$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 48}$ 2012

C. CARPINTERO, N. RAJESH AND E. ROSAS

OPERATION-*b***-OPEN SETS IN TOPOLOGICAL SPACES**

ABSTRACT. In this paper we have introduced the concept of γ -b-open sets and studied some of their properties.

KEY WORDS: topological spaces, b-open set, $\gamma\text{-}\mathrm{open}$ set, $\gamma\text{-}b\text{-}\mathrm{open}$ set.

AMS Mathematics Subject Classification: 54A05, 54A10, 54D10.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara [2] defined the concept of an operation on topological spaces and introduce the concept of γ -closed graphs of a function. Ogata [5] introduced the notion γ -open sets in a topological space (X, τ) . In this paper, we have introduced and studied the notion of γ -b-open sets by using operation γ on a topological space (X, τ) .

2. Preliminaries

The closure and the interior of A of X are denoted by $\operatorname{Cl}(A)$ and $\operatorname{Int}(A)$, respectively. A subset A of X is said to be b-open [1] $A \subset \operatorname{Int}(\operatorname{Cl}(A)) \cup \operatorname{Cl}(\operatorname{Int}(A))$.

Definition 1. Let (X, τ) be a topological space. An operation γ [2] on the topology τ is a mapping from τ into a power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2. A subset A of a topological space (X, τ) is called γ -open [5] set if for each $x \in A$ there exists an open set U such that $x \in U$ and $U^{\gamma} \subset A$. τ_{γ} denotes set of all γ -open sets in (X, τ) . The complement of γ -open set is called γ -closed.

Definition 3 ([5]). Let (X, τ) be a topological space and $A \subset X$, then $\tau_{\gamma} \operatorname{Cl}(A) = \bigcap \{F : A \subset F, X \setminus F \in \tau_{\gamma} \}.$

Definition 4. Let (X, τ) be a topological space. An operation γ is said to be regular if, for every open neighborhood U and V of each $x \in X$, there exists an open neighborhood W of x such that $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$.

Definition 5. A topological space (X, τ) is said to be γ -regular, where γ is an operation on τ , if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that U^{γ} contained in V.

Definition 6. Let A be any subset of X. The τ_{γ} -Int(A) is defined as τ_{γ} -Int(A) = $\bigcup \{ U : U \text{ is a } \gamma \text{-open set and } U \subset A \}.$

Definition 7. Let (X, τ) be a topological space and γ be an operation on τ . A subset A of X is said to be:

- (i) γ -preopen [3] if $A \subset \tau_{\gamma} \operatorname{Int}(\tau_{\gamma} \operatorname{Cl}(A))$.
- (ii) γ -semiopen [4] if $A \subset \tau_{\gamma} \operatorname{Cl}(\tau_{\gamma} \operatorname{Int}(A))$.

The complement of γ -preopen (resp. γ -semiopen) set is called γ -preclosed (resp. γ -semiclosed).

Definition 8. Let A be subset of a topological space (X, τ) and γ be an operation on τ . Then

(i) the τ_γ-preclosure of A is defined as intersection of all γ-preclosed sets containing A. That is, τ_γ-p Cl(A) = ∩{F : F is γ-preclosed and A ⊂ F}.
(ii) the τ_γ-preinterior of A is defined as union of all γ-preopen sets contained in A. That is, τ_γ-p Int(A) = ∪{U : U is γ-preopen and U ⊂ A}.

The notions τ_{γ} -semiclosure (briefly τ_{γ} -s Cl(A)) and τ_{γ} -semiinterior (briefly τ_{γ} -s Int(A)) of a set A are similarly defined.

3. γ -b-open sets

Definition 9. Let (X, τ) be a topological space and γ be an operation on τ . A subset A of X is said to be γ -b-open if $A \subset \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A))$.

Remark 1. The set of all γ -b-open sets of a topological space (X, τ) is denoted as $\tau_{\gamma} - BO(X)$.

Example 1. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Define an operation γ on τ as follows: $A^{\gamma} = A$ if $A = \{a\}$ and $A^{\gamma} = A \cup \{c\}$ if $A \neq \{a\}$. Then $\tau_{\gamma} = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\tau_{\gamma} - BO(X) = \mathcal{P}(X) \setminus \{\{b\}\}$.

Theorem 1. If A is a γ -open set in (X, τ) , then it is γ -b-open set.

Proof. Proof follows from the Definition 9 and Remark 3.8 of [4].

Remark 2. The converse of the above Theorem need not be true. From the Example 1, we have $\{a, b\}$ is γ -b-open set but it is not γ -open.

Remark 3. By Theorem 1 and Remark 2, we have $\tau_{\gamma} \subset \tau_{\gamma}$ -BO (X, τ) .

Remark 4. The concept of *b*-open set and γ -*b*-open set are independent.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$ define an operation $\gamma : \tau \to \mathcal{P}(X)$ as $A^{\gamma} = A$ if $b \in A$, $A^{\gamma} = \operatorname{Cl}(A)$ if $b \notin A$. Then $\{a\}$ is a *b*-open set but not γ -*b*-open. In Example 1, $\{b, c\}$ is a γ -*b*-open set but not *b*-open.

Theorem 2. If (X, τ) is γ -regular space, then the concept of γ -b-open and b-open coincide.

Proof. By Proposition 2.4 of [4] and Remark 3.8 of [4].

Theorem 3. Let $\gamma : \tau \to \mathcal{P}(X)$ be an operation on τ and $\{A_{\alpha}\}_{\alpha \in \Delta}$ be the collection of γ -b-open sets of (X, τ) , then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is also a γ -b-open set.

Proof. Since each A_{α} is γ -*b*-open and $A_{\alpha} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$, implies that $\bigcup_{\alpha \in \Delta} A_{\alpha}$ $\subset \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(\bigcup_{\alpha \in \Delta} A_{\alpha})) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\bigcup_{\alpha \in \Delta} A_{\alpha}))$. Hence $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is also a γ -*b*-open set in (X, τ) .

Remark 5. If A and B are any two γ -b-open sets in (X, τ) , then the Example 1, shows that $A \cap B$ need not be γ -b-open in (X, τ) . In this case take $A = \{a, b\}$ and $B = \{b, c\}$, both are γ -b-open set but $A \cap B = \{b\}$ is not a γ -b-open set.

Definition 10. Let A be subset of a topological space (X, τ) and γ be an operation on τ . Then a subset A of X is said to be γ -b-closed if and only if $X \setminus A$ is γ -b-open, equivalently a subset A of X is γ -b-closed if and only if $\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) \subset A$.

Remark 6. The set of all γ -b-closed sets of a topological space (X, τ) is denoted as $\tau_{\gamma} - BC(X)$.

Definition 11. Let A be subset of a topological space (X, τ) and γ be an operation on τ . Then

- (i) the τ_{γ} -b-closure of A is defined as intersection of all γ -b-closed sets containing A. That is, τ_{γ} -b $\operatorname{Cl}(A) = \bigcap \{F : F \text{ is } \gamma\text{-b-closed and } A \subset F\}$.
- (ii) the τ_{γ} -b-interior of A is defined as union of all γ -b-open sets contained in A. That is, τ_{γ} -b Int $(A) = \bigcup \{U : U \text{ is } \gamma\text{-b-open and } U \subset A\}.$

Theorem 4. Let A be subset of a topological space (X, τ) and γ be an operation on τ . Then

- (i) τ_{γ} -b Int(A) is a γ -b-open set contained in A.
- (ii) τ_{γ} -bCl(A) is a γ -b-closed set containing A.
- (iii) A is γ -b-closed if and only if τ_{γ} -b Cl(A) = A.
- (iv) A is γ -b-open if and only if τ_{γ} -b Int(A) = A.

Remark 7. From the definitions, we have $A \subset \tau_{\gamma}$ - $b\operatorname{Cl}(A) \subset \tau_{\gamma}$ - $\operatorname{Cl}(A)$ for any subset A of (X, τ) .

Theorem 5. For a point $x \in X$, $x \in \tau_{\gamma}$ -bCl(A) if and only if for all γ -b-open set V of X containing $x, V \cap A \neq \emptyset$.

Proof. Let F be the set of all $y \in X$ such that $V \cap A \neq \emptyset$ for every $V \in \tau_{\gamma} - BO(X)$ and $y \in V$. Now to prove the theorem it is enough to prove that $F = \tau_{\gamma} - b \operatorname{Cl}(A)$. Let $x \in \tau_{\gamma}$ - $b \operatorname{Cl}(A)$. Let us assume $x \notin F$, then there exists a γ -b-open set U of x such that $U \cap A = \emptyset$. This implies $A \subset U^c$. Hence τ_{γ} - $b \operatorname{Cl}(A) \subset U^c$. Therefore $x \notin \tau_{\gamma}$ - $b \operatorname{Cl}(A)$. This is a contradiction. Hence $\tau_{\gamma} - b \operatorname{Cl}(A) \subset F$. Conversely, let F be a set such that $A \subset F$ and $X \setminus F \in \tau_{\gamma}$ -BO(X). Let $x \notin F$, then we have $x \in X \setminus F$ and $(X \setminus F) \cap A = \emptyset$. This implies $x \notin F$. Hence $F \subset \tau_{\gamma}$ - $b \operatorname{Cl}(A)$.

Theorem 6 ([3]). Let (X, τ) be a topological space and γ be a regular operation on τ and A be a subset of X. Then the following holds:

(i) $\tau_{\gamma} - p \operatorname{Cl}(A) = A \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)).$

(*ii*) $\tau_{\gamma} - p \operatorname{Int}(A) = A \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)).$

Theorem 7. Let (X, τ) be a topological space and γ be a regular operation on τ and A be a subset of X. Then the following holds good:

(i) $\tau_{\gamma} - s \operatorname{Cl}(A) = A \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)).$

(*ii*) $\tau_{\gamma} - s \operatorname{Int}(A) = A \cap \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)).$

Proof. The proof is similar to the Theorem 2.31 of [3].

Theorem 8. Let (X, τ) be a topological space and γ be a regular operation on τ and A be a subset of X. Then $\tau_{\gamma} - b \operatorname{Cl}(A) = \tau_{\gamma} - p \operatorname{Cl}(A) \cap \tau_{\gamma} - s \operatorname{Cl}(A)$.

Proof. The proof follows from Theorems 6 and 7.

Theorem 9. Let (X, τ) be a topological space and γ be a regular operation on τ and A be a subset of X. Then $\tau_{\gamma} - b \operatorname{Int}(A) = \tau_{\gamma} - p \operatorname{Int}(A) \cup \tau_{\gamma} - s \operatorname{Int}(A)$.

Proof. The proof follows from Theorem 8.

Theorem 10. Let (X, τ) be a topological space and γ be a regular operation on τ and A be a subset of X. Then the following hold:

- (i) V is γ -preopen if and only if $V \subset \tau_{\gamma} p \operatorname{Int}(\tau_{\gamma} p \operatorname{Cl}(V));$
- (ii) V is γ -b-open if and only if $V \subset \tau_{\gamma} p \operatorname{Cl}(\tau_{\gamma} p \operatorname{Int}(V))$.

Proof. (i) Let V be γ -preopen. Then $\tau_{\gamma} - p \operatorname{Int}(V) = V$ and also $V \subset \tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - p \operatorname{Cl}(V))$. Conversely, let $V \subset \tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - p \operatorname{Cl}(V))$. Then $V \subset \tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V)) = \tau_{\gamma} - \operatorname{Cl}(V) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) = \tau_{\gamma} - \operatorname{Cl}(V) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))$. Hence, V is γ -preopen.

 $\begin{array}{l} (ii) \text{ Let } V \text{ be } \gamma \text{-b-open. Then } V \subset \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(V)) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V)) \subset (\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(V)) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) \cap V = (\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(V)) \cap V) \cup (\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) \cap V) \subset \tau_{\gamma} - p \operatorname{Int}(V) \cup (\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) = \tau_{\gamma} - p \operatorname{Cl}(\tau_{\gamma} - p \operatorname{Int}(V)) \text{ by Theorem 2.33 of [3]. Conversely, suppose } V \subset \tau_{\gamma} - p \operatorname{Cl}(\tau_{\gamma} - p \operatorname{Int}(V)). \text{ By Theorem 2.33 of [3], we have } V \subset \tau_{\gamma} - p \operatorname{Cl}(\tau_{\gamma} - p \operatorname{Int}(V)) = \tau_{\gamma} - p \operatorname{Int}(V) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(V)) = (V \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(V)) = (V \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(V))) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(V)) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Cl}(V)) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Cl}(V)) \cup \tau_{\gamma} - \operatorname{Cl}(V)). \\ \text{Hence, } V \text{ is } \gamma \text{-b-open.} \end{array}$

Theorem 11. Let (X, τ) be a topological space and γ be a regular operation on τ and A be a subset of X. Then the following hold:

(i) $\tau_{\gamma} - b \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))).$ (ii) $\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))).$ (iii) $\tau_{\gamma} - b \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - b \operatorname{Int}(A))$ $= \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A))).$ (iv) $\tau_{\gamma} - b \operatorname{Cl}(\tau_{\gamma} - s \operatorname{Int}(A)) = \tau_{\gamma} - s \operatorname{Cl}(\tau_{\gamma} - s \operatorname{Int}(A)).$ (v) $\tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) = \tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - p \operatorname{Int}(A)).$ (vi) $\tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) = \tau_{\gamma} - c \operatorname{I}(\tau_{\gamma} - \operatorname{Int}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(A).$ (vii) $\tau_{\gamma} - b \operatorname{Int}(\tau_{\gamma} - s \operatorname{Cl}(A)) = \tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - s \operatorname{Cl}(A)).$ (viii) $\tau_{\gamma} - p \operatorname{Cl}(\tau_{\gamma} - b \operatorname{Int}(A)) = \tau_{\gamma} - p \operatorname{Cl}(\tau_{\gamma} - p \operatorname{Int}(A)).$ (ix) $\tau_{\gamma} - s \operatorname{Cl}(\tau_{\gamma} - b \operatorname{Int}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) \cup \tau_{\gamma} - s \operatorname{Int}(A).$

Proof. (i) By Theorem 8, we obtain $\tau_{\gamma} - b\operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) = \tau_{\gamma} - p\operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cap \tau_{\gamma} - s\operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) = (\tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))) \cap (\tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)))) = \tau_{\gamma} - \operatorname{Int}(A) \cup (\tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)))) = \tau_{\gamma} - \operatorname{Int}(A) \cup (\tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))) \cap (\tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)))) = \tau_{\gamma} - \operatorname{Int}(A) \cup (\tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)))) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))))$

(*ii*) By Theorem 8, we obtain $\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - b\operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - s\operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - p\operatorname{Cl}(A)) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - s\operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))).$ (*iii*) Follows from (*i*) and (*ii*).

(*iv*) By Theorem 8, we obtain $\tau_{\gamma} - b \operatorname{Cl}(\tau_{\gamma} - s \operatorname{Int}(A)) = \tau_{\gamma} - p \operatorname{Cl}(\tau_{\gamma} - s \operatorname{Int}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(\tau_{\gamma} - s \operatorname{Int}(A)) = \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cap (\tau_{\gamma} - s \operatorname{Int} \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)))) = \tau_{\gamma} - s \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))) = \tau_{\gamma} - s \operatorname{Int}(A) \cup \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))) = \tau_{\gamma} - s \operatorname{Cl}(\tau_{\gamma} - s \operatorname{Int}(A)).$

(v) By Theorem 8, we always have $\tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) \subset \tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A))$ $p \operatorname{Cl}(A)$). Conversely, by Theorem 2.33 of [3], we obtain $\tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - p \operatorname$ $b\operatorname{Cl}(A)) = \tau_{\gamma} - p\operatorname{Int}(\tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - s\operatorname{Cl}(A)) = \tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - p\operatorname{Cl}$ $s\operatorname{Cl}(A)\cap\tau_{\gamma}-\operatorname{Int}(\tau_{\gamma}-\operatorname{Cl}(\tau_{\gamma}-p\operatorname{Cl}(A)\cap\tau_{\gamma}-s\operatorname{Cl}(A)))\supset\tau_{\gamma}-p\operatorname{Cl}(A)\cap\tau_{\gamma} \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - p \operatorname{Cl}(A) \cap \tau_{\gamma} - s \operatorname{Cl}(A))) = 0$ $\tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - p\operatorname{Cl}(A)) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - p\operatorname{Cl}(A)) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) \cap \tau_{\gamma} - \operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Cl}$ $s \operatorname{Cl}(A)) = \tau_{\gamma} - p \operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - \operatorname{Cl}(A)) = \tau_{\gamma} - p \operatorname{Int}(\tau_{\gamma} - p \operatorname{Int}(A)).$ (vi) Let A be a subset of X. By Theorem 8, $\tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) \subset$ $\tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - p \operatorname{Cl}(A)) = \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \text{ and } \tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) \subset$ $\tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - s \operatorname{Cl}(A)) \subset \tau_{\gamma} - s \operatorname{Cl}(A).$ Thus, $\tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - b \operatorname{Cl}(A)) =$ $\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(A)$. Conversely, By Theorem 8, $\tau_{\gamma} - s \operatorname{Int}(\tau_{\gamma} - s)$ $b\operatorname{Cl}(A)) = \tau_{\gamma} - s\operatorname{Int}(\tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - s\operatorname{Cl}(A)) = \tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - s\operatorname{Cl}(A) \cap \tau_{\gamma} - s\operatorname{Cl}$ $s\operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_{\gamma} - s\operatorname{Cl}(A)) \supset \tau_{\gamma} - p\operatorname{Cl}(A) \cap \tau_$ $\operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - p \operatorname{Cl}(A) \cap \tau_{\gamma} - s \operatorname{Cl}(A)) = 0$ $\tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(\tau_{\gamma} - p \operatorname{Cl}(A)) \cap \tau_{\gamma} - s \operatorname{Cl}(A)) = 0$ $\tau_{\gamma} - s \operatorname{Cl}(A) \cap \tau_{\gamma} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A)).$

(vii), (viii) and (ix) follows from (iv), (v) and (vi), respectively.

Definition 12. A subset A of (X, τ) is said to be γ -b-generalized closed if τ_{γ} -b Cl(A) $\subset U$ whenever $A \subset U$ and U is a γ -b-open set in (X, τ) .

Definition 13. A topological space (X, τ) is said to be γ -b- $T_{1/2}$ if every γ -b-generalized closed set in (X, τ) is γ -b-closed.

Theorem 12. A subset A of (X, τ) is γ -b-generalized closed if and only if τ_{γ} -b Cl($\{x\}$) $\cap A \neq \emptyset$ holds for every $x \in \tau_{\gamma}$ -b Cl(A).

Proof. Let U be γ -b-open set such that $A \subset U$. Let $x \in \tau_{\gamma}$ -b Cl(A). By assumption there exists $z \in \tau_{\gamma}$ -b Cl($\{x\}$) and $z \in A \subset U$. It follows from Theorem 5 that $U \cap \{x\} \neq \emptyset$. Hence $x \in U$. This implies τ_{γ} -b Cl(A) $\subset U$. Therefore A is γ -b-generalized closed set in (X, τ) . Conversely, suppose $x \in \tau_{\gamma}$ -b Cl(A) such that τ_{γ} -b Cl($\{x\}$) $\cap A = \emptyset$. Since τ_{γ} -b Cl($\{x\}$) is γ -b-closed set in (X, τ) , $(\tau_{\gamma}$ -b Cl($\{x\}$))^c is a γ -b-open set of (X, τ) . Since $A \subset (\tau_{\gamma}$ -b Cl($\{x\}$))^c and A is γ -b-generalized closed, τ_{γ} -b Cl(A) $\subset (\tau_{\gamma}$ -b Cl($\{x\}$))^c. This implies that $x \notin \tau_{\gamma}$ -b Cl(A). This is a contradiction. Hence τ_{γ} -b Cl($\{x\}$) $\cap A \neq \emptyset$.

Theorem 13. A is a γ -b-generalized closed subset of a topological space (X, τ) , if and only if τ_{γ} -b Cl(A)\A does not contain a nonempty γ -b-closed set.

Proof. Suppose there exists a nonempty γ -b-closed set F such that $F \subset \tau_{\gamma}$ -b Cl(A)\A. Let $x \in F$, $x \in \tau_{\gamma}$ -b Cl(A) holds. Then $F \cap A =$

 τ_{γ} - $b\operatorname{Cl}(F) \cap A \supset \tau_{\gamma}$ - $b\operatorname{Cl}(\{x\}) \cap A \neq \emptyset$. Hence $F \cap A \neq \emptyset$. This is a contradiction.

Conversely, suppose that τ_{γ} - $b\operatorname{Cl}(A)\backslash A$ does not contain a nonempty γ -b-closed set. Let $A \subset U$ and U a γ -b-open set in (X, τ) , then $X \backslash U \subseteq X \backslash A$, follows τ_{γ} - $b\operatorname{Cl}(A) \cap (X \backslash U) \subseteq \tau_{\gamma}$ - $b\operatorname{Cl}(A) \cap (X \backslash A) = \tau_{\gamma}$ - $b\operatorname{Cl}(A) \backslash A$. If we take $F = \tau_{\gamma}$ - $b\operatorname{Cl}(A) \cap (X \backslash U)$, F is a γ -b-closed set and $F \subseteq \tau_{\gamma}$ - $b\operatorname{Cl}(A) \backslash A$. Therefore $F = \emptyset$, in consequence, τ_{γ} - $b\operatorname{Cl}(A) \subseteq U$ and follows that A is γ -b-generalized closed set.

Theorem 14. Let $\gamma : \tau \to \mathcal{P}(X)$ be an operation. Then for each $x \in X$, $\{x\}$ is γ -b-closed or $\{x\}^c$ is γ -b-generalized closed set in (X, τ) .

Proof. Suppose that $\{x\}$ is not γ -*b*-closed, then $X \setminus \{x\}$ is not γ -*b*-open. Let U be any γ -*b*-open set such that $\{x\}^c \subset U$. Since U = X, τ_{γ} -*b* $\operatorname{Cl}(\{x\}^c) \subset U$. Therefore, $\{x\}^c$ is γ -*b*-generalized closed.

Theorem 15. A topological space (X, τ) is γ -b- $T_{1/2}$ space if and only if every singleton subset of X is γ -b-closed or γ -b-open in (X, τ) .

Proof. Let $x \in X$. Suppose $\{x\}$ is not γ -b-closed. Then, it follows from assumption and Theorem 14 that $\{x\}$ is γ -b-open. Conversely, Let F be a γ -b-generalized closed set in (X, τ) . Let x be any point in τ_{γ} -b Cl(F), then by assumption $\{x\}$ is γ -b-open or γ -b-closed.

Case (i): Suppose $\{x\}$ is γ -b-open. Then by Theorem 12 we have $\{x\} \cap F \neq \emptyset$, hence $x \in F$.

Case (*ii*): Suppose $\{x\}$ is γ -*b*-closed. Assume $x \notin F$, then $x \in \tau_{\gamma}$ -*b* Cl(F)\F. This is not possible by Theorem 13. Thus, we have $x \in F$. Therefore, τ_{γ} -*b* Cl(F) = F and hence F is γ -*b*-closed.

4. (α, β) -b-Continuous functions

Throughout this section let (X, τ) and (Y, σ) be two topological spaces and let $\gamma : \tau \to \mathcal{P}(X)$ and $\beta : \sigma \to \mathcal{P}(Y)$ be operations on τ and σ , respectively.

Definition 14. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (α, β) -b-continuous if for each $x \in X$ and each β -b-open set V containing f(x) there exists a γ -b-open set U such that $x \in U$ and $f(U) \subset V$.

Theorem 16. Let $f : (X, \tau) \to (Y, \sigma)$ be an (α, β) -b-continuous function. Then the following hold:

(i) $f(\tau_{\gamma} - b\operatorname{Cl}(A)) \subset \sigma_{\beta} - b\operatorname{Cl}(f(A))$ holds for every subset A of (X, τ) .

(ii) for every β -b-closed set B of (Y, σ) , $f^{-1}(B)$ is γ -b-closed in (X, τ) .

Proof. (i). Let $y \in f(\tau_{\gamma} - b \operatorname{Cl}(A))$ and V be any β -b-open set containing y. Then there exists $x \in X$ and γ -b-open set U such that f(x) = y and $x \in U$ and $f(U) \subset V$. Since $x \in \tau_{\gamma}$ -b $\operatorname{Cl}(A)$, we have $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap A$. This implies $x \in \sigma_{\beta}$ -b $\operatorname{Cl}(f(A))$. Therefore we have $f(\tau_{\gamma}$ -b $\operatorname{Cl}(A)) \subset \sigma_{\beta}$ -b $\operatorname{Cl}(f(A))$. (ii). Let B be a β -b-closed set in (Y, σ) . Therefore, σ_{β} -b $\operatorname{Cl}(B) = B$. By using (i) we have $f(\tau_{\gamma}$ -b $\operatorname{Cl}(f^{-1}(B)) \subset \sigma_{\beta}$ -b $\operatorname{Cl}(B) = B$. Therefore, we have τ_{γ} -b $\operatorname{Cl}(f^{-1}(B)) = f^{-1}(B)$. Hence $f^{-1}(B)$ is γ -b-closed.

Definition 15. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (α, β) -b-closed if for any γ -b-closed set A of (X, τ) , f(A) is a β -b-closed in Y.

Theorem 17. Suppose that f is (α, β) -b-continuous function and f is (α, β) -b-closed. Then,

- (i) for every γ -b-generalized closed set A of (X, τ) , the image f(A) is β -b-generalized closed.
- (ii) for every β -b-generalized closed set B of (Y, σ) , $f^{-1}(B)$ is γ -b-generalized closed.

Proof. (i) Let V be any β -b-open set in (Y, σ) such that $f(A) \subset V$. By using Theorem 16(ii), $f^{-1}(V)$ is γ -b-open in (X, τ) . Since A is γ -b-generalized closed and $A \subset f^{-1}(V)$, we have τ_{γ} -b Cl(A) $\subset f^{-1}(V)$, and hence $f(\tau_{\gamma}$ -b Cl(A)) $\subset V$. It follows that $f(\tau_{\gamma}$ -b Cl(A)) is a β -b-closed set in Y. Therefore, σ_{β} -b Cl(f(A)) $\subset \sigma_{\beta}$ -b Cl($f(\tau_{\gamma}$ -b Cl(A))) = $f(\tau_{\gamma}$ -b Cl(A)) $\subset V$. This implies f(A) is β -b-generalized closed.

(*ii*) Let U be a γ -b-open set of (X, τ) such that $f^{-1}(B) \subset U$. Put $F = \tau_{\gamma}$ -b $\operatorname{Cl}(f^{-1}(B)) \cap U^c$. It follows that F is γ -b-closed set in (X, τ) . Since f is (α, β) -b-closed, f(F) is γ -b-closed in (Y, σ) . Then $f(F) \subset f(\tau_{\gamma}$ -b $\operatorname{Cl}(f^{-1}(B) \cap U^c)) \subset \sigma_{\beta}$ -b $\operatorname{Cl}(f(f^{-1}(B)) \cap f(U^c)) \subset \tau_{\gamma}$ -b $\operatorname{Cl}(B) \setminus B$. This implies $f(F) = \emptyset$, and hence $F = \emptyset$. Therefore, τ_{γ} -b $\operatorname{Cl}(f^{-1}(B)) \subset U$. Hence $f^{-1}(B)$ is γ -b-generalized closed in (X, τ) .

Theorem 18. Let $f : (X, \tau) \to (Y, \sigma)$ is (α, β) -b-continuous and (α, β) - γ -b-closed. Then,

(i) If f is injective and (Y,σ) is β-b-T_{1/2}, then (X,τ) is γ-b-T_{1/2} space.
(ii) If f is surjective and (X,τ) is γ-b-T_{1/2}, then (Y,σ) is β-b-T_{1/2}.

Proof. Straightforward.

Definition 16. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (α, β) -b-homeomorphism, if f is bijective, (α, β) -b-continuous and f^{-1} is (α, β) -b-continuous.

Theorem 19. Let $f : (X, \tau) \to (Y, \sigma)$ be (α, β) -b-homeomorphism. If (X, τ) is γ -b- $T_{1/2}$, then (Y, σ) is β -b- $T_{1/2}$.

Proof. Let $\{y\}$ be a singleton set of (Y, σ) . Then, there exists a point x of X such that y = f(x) and by Theorem 15 that $\{x\}$ is γ -b-open or γ -b-closed. By using Theorem 17(*i*), then $\{y\}$ is β -b-closed or β -b-open. Now using Theorem 15, (Y, σ) is β -b- $T_{1/2}$ space.

References

- [1] ANDRIJEVIC D., On *b*-open sets, *Math. Vesnik*, 48(1996), 59-64.
- [2] KASAHARA S., Operation compact spaces, Math. Japonica, 24(1979), 97-105.
- [3] KRISHNAN G.S.S., BALACHANDRAN K., On a class of γ-preopen sets in a topological space, *East Asian Math.*, 22(2)(2006), 131-149.
- [4] KRISHNAN G.S.S., GANSTER M., BALACHANDRAN K., Operation approches on semiopen sets and applications, *Kochi J. Math.*, 2(2007), 21-33.
- [5] OGATA H., Operation on topological spaces and associated topology, Math. Japonica, 36(1)(1991), 175-184.

C. CARPINTERO UNIVERSIDAD DE ORIENTE NUCLEO DE SUCRE CUMANA, VENEZUELA *e-mail:* carpintero.carlos@gmail.com

N. Rajesh Department of Mathematics Kongu Engineering College Perundurai, Erode-638 052 Tamilnadu, India *e-mail:* nrajesh_topology@yahoo.co.in

E. Rosas Universidad De Oriente Nucleo De Sucre Cumana, Venezuela *e-mail:* ennisrafael@gmail.com

Received on 19.06.2010 and, in revised form, on 18.07.2011.