, G) is said to be G-complete if
every G-Cauchy sequence in (X,G) is G-convergent in X .

Proposition 4 ([4]). A G-metric space (X, Q) is said to be G-complete
if and only if (X,dg) is a complete metric space.

Proposition 5 ([3]). Let (X,G) be a G-metric space. Then, for any z,
Y, 2, a in X, it follows that:
(1) if G(z,y,2) =0, then x =y = z,
(i1) G(x,y,2) < G(z,z,y) + G(z,x,2),
(iii) G(z,y,y) < 2G(y,z,2),
() G(z,y,2) < G(z,a,2) + G(a,y, 2),
(v (:L“,y,Z)) (@,y,a) + G(z,a,2) + G(a,y, 2)),

<
<
<3(@

< G(z,a,a)+ G(y,a,a) + G(z,a,a).

) G
(vi) G(z,y, 2

2. Main result

We need the following Lemma to prove our main results:

Lemma 1. Let (X,G) be a G-metric space and T be a self map on X
satisfying

(1) G(Tz,Ty,Tz) < qG(x,y, 2)

for all z, y, zX, where 0 < g < 1, and xp, = Txp_1 = T(Txp_2) = -+ =
T"™(x0), for some xg € X, then {z,} is a G-Cauchy sequence in X.

Proof. Given that for some z¢g € X; T"(x9) = ©p, n =0,1,2,.... From
(1), we have

G(xnawn—i-l,xn—f—l) = G(Twp1,Txn, Try)
< ¢G(zp—1,%n,2n) < ... < ¢"G(x0, 71, 21).

Moreover, for all n,m € N, n < m, by G5, ones obtain

G<$n7$m7xm) < G(xnaxn—i-lann—H)+G(xn+1>$n+27$n+2)
+ .+ G( @1, Ty T
< (@"+ "+ 4 "G (o, w1, 1)
qn
= G(zo, x1, .
T4 (xo, 21, 21)
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Proceeding limit as n, m — oo, we have
G(xp, Ty, ) = 0.

Thus, {z,} is a G-Cauchy sequence in X. |

Theorem 1. Let (X,G) be a complete G-metric space and T : X — X
be the mapping satisfying the following :

(2)  G(T(2),T(y), T(2))

G(z,T(x), T(x)),G(z,T(y), T(y),G(x,T(2),T(2)),
= kmax ¢ G(y,T(y),T(y)), G(y, T(z), T(x)), G(y, T(2), T(2)),
G(2,T(2),T(2)),G(2,T(x), T(z)),G(2,T(y), T(y))

forall x,y,z € X, where 0 < k < %, then T has a unique fixed point and T
1s G-continuous at the fixed point.

Proof. Suppose T satisfy condition (2) and z¢p € X be an arbitrary point
Step 1. We inductively construct the sequence {x,} of point in X as:
xr1 = T(xo)
Tro = T(%l) = T(T(xo)) = T2(x0)
x3 = T(x2) = T(T*(x0)) = T3 (o)

Ty = T(x,_1) = T(T" Y(x0)) = T™(x0)

Clearly {z,} is a sequence of images of ¢, under repeated application of T'.

Step 2. {x,} is a G-Cauchy sequence in X. Assume xz, # z,41 for all
n. Since if there exist an n such that x,, = x,41 then, T"(x¢) = T(T"(x0)),
yields T"(xp) is a fixed point.

Therefore, by using (2), we have

(3) G(xna$n+1a$n+1)
G(Tn—1,%n, ), G(Tn—1,Tni1, Tns1), G(Tn—1, Tnt1, Tng1),
< kmax { G(Tpn, Tnt1, Tnt1), G(Tny Tny Tn), G(Tn, Tnt1, Tntl),
G(xnyxn—i-laxn+1)>G(-Tn;xnyxn);G(xn;xn—l-laxn—l—l)
S (

=k maX{G(xn,l, In, Cﬂn) Tn—15Ln+1, xn«H)a G($n, Tn+1, anrl)}'

Case 1. If

maX{G(xn—la Ln, xn)a G(ajn—ly Ln+1, fEn-‘,—l)’ G(CCn, Ln+1, xn—&-l)}

= G(Cﬂn_l, Tn, xn)
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then, using (3), we get

G(l'n, Tn+41, xn+1) < k‘G(Q?nfl, Tn, $n)a
thus by Lemma 1, we have {z,} is a G-Cauchy sequence in X.

Case 2. If
max{G@n,l, Tn, xn)a G(xnfla Tn+1, anrl)a G(l’n, Tn+1, anrl)}

= G(xnfla Tn+1, 55n+1)
then, from (3) and using G5 of Definition 1.1, ones obtain

kG(xn—lv Tn+1, xn—i—l)

G(xnaxn—i—l)xn—l—l) <
S k{G(‘TTL—h Tn, xn) + G(xna Tn+1, xn+1)}7

this implies that

k

G(l‘n, Tn+1, xn—o—l) < ﬂG(xn—la Tn, xn)

G(l'ny Tn+41, mn«H) < qG(anfl, Tn, xn)y

Whereq:ﬁ,q<1a30§k<%.
Thus again by Lemma 1, we have {z,} is a G-Cauchy sequence in X.

Case 3. Finally, if
max{G(Tn—1,%n, n), G(Tn—1, Tnt1, Tnt1), G(Tn, Tni1, Tny1)

= G(.Tn, Tn+1, $n+1)
G(xna Tn+1, $n+1) < kG(xTh Tn+1, xn+1)>

which is a contradiction, as k < %

Hence in all cases the sequence {z,} is a G-Cauchy sequence.

Step 3. Since (X, G) is a complete G-metric space, by definition, there
exists u € X such that x,, — u.

Step 4. u is a fixed point of T
Suppose, if possible, that T'(u) # u, using (3), we have

G(zp, T(u), T(u))

m{
té

’

G(xp— 1,:Un,:vn),G(xn 1, T (

G(u, T(u), T(w)), G(u, xp, x n),G(u,T(u%T(U)),

G(u,T(u), T(u)), G(u, xn, zn), G(u, T (u), (u))
T

= kmax

Tn— 1,l’n7xn)7 (.Z‘n 1) (u)v (u )a
T (u)) }

G(u, Tp, xn), G(u, T (u),
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Taking the limit as n — oo, and using the fact that function G is continuous
on its variable, we obtain

G(u,T(u), T(u) < kG(u, T(u), T(u)),
which arises a contradiction, since, 0 < k < %
Hence, T'(u) = u, i.e., u is a fixed point of 7.

Step 5. Uniqueness of fixed point u of 7.
Suppose that, v (# u) is another fixed point of 7', such that T'(v) = v,
then from (2), we have
G(u,u,u), G(u,v,v), G(u,v,v),
G(u,v,v) < kmax < G(v,v,v), G(v,u,u), G(v,v,v),
G(v,v,v), G(v,u,u), G(v,v,v)
= kmax{G(u,v,v),G(v,u,u)}

which reduces to,
(5) G(u,v,v) < kG(v,u,u).
Again by same argument we will find
(6) Gv,u,u) < kG(u,v,v)
which, by repeated use of (5) and (6), implies
G(v,u,u) < k*G(v,u,u) < - < k"G(v,u,u).

Proceeding limit as n — oo, we have v = v, i.e., u is a unique fixed point
of T.

Step 6. T is G-continuous at the fixed point u.
Let {y,} be any sequence in X, such that li_>m Yyn = u, then, by (2), we
n [o.¢]

obtain

G(T(yn), T(uw), T(yn))

ynaT(yn)aT

G( (Yn))
< kmax ¢ G(u,T(u), T(u)
G( (

G(Yn, T'(u), T(u)), G(Yn, T (yn)
,GU )
)

(u, T (). T(yn)), G, T <> Ty
aG(?/m (n) T(yn))’ ynv (u),

— kmax G(yan(yn)vT(yn G(yna U))v
- {G< ), G(u, T(y yn>}

This deduces to

(7) G(T(yn), u, T (yn))
< kmax{G(Yn, T(Yn), T (yn)), G(yn, u, u), G(u, T(yn), T (yn)) }
= kmax{G(Yn, T(yn), T(Yn)), G(Yn, u,u)} .
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Proceeding the limit as n — oo, we have, G(u, T (yn), T(yn)) — 0, and so by
definition of G-continuity of G-metric space (X, G) we have T'(y,) — u =
T'(u), this implies that T" is G-continuous at u.

Hence completes the theorem. |

Remark 1. If the G-metric space is bounded, i.e., for some m > 0, we
have G(z,y,z) < m, for all z,y,z € X, then an argument similar to that
used above establishes the result for 0 < k < 1.

Corollary 1. Let (X, G) be a complete G-metric space and let T : X —
X be the mapping which satisfy the following condition for m € N and for
all z,y,z € X:

(8) G(T™(z), T™(y), T™(2)) < k
Gz, T™(x), T™(x)), G(z, T™(y), T™(y)), G(x, T™(2), T (2)),
x maxq G(y, T™(y), T™(y)), G(y, T™(x), T™(x)), G(y, T™(2), T™ (%)),
G(2,T™(2), T™(2)),G(2, T™(z), T™(2)), G(2, T (y), T (y))

where 0 < k < %, then T' has unique fixed point (say) u and T™ is G-continu-
ous at u.

Proof. Using Theorem 1, ones obtain, 7™ has a unique fixed point (say)
u, that is, 7™ (u) = w and T™ is G-continuous at u. But T'(u) = T(T™(u)) =
T (w) = T™(T(u)), so T(u) is another fixed point of 7™ by uniqueness
T(u) = u, i.e., u is a unique fixed point of 7. |

Theorem 2. Let (X, G) be complete G-metric space and T : X — X be
the mapping satisfying the following condition:

9)  G(T(x), T(y),T(2))

G(z,T(x), T(z)) + Gy, T(y), T(y)) + G(2,T(2), T(2)),
< kmax { G(z,T(y), T(y)) + Gy, T(z), T(x)) + G(2, T(y), T(y))
Gz, T(2),T(2)+ Gy, T(2),T(2)) + G(2,T(x),T(x))

forall x,y,z € X, where 0 < k < i, then T has a unique fized point say (u)
and T is a G-continuous at u.

Proof. Suppose that T satisfy condition (9) and let z¢ be any arbitrary
point of X.

Step 1. We inductively construct the sequence {z,} of point in X as:

x1 = T(xo)
xg = T(x1) =T(T(xp)) = T2(x0)
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3 = T(w2) = T(I*(20)) = T°(x0)

zp, = T(zn_1) = T(T" Yxg)) = T(x0).
Clearly {z,} is a sequence of images of xy, under repeated application of 7T'.

Step 2. {z,} is a Cauchy sequence in X. Assume x,, # x,41 for all n.
Since if there exist an n such that =, = x,41 then, T"(zo) = T(T"(x0)),
yields T"(xp) is a fixed point.

By (9), we have

(10) G(xmxn—i-l:frn—i-l)
G(xn—l, Tn, xn) + G(l‘nv Tn+1, xn—i—l) + G(xn’ Tn+1, xn—&-l)y

< kmax ($n—17 Tn+1, xn—l—l) + G(l’n, Tn, $n) + G($n, Tn+1, xn+1)>
(xn—ly o xn) + G((En, Tn+1, xn—f—l) + G(«Tm o xn)

G(xn—l, Ln, xn) + QG(xnp Tn+1, Jf'n—&-l);

= kmax G($n71,$n+1,l’n+1) + G(xnvanrl’anrl)v
G(fl?n_l, Tn+1, xn—i—l) + G(wnv Tn+1, xn—i—l)

— k {G(l‘n 17xn7xn) + 2G(£n7£n+17xn+1) }
G(xn 1, Tn41, $n+1) + G(xn, Tn+1, $n+1)

Case 1. If

G(Zn—1,Tn, Tn) + 2G(Tp, Tpy1, Tny1),
max
G(:I:n—la Tn+1, xn—i—l) + G(xfu Tn+1, xn—&—l)

= G(xn—la Ly xn) + QG(xn; Tn+1, 5Un+1)'
Then (10) becomes,
G(xna Tn+1, anrl) < k’{G(l‘nfla Tn, l'n) + 2G(l‘n, Tn+1, anrl)}

k
G(xna$n+1axn+1) < ( )G($nla$n7xn)a

1—-2k
which can be written as
G(Tn, Tnt1, Tnt1) < qG(Tp—_1, Tn, Ty),
where ¢ = (ﬁ),andq<l, aSO§k<i.
Then by Lemma 1, we have {z,} is a G-Cauchy sequence in X.
Case 2. If

{G(Zlfn_l,.fl?n,xn) + QG(xn,xn+1,xn+1), }
max
G(l‘nfl, Tn+1, $n+1) + G(xn, Tn+1, xn+1)

= G(.Tn_l, Tn+1, xn—&—l) + G(I‘n, Tn+1, SUn—I—l)‘
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Then (10) reduces to

(11)  G(xp, Tnt1s Tnt1) < K{G(Xp-1, Tnt1, Tnt1) + G(Tny Tng1, Tng1) }-
Using G5 of Definition 1, we have

(12) G(n—1,Tni1, Tnt1) < G(Tp—1,Tn, Tn) + G(Tn, Tnt1, Tntl) -

Now (11) becomes, G (&, Tnt1, Tnt1) < (ﬁ) G(xp—1,%n, xy), which can
be written as
G(xm Tn+1, Jjn—i—l) < qG(xn—h Tn, xn)>

where ¢ = <ﬁ>, and ¢ < 1l,as 0 < k < i.

Then again by using Lemma 1, we obtain {x,} is a G-Cauchy sequence
in X.

Hence in both cases {x,} is a G-Cauchy sequence in X.

Step 3. Since (X, G) is a complete G-metric space, by definition, there
exists a point (say) u € X such that z,, — u.

Step 4. wu is fixed point of T, suppose, if possible, that T'(u) # u, using
(9), ones obtain

Gz, T(u), T(u))
G(-Tn 1,$n,l‘n)—|—G(U, (u) ( ))+G( ’T(u)?T(u))a
< kmax { G(xp—1,T(u),T(u)) + G(u, Ty, xn) + G(u, T (u), T(u)),
G(zn-1,T(u), T(u)) + G(u, T(u), T (u)) + G(u, 2n, xn)

:kmax{ (:Cn 1,$n,$n)+2G( u, (u)v (u))a }
G(rp-1,T(u), T(u)) + G(u, xpn, xpn) + G(u, T(uw), T(u)) [

Taking the limit as n — oo, and using the fact that function G is continuous
in its variable, we get

2G(u, T(u), T (u)),

G(u, T(u), T(u)) < kmax {QG(u, T(u), T(w))

} < 2kG (u, T(u), T(u))

which is a contradiction, since 0 < k < i. Hence u = T'(u), i.e., u is a fixed
point of T.

Step 5. Uniqueness of fixed point u of T'.
Suppose that v # u, such that T'(v) = v, then by (9), ones obtain

G(u,v,v) = G(T(u),T(v),T(v))

G(u,u,u) + G(v,v,v) + G(v,v,v)),
< kmax { G(u,v,v) + G(v,u,u) + G(v,v,v),
G(u,v,v) + G(v,v,v) + G(v,u, u)

)
= kmax{G(u,v,v) + G(v,u,u)}.
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That is,
G(u,v,v) < k{G(u,v,v) + G(v,u,u)} .

This implies that

G(u,v,v) < %G(v u,u) .

Now, by the same argument, we have
k
G(v,u,u) < ﬁG(u,v,v).

Therefore, we get

k 2
G(u,v,v) < | —— | G(v,u,u),
1-k
but 0 < 7 k < 1.
Hence we reach at the contradiction, so u = v, that is, the fixed point is
unique.

Step 6. Finally, to prove T is G-continuous at fixed point u. For this,
let us suppose that {y,} be a sequence in X such that y, — v in (X, G),
now using (9), we obtain

(13) G(T(ya), T(u), T(w)
Gy, T(yn), T(yn)) + G, Tw), T(w)) + G, T(w), T(w)),
< komax { G (g, T(u), T(w)) + Glu, T(gn), T(yn) + Glu, Tw), T(w),
Glyn, T(w), T(w)) + G, Tw), T(w)) + Glot, T(9), T(5r))
. {G(yn,T@n),T( o) + 2G(u, T(u), T(w), }
Gy, T(w), T(u)) + G, T(w), T(w) + G, T(3), T(3)) f

s (Gl Tl T 2000 70, 7)), |
G(yn, T (u), T(u)) + G(u, T(u), T(w)) + G(u, T (yn), T (yn))
= {G(ym ( n)a (yn)) + 2G(U7T( )7T(u)}

Then (13) becomes,
G(T(yn), T(u), T () < B{G(yn T(yn), T (yn)) + 2G(u, T'(u), T (u))} .
Letting limit n — oo, and using 7'(u) = u, and y,, — u, we get

(14) G(T(yn), u,u) < KH{G(w,T(yn), T(yn)) + 2G(u, u,u)}
= kG(u’T(yn)7T(yn)) :
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By (iii) of Proposition 5, G(u, T (yn), T (yn)) < 2G(T (yn),u, u).

This implies (14) reduce to, G(T(yn), u,u) = 0. But, G(T(yy), u,u) > 0,
hence, G(T(yn),u,u) = 0. So, T'(yn) — u = T'(u), which shows that T is
G-continuous at the fixed point u.

Case 2. If
i { G100 T ) 2600 T () |
G(yn, T(u), T(u)) + G(u, T'(u), T(u)) + G(u, T(yn), T (yn))
= G(yn, T'(u), T(u)) + G(u,T(uv), T(u)) + G(u,T(yn), T(yn)) -

Then (13) becomes,

G(T(yn), T(u), T(u))
< K{G(n, T(w), T(w)) + G(u, T(w), T(w) + G(u, T(yn), T(yn))} -

Letting limit as n — oo, and using T'(u) = u, we have

(15) G(T'(yn),u,u) < k{G(u,u,u) + G(u,u,u) + G(u,T(yn), T(yn))}
= kG(u,T(yn), T(yn)) -

By (ii7) of Proposition 5, G(u,T(yn), T (yn)) < 2G(T(yn),u,u), with this
(15), reduces G(T(yn),u,u) <0, but G(T(yn),u,u) > 0, hence, G(T(yn), u
u) = 0.

So, T'(yn) — u = T(u), which shows that T is G-continuous at the fixed
point u. Therefore in both cases T is GG-continuous at point u. Hence com-
pletes the theorem. |

Corollary 2. Let (X,G) be a complete G-metric space and let T : X —
X be the mapping which satisfy the following condition for m € N and for
all z,y,z € X:

G(T™(x), T™(y), T™(2))
G(z, Tm(x), T (x)) + Gy, T™(y), T™(y)) + G(2,T™(2), T™(2)),
< kmax{G(z, Tm(yi,Tm(y))+G(y,T’”(w),Tm(x))+G(Z,Tm(y),Tm((y)))), .
T T (x

Where 0 < k < %, then T has unique fized point (say) uw and T™ is

G-continuous at u.

G, T™(2), T™(2)) + G(y, T™(2), T™(2)) + G(2, T"(x),

Proof. Using Theorem 2, ones obtain, 7™ has a unique fixed point (say)
u, that is, 7 (u) = w and T is G-continuous. But T'(u) = T(T™(u)) =
T (u) = T™(T(u)), so T(u) is another fixed point of T™ by uniqueness
T(u) = u, i.e., u is a fixed point of T'. [ |
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