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Abstract. In the present paper we propose the q analogue of well
known Szász-Mirakyan-Baskakov operators (see e.g. [14], [7]). We
apply q-derivatives, and q-Beta functions to obtain the moments
of the q-Szász-Mirakyan-Baskakov operators. Here we estimate
some direct approximation results for these operators.
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1. Introduction

Recently Mahmudov [12] and Aral [2] (see also [4]) proposed the q-analo-
gues of the well known Szász-Mirakyan operators and estimated some ap-
proximation results. The operators studied in [12] are different from those
studied in [4]. King type generalization of the q-Szász operators defined
in [2] can be found in [1]. Also some approximation properties of the
another Szász-Mirakyan type operators were presented in [15]. The most
commonly used integral modifications of the Szász-Mirakyan operators are
Szász-Mirakyan-Kantorovich and Szász-Mirakyan-Durrmeyer operators.
q-analogue of some Durrmeyer type operators were studied in [13] and [9].
Very recently Gupta and Aral [8] proposed q analogue of Szász-Mirakyan-
Beta operators and established some approximation properties.

In the year 1983, Prasad-Agrawal-Kasana [14] proposed the integral mod-
ification of Szász-Mirakyan operators by taking the weight functions of
Baskakov operators, but there were so many gaps in the results obtained
in [14]. In the year 1993 Gupta [7] filled the gaps and improved the results
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of [14]. To approximate Lebesgue integrable functions on the interval [0,∞),
the Szász-Mirakyan-Baskakov operators are defined as

(1) Gn(f, x) = (n− 1)
∞∑
k=0

sn,k(x)

∫ ∞
0

pn,k(t)f(t)dt, x ∈ [0,∞)

where

sn,k(x) = e−nx
(nx)k

k!
, pn,k(t) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
.

First we recall some notations of q-calculus, which can also be found in
[6] and [10]. Throughout the present article q be a real number satisfying
the inequality 0 < q < 1.

For n ∈ N,

[n]q :=
1− qn

1− q
,

[n]q! :=

{
[n]q [n− 1]q · · · [1]q , n = 1, 2, ...

1, n = 0

and

(1 + x)nq :=

{ ∏n−1
j=0

(
1 + qjx

)
, n = 1, 2, ...

1, n = 0.

The q-derivative Dqf of a function f is given by

(2) (Dqf) (x) =
f (x)− f (qx)

(1− q)x
, if x 6= 0.

The q-improper integrals considered in the present paper are defined as
(see [11]) ∫ a

0
f (x) dqx = (1− q) a

∞∑
n=0

f (aqn) qn, a > 0

and

(3)

∫ ∞/A
0

f (x) dqx = (1− q)
∞∑

n=−∞
f

(
qn

A

)
qn

A
, A > 0

provided the sums converge absolutely.
There are two q analogues of the exponential function ex (see [10]) as

eq(z) =

∞∑
k=0

zk

[k]q!
=

1

(1− (1− q)z)∞q
, |z| < 1

1− q
, |q| < 1
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and

Eq(z) =
∞∏
j=0

(1 + (1− q)qjz) =
∞∑
k=0

qk(k−1)/2
zk

[k]q!
= (1 + (1− q)z)∞q ,

|q| < 1, where (1− x)∞q =
∏∞
j=0(1− qjx).

The q-Gamma integral is defined by [10]

(4) Γq (t) =

∫ 1
1−q

0
xt−1Eq (−qx) dqx, t > 0

which satisfies the following functional equation:

Γq (t+ 1) = [t]q Γq (t) , Γq (1) = 1.

The q Beta function (see [16]) is defined as

(5) Bq (t, s) = K (A, t)

∫ ∞/A
0

xt−1

(1 + x)t+sq

dqx,

where K (x, t) = 1
x+1x

t
(
1 + 1

x

)t
q

(1 + x)1−tq . In particular for any positive
integer n

K (x, n) = q
n(n−1)

2 , K (x, 0) = 1

and

(6) Bq (t, s) =
Γq (t) Γq (s)

Γq (t+ s)
.

Based on q-exponential function Mahmudov [12], introduced the following
q-Szász-Mirakyan operators as

Sn,q(f, x) =
1

Eq ([n]qx)

∞∑
k=0

([n]qx)k

[k]q!
qk(k−1)/2f

(
[k]q

qk−2[n]q

)
(7)

=

∞∑
k=0

sqn,k (x) f

(
[k]q

qk−2[n]q

)
,

sqn,k (x) =
([n]qx)k

[k]q!
qk(k−1)/2

1

Eq ([n]qx)
.

Lemma 1 ([12]). We have

Sn,q(1, x) = 1,

Sn,q(t, x) = qx,

Sn,q(t2, x) = qx2 +
q2x

[n]q
.
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In the present article, we introduce the q analogue of the Szász-Mirakyan
-Baskakov operators, obtain its moments using q-Beta function and estimate
some direct results in terms of modulus of continuity.

2. q-Operators and moments

For every n ∈ N, q ∈ (0, 1), the q analogue of (1) can be defined as

(8) Gqn (f (t) , x) := [n− 1]q

∞∑
k=0

sqn,k (x) qk
∫ ∞/A
0

pqn,k (t) f (t) dqt

where

sqn,k (x) =
([n]qx)k

[k]q!
qk(k−1)/2

1

Eq ([n]qx)

and

pqn,k (t) :=

[
n+ k − 1

k

]
q

qk(k−1)/2
tk

(1 + t)n+kq

for x ∈ [0,∞) and for every real valued continuous function f on [0, ∞) .
These operators satisfy linearity property. As a special case when q = 1
the above operators reduce to the Szász-Mirakyan-Baskakov operators (1)
discussed in [14] and [7].

Remark 1. We have

xDq

(
sqn,k (x)

)
=

(
[k]q

qk−2[n]q
− q2x

)
qk−2[n]qs

q
n,k (x) ,

and
t

q

(
1 +

t

q

)
Dqp

q
n,k

(
t

q

)
=

[n]q
q2

pqn,k (t)

(
[k]q

qk−1[n]q
− t
)
.

Proof. Using q-derivative, we have

Dq (Eq ([n]qx)) = [n]qEq (q[n]qx)

and

Dq

(
1

Eq ([n]qx)

)
= − [n]qEq (q[n]qx)

Eq ([n]qx)Eq (q[n]qx)
= − [n]q

Eq ([n]qx)
.

Also we have

xDq

(
sqn,k (x)

)
= [n]q[k]q

([n]qx)k−1

[k]q!
qk(k−1)/2

1

E ([n]qx)

− [n]q
Eq ([n]qx)

([n]qqx)k

[k]q!
qk(k−1)/2
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=

(
[k]q
[n]q
− qkx

)
[n]q

Eq ([n]qx)

([n]qx)k

[k]q!
qk(k−1)/2.

�

Remark 2. Following equality is obvious:

sqn,k (qx) =
(q[n]qx)k

[k]q!
qk(k−1)/2

1

Eq (q[n]qx)

=
qk ([n]qx)k

[k]q!
qk(k−1)/2

(1 + (1− q) [n]qx)

Eq ([n]qx)

= qk (1 + (1− q) [n]qx) sqn,k (x) .

Therefore
sqn,k (qx) = qk (1 + (1− q) [n]qx) sqn,k (x) .

Lemma 2. If we define the central moment as

Tn,m (x) = Gqn (tm, x) := [n− 1]q

∞∑
k=0

sqn,k (x) qk
∫ ∞/A
0

pqn,k (t) tmdqt

then we have

[m+ 1]qTn,m (qx) + q−1[m+ 2]qTn,m+1 (qx) =
{
q−1[n]qTn,m+1 (qx)

− [n]qxTn,m (qx)− (1 + (1− q) [n]qx)xDq (Tn,m (x))}

The following equalities hold:
(i) Tn,0 (x) = Gqn (1, x) = 1,

(ii) Tn,1 (x) = Gqn (t, x) =
[n]qx

q2[n−2]q + 1
q[n−2]q , for n > 1,

(iii) Tn,2 (x) = Gqn
(
t2, x

)
=

[n]2qx
2

q6[n−2]q [n−3]q +
[n]qx(1+q)2

q5[n−2]q [n−3]q

+
[2]q

q3[n−2]q [n−3]q , for n > 3,

Proof. Using Remark 1, we have

xDq (Tn,m (x)) = [n− 1]q

∞∑
k=0

xDq

(
sqn,k (x)

)
qk
∫ ∞/A
0

pqn,k (t) tmdqt

= [n]q[n− 1]q

∞∑
k=0

(
[k]q

qk−2[n]q
− q2x

)
sqn,k (x) q2k−2

×
∫ ∞/A
0

pqn,k (t) tmdqt.
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Using Remark 1 and Remark 2, we have

xDq (Tn,m (x)) = [n]q[n− 1]q

∞∑
k=0

sqn,k (x) q2k−2

×
∫ ∞/A
0

(
[k]q

qk−2[n]q
− qt+ qt− q2x

)
pqn,k (t) tmdqt

= [n]q[n− 1]q

∞∑
k=0

sqn,k (x) q2k−2
∫ ∞/A
0

(
[k]q

qk−1[n]q
− t
)
qpqn,k (t) tmdqt

+ [n]q[n− 1]q

∞∑
k=0

sqn,k (x) q2k−2
∫ ∞/A
0

(
qt− q2x

)
pqn,k (t) tmdqt

= [n− 1]q

∞∑
k=0

sqn,k (x) q2k−2
∫ ∞/A
0

(
q2tm+1 + qtm+2

)
Dqp

q
n,k

(
t

q

)
dqt

+
q−2

(1 + (1− q) [n]qx)
[n]q[n− 1]q

∞∑
k=0

sqn,k (qx) qk

×
∫ ∞/A
0

(
qt− q2x

)
pqn,k (t) tmdqt.

Using q-integration by parts we have

xDq (Tn,m (x)) = −[n− 1]q

∞∑
k=0

sqn,k (x) q2k−2

×
∫ ∞/A
0

(
q2[m+ 1]qt

m + q[m+ 2]qt
m+1

)
pqn,k (t) dqt

+
q−2

(1 + (1− q) [n]qx)
[n]q[n− 1]q

∞∑
k=0

sqn,k (qx) qk

×
∫ ∞/A
0

(
qt− q2x

)
pqn,k (t) tmdqt

= − q−2

(1 + (1− q) [n]qx)
[n− 1]q

∞∑
k=0

sqn,k (qx) qk

×
∫ ∞/A
0

(
q2[m+ 1]qt

m + q[m+ 2]qt
m+1

)
pqn,k (t) dqt

+
q−1

(1 + (1− q) [n]qx)
[n]qTn,m+1 (qx)− 1

(1 + (1− q) [n]qx)
[n]qxTn,m (qx)

= − 1

(1 + (1− q) [n]qx)
[m+ 1]qTn,m (qx)
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− q−1

(1 + (1− q) [n]qx)
[m+ 2]qTn,m+1 (qx)

+
q−1

(1 + (1− q) [n]qx)
[n]qTn,m+1 (qx)− 1

(1 + (1− q) [n]qx)
[n]qxTn,m (qx) .

This completes the proof of recurrence relation. The moments (i)-(iii)
can be obtained easily by the above recurrence relation keeping in mind that
Tn,0(x) = 1, which follows from (5) and (6) . �

Remark 3. In case q → 1−, we get the central moments discussed in
[14] and [7] as

G1
n (1, x) = Gn (1, x) = 1,

G1
n (t− x, x) = Gn (t− x, x) =

1 + 2x

n− 2
,

G1
n

(
(t− x)2, x

)
= Gn

(
(t− x)2, x

)
=

(n+ 6)x2 + 2(n+ 3)x+ 2

(n− 2)(n− 3)
.

3. Direct results

Let CB[0,∞) be the space of all real-valued continuous bounded functions
f on [0,∞), endowed with the norm ‖f‖ = supx∈[0,∞) |f(x)|. The Peetre’s
K-functional is defined by

K2(f ; δ) = inf
g∈C2

B [0,∞)

{
‖f − g‖+ δ

∥∥g′′∥∥} ,
where C2

B [0,∞) := {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)}. By [[5], p. 177,
Theorem 2.4] there exists an absolute constant M > 0 such that

(9) K2(f ; δ) ≤Mω2(f ;
√
δ),

where δ > 0 and the second order modulus of smoothness is defined as

ω2(f ; δ) = sup
0<h≤δ

sup
x∈[0,∞)

|f(x+ 2h)− 2f(x+ h) + f(x)| ,

where f ∈ CB [0,∞) and δ > 0. Also we set

(10) ω(f ; δ) = sup
0<h≤δ

sup
x∈[0,∞)

|f(x+ h)− f(x)| ,
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δn(x) =

(
[n]2q

q6[n− 2]q[n− 3]q
− 2

[n]q
q2[n− 2]q

+ 1

)
x2

+

(
[n]q(1 + q)2

q5[n− 2]q[n− 3]q
− 2

q[n− 2]q

)
x

+
[2]q

q3[n− 2]q[n− 3]q
,

αn(x) =

(
[n]q

q2[n− 2]q
− 1

)
x+

1

q[n− 2]q
.

Lemma 3. Let f ∈ CB [0,∞). Then, for all g ∈ C2
B [0,∞), we have

(11)
∣∣∣Ĝqn(g;x)− g(x)

∣∣∣ ≤ (δn(x) + α2
n(x))

∥∥g′′∥∥ ,
where

(12) Ĝqn(f ;x) = Gqn(f ;x) + f(x)− f

(
[n]q

[n− 2]q

(
1

q2
x+

1

q [n]q

))
.

Proof. From (12) we have

Ĝqn(t− x;x) = Gqn(t− x;x)−

(
[n]q

[n− 2]q

(
1

q2
x+

1

q [n]q

)
− x

)
(13)

= Gqn(t;x)− xGqn(1;x)− [n]q
[n− 2]q

(
1

q2
x+

1

q [n]q

)
+ x

= 0.

Let x ∈ [0,∞) and g ∈ C2
B [0,∞). Using the Taylor’s formula

g(t)− g(x) = (t− x)g′(x) +

t∫
x

(t− u)g ′′(u)du,

we can write by (13) that

Ĝqn(g;x)− g(x) = Ĝqn((t− x)g ′(x);x) + Ĝqn

 t∫
x

(t− u)g ′′(u)du;x


= g ′(x)Ĝqn((t− x);x) +Gqn

 t∫
x

(t− u)g ′′(u)du;x



−

[n]qx

q2[n−2]q
+ 1
q[n−2]q∫

x

(
[n]qx

q2[n− 2]q
+

1

q[n− 2]q
− u
)
g ′′(u)du
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= Gqn

 t∫
x

(t− u)g ′′(u)du;x



−

[n]qx

q2[n−1]q
+ 1
q[n−1]q∫

x

(
[n]qx

q2[n− 2]q
+

1

q[n− 2]q
− u
)
g ′′(u)du.

On the other hand, since∣∣∣∣∣∣
t∫
x

(t− u)g ′′(u)du

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
t∫
x

|t− u|
∣∣g ′′(u)

∣∣ du
∣∣∣∣∣∣

≤
∥∥g ′′∥∥

∣∣∣∣∣∣
t∫
x

|t− u| du

∣∣∣∣∣∣ ≤ (t− x)2
∥∥g ′′∥∥

and ∣∣∣∣∣∣∣∣∣
[n]qx

q2[n−2]q
+ 1
q[n−2]q∫

x

(
[n]qx

q2[n− 2]q
+

1

q[n− 2]q
− u
)
g′′(u)du

∣∣∣∣∣∣∣∣∣
≤
(

[n]qx

q2[n− 2]q
+

1

q[n− 2]q
− x
)2 ∥∥g′′∥∥

=

((
[n]q

q2[n− 2]q
− 1

)
x+

1

q[n− 2]q

)2 ∥∥g′′∥∥ := α2
n(x)

∥∥g′′∥∥
we conclude that

∣∣∣Ĝqn(g;x)− g(x)
∣∣∣ =

∣∣∣∣∣∣Ĝqn
 t∫

x

(t− u)g′′(u)du;x



−

[n]qx

q2[n−2]q
+ 1
q[n−2]q∫

x

(
[n]qx

q2[n− 2]q
+

1

q[n− 2]q
− u
)
g′′(u)du

∣∣∣∣∣∣∣∣∣
≤ Gqn((t− x)2

∥∥g′′∥∥ ;x) +

((
[n]q

q2[n− 2]q
− 1

)
x+

1

q[n− 2]q

)2 ∥∥g′′∥∥
= (δn(x) + α2

n(x))
∥∥g′′∥∥ .

�
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Theorem 1. Let f ∈ CB [0,∞) . Then, for every x ∈ [0,∞) , there exists
a constant L > 0 such that

|Gqn(f ;x)− f(x)| ≤ Lω2(f ;
√

(δn(x) + α2
n(x))) + ω(f ;αn(x)).

Proof. From (12), we can write that

|Gqn(f ;x)− f(x)| ≤
∣∣∣Ĝqn(f ;x)− f(x)

∣∣∣
+

∣∣∣∣f(x)− f
(

[n]q
[n− 2]q

(
x

q2
+

1

[n] q

))∣∣∣∣
≤
∣∣∣Ĝqn(f − g;x)− (f − g)(x)

∣∣∣
+

∣∣∣∣f(x)− f
(

[n]q
[n− 2]q

(
x

q2
+

1

[n] q

))∣∣∣∣+
∣∣∣Ĝqn(g;x)− g(x)

∣∣∣
≤
∣∣∣Ĝqn(f − g;x)

∣∣∣+ |(f − g)(x)|

+

∣∣∣∣f(x)− f
(

[n]q
[n− 2]q

(
x

q2
+

1

[n] q

))∣∣∣∣+
∣∣∣Ĝqn(g;x)− g(x)

∣∣∣ .
Now, taking into account boundedness of Ĝqn and the inequality (11), we get

|Gqn(f ;x)− f(x)| ≤ 4 ‖f − g‖+

∣∣∣∣∣f(x)− f

(
[n]q

[n− 2]q

(
x

q2
+

1

q [n]q

))∣∣∣∣∣
+ (δn(x) + α2

n(x))
∥∥g′′∥∥

≤ 4 ‖f − g‖+ ω

(
f ;

[n]q
[n− 2]q

(
1

q2
− 1

)
x+

1

[n− 2]qq

)
+ (δn(x) + α2

n(x))
∥∥g′′∥∥ .

Now, taking infimum on the right-hand side over all g ∈ C2
B [0,∞) and using

(9), we get the following result

|Gqn(f ;x)− f(x)| ≤ 4K2(f ; δn(x) + α2
n(x)) + ω(f ;αn(x))

≤ 4Mω2(f ;
√
δn(x) + α2

n(x)) + ω(f ;αn(x))

= Lω2(f ;
√
δn(x) + α2

n(x)) + ω(f ;αn(x))

where L = 4M > 0. �

Theorem 2. Let 0 < α ≤ 1 and f ∈ CB [0,∞). Then, if f ∈ LipM (α),
i.e. the condition

(14) |f(y)− f(x)| ≤M |y − x|α , x, y ∈ [0,∞) ,
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holds, then, for each x ∈ [0,∞) , we have

|Gqn(f ;x)− f(x)| ≤Mδ
α
2
n (x),

where δn is the same as in Theorem 1, M is a constant depending on α and
f.

Proof. Let f ∈ CB [0,∞) ∩ LipM (α) with 0 < α ≤ 1. By linearity and
monotonicity of Gqn

|Gqn(f ;x)− f(x)| = |Gqn(f ;x)−Gqn(f(x);x)| ≤ Gqn(|f (y)− f (x)| ;x)

≤MGqn(|y − x| ;x).

Using the Hölder inequality with p = 2
α , q = 2

2−α we find that

|Gqn(f ;x)− f(x)| ≤M
{

[Gqn(|y − x|αp ;x)]
1
p [Gqn(1q;x)]

1
q

}
= M

[
Gqn(|y − x|2 ;x)

]α
2

= Mδ
α
2
n (x).

�

Theorem 3. Let f be bounded and integrable on the interval [0,∞),
second derivative of f exists at a fixed point x ∈ [0,∞) and q = qn ∈ (0, 1)
such that qn → 1 as n→∞, then

lim
n→∞

[n]qn [Gqnn (f, x)− f(x)] = (1 + 2x)f
′
(x) +

(
x2

2
+ x

)
f
′′

(x) .

Proof. In order to prove this identity we use Taylor’s expansion

f (t)− f (x) = (t− x) f
′
(x) + (t− x)2

(
1

2
f
′′

(x) + ε (t− x)

)
where ε is bounded ε is bounded and limt→0 ε (t) = 0. By applying the
operator Gqn(f) to the above relation we obtain

Gqnn (f, x)− f(x) = f ′ (x)Gqnn ((t− x) , x) +
1

2
f ′′ (x)Gqnn ((t− x)2 , x)

+Gqnn (ε (t− x) (t− x)2 , x)

= f ′ (x)αn (x) +
1

2
f ′′ (x) δn (x) +Gqnn (ε (t− x) (t− x)2 , x),

where αn (x) and δn (x) defined as in (10).
Using Cauchy-Schwarz inequality we have

[n]qn G
qn
n (ε (t− x) (t− x)2 , x) ≤

(
Gqnn (ε2 (t− x))

) 1
2

(
[n]2qn G

qn
n ((t− x)4 , x)

) 1
2
.
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Using Lemma 1, we can show that

lim
n→∞

[n]2qn G
qn
n ((t− x)4 , x) = 0

Also, since

lim
n→∞

αn (x) = 1 + 2x and lim
n→∞

δn (x) = x2 + 2x

we have desired result. �

4. Error estimation

The usual modulus of continuity of f on the closed interval [0, b] is defined
by

ωb(f, δ) = sup
|t−x|≤δ
x,t∈[0,b]

|f(t)− f(x)| , b > 0.

It is well known that, for a function f ∈ E,

lim
δ→0+

ωb(f, δ) = 0,

where

E :=

{
f ∈ C[0,∞) : lim

x→∞

f (x)

1 + x2
is finite

}
.

The next theorem gives the rate of convergence of the operators Gqn(f ;x)
to f(x), for all f ∈ E.

Theorem 4. Let f ∈ E and let ωb+1(f, δ) (b > 0) be its modulus of
continuity on the finite interval [0, b+ 1] ⊂ [0,∞). Then for fixed q ∈ (0, 1),
we have

‖Gqn(f ;x)− f(x)‖C[0,b] ≤ Nf

(
1 + b2

)
δn (b) + 2ωb+1(f,

√
δn(b)).

Proof. The proof is based on the following inequality

|Gqn(f ;x)− f(x)| ≤ Nf

(
1 + b2

)
Gqn((t− x)2;x)(15)

+

(
1 +

Gqn(|t− x| ;x)

δ

)
ωb+1(f, δ)

for all (x, t) ∈ [0, b]× [0,∞) := S.
To prove (15) we write

S = S1 ∪ S2 := {(x, t) : 0 ≤ x ≤ b, 0 ≤ t ≤ b+ 1}
∪ {(x, t) : 0 ≤ x ≤ b, t > b+ 1} .
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If (x, t) ∈ S1, we can write

(16) |f(t)− f(x)| ≤ ωb+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωb+1(f, δ)

where δ > 0. On the other hand, if (x, t) ∈ S2, using the fact that t−x > 1,
we have

|f(t)− f(x)| ≤Mf (1 + x2 + t2)(17)

≤Mf (2 + 3x2 + 2(t− x)2)

≤ Nf

(
1 + b2

)
(t− x)2

where Nf = 6Mf . Combining (16) and (17), we get (15).
Now from (15) it follows that

|Gqn(f ;x)− f(x)| ≤ Nf

(
1 + b2

)
Gqn((t− x)2;x)

+

(
1 +

Gqn(|t− x| ;x)

δ

)
ωb+1(f, δ)

≤ Nf

(
1 + b2

)
Gqn((t− x)2;x)

+

(
1 +

[
Gqn((t− x)2;x)

]1/2
δ

)
ωb+1(f, δ).

By Lemma 2 we have

Gqn((t− x)2;x) ≤ δn (b)

|Gqn(f ;x)− f(x)| ≤ Nf

(
1 + b2

)
δn (b) +

(
1 +

√
δn (b)

δ

)
ωb+1(f, δ).

Choosing δ =
√
δn(b), we get the desired estimation. �
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