F A S C I C U L I M A T H E M A T I C I

Nr 48

V. Gupta, A. Aral and M. Ozhavzali

APPROXIMATION BY q-SZÁSZ-MIRAKYAN-BASKAKOV OPERATORS *

Abstract

In the present paper we propose the q analogue of well known Szász-Mirakyan-Baskakov operators (see e.g. [14], [7]). We apply q-derivatives, and q-Beta functions to obtain the moments of the q-Szász-Mirakyan-Baskakov operators. Here we estimate some direct approximation results for these operators.

KEY WORDS: q-Szász-Mirakyan-Baskakov operators, q-binomial coefficients, q-derivatives, q-integers, q-Beta functions, q-integral.
AMS Mathematics Subject Classification: 41A25, 41A30.

1. Introduction

Recently Mahmudov [12] and Aral [2] (see also [4]) proposed the q-analogues of the well known Szász-Mirakyan operators and estimated some approximation results. The operators studied in [12] are different from those studied in [4]. King type generalization of the q-Szász operators defined in [2] can be found in [1]. Also some approximation properties of the another Szász-Mirakyan type operators were presented in [15]. The most commonly used integral modifications of the Szász-Mirakyan operators are Szász-Mirakyan-Kantorovich and Szász-Mirakyan-Durrmeyer operators. q-analogue of some Durrmeyer type operators were studied in [13] and [9]. Very recently Gupta and Aral [8] proposed q analogue of Szász-MirakyanBeta operators and established some approximation properties.

In the year 1983, Prasad-Agrawal-Kasana [14] proposed the integral modification of Szász-Mirakyan operators by taking the weight functions of Baskakov operators, but there were so many gaps in the results obtained in [14]. In the year 1993 Gupta [7] filled the gaps and improved the results

[^0]of [14]. To approximate Lebesgue integrable functions on the interval $[0, \infty)$, the Szász-Mirakyan-Baskakov operators are defined as
\[

$$
\begin{equation*}
G_{n}(f, x)=(n-1) \sum_{k=0}^{\infty} s_{n, k}(x) \int_{0}^{\infty} p_{n, k}(t) f(t) d t, \quad x \in[0, \infty) \tag{1}
\end{equation*}
$$

\]

where

$$
s_{n, k}(x)=e^{-n x} \frac{(n x)^{k}}{k!}, \quad p_{n, k}(t)=\binom{n+k-1}{k} \frac{x^{k}}{(1+x)^{n+k}}
$$

First we recall some notations of q-calculus, which can also be found in [6] and [10]. Throughout the present article q be a real number satisfying the inequality $0<q<1$.

For $n \in \mathbb{N}$,

$$
\begin{gathered}
{[n]_{q}:=\frac{1-q^{n}}{1-q},} \\
{[n]_{q}!:= \begin{cases}{[n]_{q}[n-1]_{q} \cdots[1]_{q},} & n=1,2, \ldots \\
1, & n=0\end{cases} }
\end{gathered}
$$

and

$$
(1+x)_{q}^{n}:= \begin{cases}\prod_{j=0}^{n-1}\left(1+q^{j} x\right), & n=1,2, \ldots \\ 1, & n=0\end{cases}
$$

The q-derivative $D_{q} f$ of a function f is given by

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad \text { if } x \neq 0 \tag{2}
\end{equation*}
$$

The q-improper integrals considered in the present paper are defined as (see [11])

$$
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n}, \quad a>0
$$

and

$$
\begin{equation*}
\int_{0}^{\infty / A} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} f\left(\frac{q^{n}}{A}\right) \frac{q^{n}}{A}, \quad A>0 \tag{3}
\end{equation*}
$$

provided the sums converge absolutely.
There are two q analogues of the exponential function e^{x} (see [10]) as

$$
e_{q}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{[k]_{q}!}=\frac{1}{(1-(1-q) z)_{q}^{\infty}}, \quad|z|<\frac{1}{1-q}, \quad|q|<1
$$

and

$$
E_{q}(z)=\prod_{j=0}^{\infty}\left(1+(1-q) q^{j} z\right)=\sum_{k=0}^{\infty} q^{k(k-1) / 2} \frac{z^{k}}{[k]_{q}!}=(1+(1-q) z)_{q}^{\infty}
$$

$|q|<1$, where $(1-x)_{q}^{\infty}=\prod_{j=0}^{\infty}\left(1-q^{j} x\right)$.
The q-Gamma integral is defined by [10]

$$
\begin{equation*}
\Gamma_{q}(t)=\int_{0}^{\frac{1}{1-q}} x^{t-1} E_{q}(-q x) d_{q} x, \quad t>0 \tag{4}
\end{equation*}
$$

which satisfies the following functional equation:

$$
\Gamma_{q}(t+1)=[t]_{q} \Gamma_{q}(t), \quad \Gamma_{q}(1)=1
$$

The q Beta function (see [16]) is defined as

$$
\begin{equation*}
B_{q}(t, s)=K(A, t) \int_{0}^{\infty / A} \frac{x^{t-1}}{(1+x)_{q}^{t+s}} d_{q} x \tag{5}
\end{equation*}
$$

where $K(x, t)=\frac{1}{x+1} x^{t}\left(1+\frac{1}{x}\right)_{q}^{t}(1+x)_{q}^{1-t}$. In particular for any positive integer n

$$
K(x, n)=q^{\frac{n(n-1)}{2}}, \quad K(x, 0)=1
$$

and

$$
\begin{equation*}
B_{q}(t, s)=\frac{\Gamma_{q}(t) \Gamma_{q}(s)}{\Gamma_{q}(t+s)} \tag{6}
\end{equation*}
$$

Based on q-exponential function Mahmudov [12], introduced the following q-Szász-Mirakyan operators as

$$
\begin{align*}
\mathcal{S}_{n, q}(f, x) & =\frac{1}{E_{q}\left([n]_{q} x\right)} \sum_{k=0}^{\infty} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2} f\left(\frac{[k]_{q}}{q^{k-2}[n]_{q}}\right) \tag{7}\\
& =\sum_{k=0}^{\infty} s_{n, k}^{q}(x) f\left(\frac{[k]_{q}}{q^{k-2}[n]_{q}}\right) \\
& s_{n, k}^{q}(x)=\frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2} \frac{1}{E_{q}\left([n]_{q} x\right)} .
\end{align*}
$$

Lemma 1 ([12]). We have

$$
\begin{aligned}
\mathcal{S}_{n, q}(1, x) & =1 \\
\mathcal{S}_{n, q}(t, x) & =q x \\
\mathcal{S}_{n, q}\left(t^{2}, x\right) & =q x^{2}+\frac{q^{2} x}{[n]_{q}}
\end{aligned}
$$

In the present article, we introduce the q analogue of the Szász-Mirakyan -Baskakov operators, obtain its moments using q-Beta function and estimate some direct results in terms of modulus of continuity.

2. q-Operators and moments

For every $n \in \mathbb{N}, q \in(0,1)$, the q analogue of (1) can be defined as

$$
\begin{equation*}
G_{n}^{q}(f(t), x):=[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(x) q^{k} \int_{0}^{\infty / A} p_{n, k}^{q}(t) f(t) d_{q} t \tag{8}
\end{equation*}
$$

where

$$
s_{n, k}^{q}(x)=\frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2} \frac{1}{E_{q}\left([n]_{q} x\right)}
$$

and

$$
p_{n, k}^{q}(t):=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} q^{k(k-1) / 2} \frac{t^{k}}{(1+t)_{q}^{n+k}}
$$

for $x \in[0, \infty)$ and for every real valued continuous function f on $[0, \infty)$.
These operators satisfy linearity property. As a special case when $q=1$ the above operators reduce to the Szász-Mirakyan-Baskakov operators (1) discussed in [14] and [7].

Remark 1. We have

$$
x D_{q}\left(s_{n, k}^{q}(x)\right)=\left(\frac{[k]_{q}}{q^{k-2}[n]_{q}}-q^{2} x\right) q^{k-2}[n]_{q} s_{n, k}^{q}(x),
$$

and

$$
\frac{t}{q}\left(1+\frac{t}{q}\right) D_{q} p_{n, k}^{q}\left(\frac{t}{q}\right)=\frac{[n]_{q}}{q^{2}} p_{n, k}^{q}(t)\left(\frac{[k]_{q}}{q^{k-1}[n]_{q}}-t\right) .
$$

Proof. Using q-derivative, we have

$$
D_{q}\left(E_{q}\left([n]_{q} x\right)\right)=[n]_{q} E_{q}\left(q[n]_{q} x\right)
$$

and

$$
D_{q}\left(\frac{1}{E_{q}\left([n]_{q} x\right)}\right)=-\frac{[n]_{q} E_{q}\left(q[n]_{q} x\right)}{E_{q}\left([n]_{q} x\right) E_{q}\left(q[n]_{q} x\right)}=-\frac{[n]_{q}}{E_{q}\left([n]_{q} x\right)} .
$$

Also we have

$$
\begin{aligned}
x D_{q}\left(s_{n, k}^{q}(x)\right)= & {[n]_{q}[k]_{q} \frac{\left([n]_{q} x\right)^{k-1}}{[k]_{q}!} q^{k(k-1) / 2} \frac{1}{E\left([n]_{q} x\right)} } \\
& -\frac{[n]_{q}}{E_{q}\left([n]_{q} x\right)} \frac{\left([n]_{q} q x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2}
\end{aligned}
$$

$$
=\left(\frac{[k]_{q}}{[n]_{q}}-q^{k} x\right) \frac{[n]_{q}}{E_{q}\left([n]_{q} x\right)} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2}
$$

Remark 2. Following equality is obvious:

$$
\begin{aligned}
s_{n, k}^{q}(q x) & =\frac{\left(q[n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2} \frac{1}{E_{q}\left(q[n]_{q} x\right)} \\
& =\frac{q^{k}\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2} \frac{\left(1+(1-q)[n]_{q} x\right)}{E_{q}\left([n]_{q} x\right)} \\
& =q^{k}\left(1+(1-q)[n]_{q} x\right) s_{n, k}^{q}(x) .
\end{aligned}
$$

Therefore

$$
s_{n, k}^{q}(q x)=q^{k}\left(1+(1-q)[n]_{q} x\right) s_{n, k}^{q}(x)
$$

Lemma 2. If we define the central moment as

$$
T_{n, m}(x)=G_{n}^{q}\left(t^{m}, x\right):=[n-1]_{q} \sum_{k=0}^{\infty} \mathrm{s}_{n, k}^{q}(x) q^{k} \int_{0}^{\infty / A} p_{n, k}^{q}(t) t^{m} d_{q} t
$$

then we have

$$
\begin{aligned}
{[m+1]_{q} T_{n, m} } & (q x)+q^{-1}[m+2]_{q} T_{n, m+1}(q x)=\left\{q^{-1}[n]_{q} T_{n, m+1}(q x)\right. \\
& \left.-[n]_{q} x T_{n, m}(q x)-\left(1+(1-q)[n]_{q} x\right) x D_{q}\left(T_{n, m}(x)\right)\right\}
\end{aligned}
$$

The following equalities hold:
(i) $T_{n, 0}(x)=G_{n}^{q}(1, x)=1$,
(ii) $T_{n, 1}(x)=G_{n}^{q}(t, x)=\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}$, for $n>1$,
(iii) $T_{n, 2}(x)=G_{n}^{q}\left(t^{2}, x\right)=\frac{[q]_{q}^{2} x^{2}}{q^{6}[n-2]_{q}[n-3]_{q}}+\frac{[n]_{q} x(1+q)^{2}}{q^{5}[n-2]_{q}[n-3]_{q}}$

$$
+\frac{[2]_{q}}{q^{3}[n-2]_{q}[n-3]_{q}} \text {, for } n>3 \text {, }
$$

Proof. Using Remark 1, we have

$$
\begin{aligned}
x D_{q}\left(T_{n, m}(x)\right)= & {[n-1]_{q} \sum_{k=0}^{\infty} x D_{q}\left(s_{n, k}^{q}(x)\right) q^{k} \int_{0}^{\infty / A} p_{n, k}^{q}(t) t^{m} d_{q} t } \\
= & {[n]_{q}[n-1]_{q} \sum_{k=0}^{\infty}\left(\frac{[k]_{q}}{q^{k-2}[n]_{q}}-q^{2} x\right) s_{n, k}^{q}(x) q^{2 k-2} } \\
& \times \int_{0}^{\infty / A} p_{n, k}^{q}(t) t^{m} d_{q} t .
\end{aligned}
$$

Using Remark 1 and Remark 2, we have

$$
\begin{aligned}
& x D_{q}\left(T_{n, m}(x)\right)=[n]_{q}[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(x) q^{2 k-2} \\
& \quad \times \int_{0}^{\infty / A}\left(\frac{[k]_{q}}{q^{k-2}[n]_{q}}-q t+q t-q^{2} x\right) p_{n, k}^{q}(t) t^{m} d_{q} t \\
& =[n]_{q}[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(x) q^{2 k-2} \int_{0}^{\infty / A}\left(\frac{[k]_{q}}{q^{k-1}[n]_{q}}-t\right) q p_{n, k}^{q}(t) t^{m} d_{q} t \\
& \quad+[n]_{q}[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(x) q^{2 k-2} \int_{0}^{\infty / A}\left(q t-q^{2} x\right) p_{n, k}^{q}(t) t^{m} d_{q} t \\
& =[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(x) q^{2 k-2} \int_{0}^{\infty / A}\left(q^{2} t^{m+1}+q t^{m+2}\right) D_{q} p_{n, k}^{q}\left(\frac{t}{q}\right) d_{q} t \\
& \quad+\frac{q^{-2}}{\left(1+(1-q)[n]_{q} x\right)}[n]_{q}[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(q x) q^{k} \\
& \quad \times \int_{0}^{\infty / A}\left(q t-q^{2} x\right) p_{n, k}^{q}(t) t^{m} d_{q} t .
\end{aligned}
$$

Using q-integration by parts we have

$$
\begin{aligned}
& x D_{q}\left(T_{n, m}(x)\right)=-[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(x) q^{2 k-2} \\
& \quad \times \int_{0}^{\infty / A}\left(q^{2}[m+1]_{q} t^{m}+q[m+2]_{q} t^{m+1}\right) p_{n, k}^{q}(t) d_{q} t \\
& +\frac{q^{-2}}{\left(1+(1-q)[n]_{q} x\right)}[n]_{q}[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(q x) q^{k} \\
& \quad \times \int_{0}^{\infty / A}\left(q t-q^{2} x\right) p_{n, k}^{q}(t) t^{m} d_{q} t \\
& =-\frac{q^{-2}}{\left(1+(1-q)[n]_{q} x\right)}[n-1]_{q} \sum_{k=0}^{\infty} s_{n, k}^{q}(q x) q^{k} \\
& \quad \times \int_{0}^{\infty / A}\left(q^{2}[m+1]_{q} t^{m}+q[m+2]_{q} t^{m+1}\right) p_{n, k}^{q}(t) d_{q} t \\
& \quad+\frac{q^{-1}}{\left(1+(1-q)[n]_{q} x\right)}[n]_{q} T_{n, m+1}(q x)-\frac{1}{\left(1+(1-q)[n]_{q} x\right)}[n]_{q} x T_{n, m}(q x) \\
& =-\frac{1}{\left(1+(1-q)[n]_{q} x\right)}[m+1]_{q} T_{n, m}(q x)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{q^{-1}}{\left(1+(1-q)[n]_{q} x\right)}[m+2]_{q} T_{n, m+1}(q x) \\
& +\frac{q^{-1}}{\left(1+(1-q)[n]_{q} x\right)}[n]_{q} T_{n, m+1}(q x)-\frac{1}{\left(1+(1-q)[n]_{q} x\right)}[n]_{q} x T_{n, m}(q x) .
\end{aligned}
$$

This completes the proof of recurrence relation. The moments (i)-(iii) can be obtained easily by the above recurrence relation keeping in mind that $T_{n, 0}(x)=1$, which follows from (5) and (6) .

Remark 3. In case $q \rightarrow 1^{-}$, we get the central moments discussed in [14] and [7] as

$$
\begin{aligned}
G_{n}^{1}(1, x) & =G_{n}(1, x)=1 \\
G_{n}^{1}(t-x, x) & =G_{n}(t-x, x)=\frac{1+2 x}{n-2} \\
G_{n}^{1}\left((t-x)^{2}, x\right) & =G_{n}\left((t-x)^{2}, x\right)=\frac{(n+6) x^{2}+2(n+3) x+2}{(n-2)(n-3)}
\end{aligned}
$$

3. Direct results

Let $C_{B}[0, \infty)$ be the space of all real-valued continuous bounded functions f on $[0, \infty)$, endowed with the norm $\|f\|=\sup _{x \in[0, \infty)}|f(x)|$. The Peetre's K-functional is defined by

$$
K_{2}(f ; \delta)=\inf _{g \in C_{B}^{2}[0, \infty)}\left\{\|f-g\|+\delta\left\|g^{\prime \prime}\right\|\right\}
$$

where $C_{B}^{2}[0, \infty):=\left\{g \in C_{B}[0, \infty): g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\}$. By [[5], p. 177, Theorem 2.4] there exists an absolute constant $M>0$ such that

$$
\begin{equation*}
K_{2}(f ; \delta) \leq M \omega_{2}(f ; \sqrt{\delta}) \tag{9}
\end{equation*}
$$

where $\delta>0$ and the second order modulus of smoothness is defined as

$$
\omega_{2}(f ; \delta)=\sup _{0<h \leq \delta} \sup _{x \in[0, \infty)}|f(x+2 h)-2 f(x+h)+f(x)|,
$$

where $f \in C_{B}[0, \infty)$ and $\delta>0$. Also we set

$$
\begin{equation*}
\omega(f ; \delta)=\sup _{0<h \leq \delta} \sup _{x \in[0, \infty)}|f(x+h)-f(x)|, \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
\delta_{n}(x)= & \left(\frac{[n]_{q}^{2}}{q^{6}[n-2]_{q}[n-3]_{q}}-2 \frac{[n]_{q}}{q^{2}[n-2]_{q}}+1\right) x^{2} \\
& +\left(\frac{[n]_{q}(1+q)^{2}}{q^{5}[n-2]_{q}[n-3]_{q}}-\frac{2}{q[n-2]_{q}}\right) x \\
& +\frac{[2]_{q}}{q^{3}[n-2]_{q}[n-3]_{q}}, \\
\alpha_{n}(x)= & \left(\frac{[n]_{q}}{q^{2}[n-2]_{q}}-1\right) x+\frac{1}{q[n-2]_{q}} .
\end{aligned}
$$

Lemma 3. Let $f \in C_{B}[0, \infty)$. Then, for all $g \in C_{B}^{2}[0, \infty)$, we have

$$
\begin{equation*}
\left|\widehat{G}_{n}^{q}(g ; x)-g(x)\right| \leq\left(\delta_{n}(x)+\alpha_{n}^{2}(x)\right)\left\|g^{\prime \prime}\right\| \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{G}_{n}^{q}(f ; x)=G_{n}^{q}(f ; x)+f(x)-f\left(\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{1}{q^{2}} x+\frac{1}{q[n]_{q}}\right)\right) \tag{12}
\end{equation*}
$$

Proof. From (12) we have

$$
\begin{align*}
\widehat{G}_{n}^{q}(t-x ; x) & =G_{n}^{q}(t-x ; x)-\left(\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{1}{q^{2}} x+\frac{1}{q[n]_{q}}\right)-x\right) \tag{13}\\
& =G_{n}^{q}(t ; x)-x G_{n}^{q}(1 ; x)-\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{1}{q^{2}} x+\frac{1}{q[n]_{q}}\right)+x \\
& =0
\end{align*}
$$

Let $x \in[0, \infty)$ and $g \in C_{B}^{2}[0, \infty)$. Using the Taylor's formula

$$
g(t)-g(x)=(t-x) g^{\prime}(x)+\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u
$$

we can write by (13) that

$$
\begin{aligned}
\widehat{G}_{n}^{q}(g ; x)-g(x)= & \widehat{G}_{n}^{q}\left((t-x) g^{\prime}(x) ; x\right)+\widehat{G}_{n}^{q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right) \\
= & g^{\prime}(x) \widehat{G}_{n}^{q}((t-x) ; x)+G_{n}^{q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right) \\
& -\int_{x}^{\frac{[n] q x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}}\left(\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}-u\right) g^{\prime \prime}(u) d u
\end{aligned}
$$

$$
\begin{aligned}
= & G_{n}^{q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right) \\
& -\int_{x}^{\frac{[n]_{q} x}{q^{2}[n-1]_{q}}+\frac{1}{q[n-1]_{q}}}\left(\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}-u\right) g^{\prime \prime}(u) d u .
\end{aligned}
$$

On the other hand, since

$$
\begin{aligned}
\left|\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u\right| & \leq\left|\int_{x}^{t}\right| t-u| | g^{\prime \prime}(u)|d u| \\
& \leq\left\|g^{\prime \prime}\right\|\left|\int_{x}^{t}\right| t-u|d u| \leq(t-x)^{2}\left\|g^{\prime \prime}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\int_{x}^{\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}}\left(\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}-u\right) g^{\prime \prime}(u) d u\right| \\
& \leq\left(\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}-x\right)^{2}\left\|g^{\prime \prime}\right\| \\
& =\left(\left(\frac{[n]_{q}}{q^{2}[n-2]_{q}}-1\right) x+\frac{1}{q[n-2]_{q}}\right)^{2}\left\|g^{\prime \prime}\right\|:=\alpha_{n}^{2}(x)\left\|g^{\prime \prime}\right\|
\end{aligned}
$$

we conclude that

$$
\begin{aligned}
& \left|\widehat{G}_{n}^{q}(g ; x)-g(x)\right|=\mid \widehat{G}_{n}^{q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right) \\
& \left.\quad-\int_{x}^{\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}}\left(\frac{[n]_{q} x}{q^{2}[n-2]_{q}}+\frac{1}{q[n-2]_{q}}-u\right) g^{\prime \prime}(u) d u \right\rvert\, \\
& \quad \leq G_{n}^{q}\left((t-x)^{2}\left\|g^{\prime \prime}\right\| ; x\right)+\left(\left(\frac{[n]_{q}}{q^{2}[n-2]_{q}}-1\right) x+\frac{1}{q[n-2]_{q}}\right)^{2}\left\|g^{\prime \prime}\right\| \\
& \quad=\left(\delta_{n}(x)+\alpha_{n}^{2}(x)\right)\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

Theorem 1. Let $f \in C_{B}[0, \infty)$. Then, for every $x \in[0, \infty)$, there exists a constant $L>0$ such that

$$
\left|G_{n}^{q}(f ; x)-f(x)\right| \leq L \omega_{2}\left(f ; \sqrt{\left(\delta_{n}(x)+\alpha_{n}^{2}(x)\right)}\right)+\omega\left(f ; \alpha_{n}(x)\right) .
$$

Proof. From (12), we can write that

$$
\begin{aligned}
\mid G_{n}^{q}(f ; x)- & f(x)\left|\leq\left|\widehat{G}_{n}^{q}(f ; x)-f(x)\right|\right. \\
& \quad+\left|f(x)-f\left(\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{x}{q^{2}}+\frac{1}{[n] q}\right)\right)\right| \\
\leq & \left|\widehat{G}_{n}^{q}(f-g ; x)-(f-g)(x)\right| \\
& +\left|f(x)-f\left(\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{x}{q^{2}}+\frac{1}{[n] q}\right)\right)\right|+\left|\widehat{G}_{n}^{q}(g ; x)-g(x)\right| \\
\leq & \left|\widehat{G}_{n}^{q}(f-g ; x)\right|+|(f-g)(x)| \\
& +\left|f(x)-f\left(\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{x}{q^{2}}+\frac{1}{[n] q}\right)\right)\right|+\left|\widehat{G}_{n}^{q}(g ; x)-g(x)\right| .
\end{aligned}
$$

Now, taking into account boundedness of \widehat{G}_{n}^{q} and the inequality (11), we get

$$
\begin{aligned}
\left|G_{n}^{q}(f ; x)-f(x)\right| \leq & 4\|f-g\|+\left|f(x)-f\left(\frac{[n]_{q}}{[n-2]_{q}}\left(\frac{x}{q^{2}}+\frac{1}{q[n]_{q}}\right)\right)\right| \\
& +\left(\delta_{n}(x)+\alpha_{n}^{2}(x)\right)\left\|g^{\prime \prime}\right\| \\
\leq & 4\|f-g\|+\omega\left(f ; \frac{[n]_{q}}{[n-2]_{q}}\left(\frac{1}{q^{2}}-1\right) x+\frac{1}{[n-2]_{q} q}\right) \\
& +\left(\delta_{n}(x)+\alpha_{n}^{2}(x)\right)\left\|g^{\prime \prime}\right\|
\end{aligned}
$$

Now, taking infimum on the right-hand side over all $g \in C_{B}^{2}[0, \infty)$ and using (9), we get the following result

$$
\begin{aligned}
\left|G_{n}^{q}(f ; x)-f(x)\right| & \leq 4 K_{2}\left(f ; \delta_{n}(x)+\alpha_{n}^{2}(x)\right)+\omega\left(f ; \alpha_{n}(x)\right) \\
& \leq 4 M \omega_{2}\left(f ; \sqrt{\delta_{n}(x)+\alpha_{n}^{2}(x)}\right)+\omega\left(f ; \alpha_{n}(x)\right) \\
& =L \omega_{2}\left(f ; \sqrt{\delta_{n}(x)+\alpha_{n}^{2}(x)}\right)+\omega\left(f ; \alpha_{n}(x)\right)
\end{aligned}
$$

where $L=4 M>0$.

Theorem 2. Let $0<\alpha \leq 1$ and $f \in C_{B}[0, \infty)$. Then, if $f \in \operatorname{Lip}_{M}(\alpha)$, i.e. the condition

$$
\begin{equation*}
|f(y)-f(x)| \leq M|y-x|^{\alpha}, \quad x, y \in[0, \infty) \tag{14}
\end{equation*}
$$

holds, then, for each $x \in[0, \infty)$, we have

$$
\left|G_{n}^{q}(f ; x)-f(x)\right| \leq M \delta_{n}^{\frac{\alpha}{2}}(x)
$$

where δ_{n} is the same as in Theorem 1, M is a constant depending on α and f.

Proof. Let $f \in C_{B}[0, \infty) \cap \operatorname{Lip}_{M}(\alpha)$ with $0<\alpha \leq 1$. By linearity and monotonicity of G_{n}^{q}

$$
\begin{aligned}
\left|G_{n}^{q}(f ; x)-f(x)\right| & =\left|G_{n}^{q}(f ; x)-G_{n}^{q}(f(x) ; x)\right| \leq G_{n}^{q}(|f(y)-f(x)| ; x) \\
& \leq M G_{n}^{q}(|y-x| ; x)
\end{aligned}
$$

Using the Hölder inequality with $p=\frac{2}{\alpha}, q=\frac{2}{2-\alpha}$ we find that

$$
\begin{aligned}
\left|G_{n}^{q}(f ; x)-f(x)\right| & \leq M\left\{\left[G_{n}^{q}\left(|y-x|^{\alpha p} ; x\right)\right]^{\frac{1}{p}}\left[G_{n}^{q}\left(1^{q} ; x\right)\right]^{\frac{1}{q}}\right\} \\
& =M\left[G_{n}^{q}\left(|y-x|^{2} ; x\right)\right]^{\frac{\alpha}{2}}=M \delta_{n}^{\frac{\alpha}{2}}(x) .
\end{aligned}
$$

Theorem 3. Let f be bounded and integrable on the interval $[0, \infty)$, second derivative of f exists at a fixed point $x \in[0, \infty)$ and $q=q_{n} \in(0,1)$ such that $q_{n} \rightarrow 1$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}}\left[G_{n}^{q_{n}}(f, x)-f(x)\right]=(1+2 x) f^{\prime}(x)+\left(\frac{x^{2}}{2}+x\right) f^{\prime \prime}(x)
$$

Proof. In order to prove this identity we use Taylor's expansion

$$
f(t)-f(x)=(t-x) f^{\prime}(x)+(t-x)^{2}\left(\frac{1}{2} f^{\prime \prime}(x)+\varepsilon(t-x)\right)
$$

where ε is bounded ε is bounded and $\lim _{t \rightarrow 0} \varepsilon(t)=0$. By applying the operator $G_{n}^{q}(f)$ to the above relation we obtain

$$
\begin{aligned}
G_{n}^{q_{n}}(f, x)-f(x)= & f^{\prime}(x) G_{n}^{q_{n}}((t-x), x)+\frac{1}{2} f^{\prime \prime}(x) G_{n}^{q_{n}}\left((t-x)^{2}, x\right) \\
& +G_{n}^{q_{n}}\left(\varepsilon(t-x)(t-x)^{2}, x\right) \\
= & f^{\prime}(x) \alpha_{n}(x)+\frac{1}{2} f^{\prime \prime}(x) \delta_{n}(x)+G_{n}^{q_{n}}\left(\varepsilon(t-x)(t-x)^{2}, x\right)
\end{aligned}
$$

where $\alpha_{n}(x)$ and $\delta_{n}(x)$ defined as in (10).
Using Cauchy-Schwarz inequality we have

$$
[n]_{q_{n}} G_{n}^{q_{n}}\left(\varepsilon(t-x)(t-x)^{2}, x\right) \leq\left(G_{n}^{q_{n}}\left(\varepsilon^{2}(t-x)\right)\right)^{\frac{1}{2}}\left([n]_{q_{n}}^{2} G_{n}^{q_{n}}\left((t-x)^{4}, x\right)\right)^{\frac{1}{2}}
$$

Using Lemma 1, we can show that

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}}^{2} G_{n}^{q_{n}}\left((t-x)^{4}, x\right)=0
$$

Also, since

$$
\lim _{n \rightarrow \infty} \alpha_{n}(x)=1+2 x \quad \text { and } \quad \lim _{n \rightarrow \infty} \delta_{n}(x)=x^{2}+2 x
$$

we have desired result.

4. Error estimation

The usual modulus of continuity of f on the closed interval $[0, b]$ is defined by

$$
\omega_{b}(f, \delta)=\sup _{\substack{|t-x| \leq \delta \\ x, t \in[0, b]}}|f(t)-f(x)|, \quad b>0
$$

It is well known that, for a function $f \in E$,

$$
\lim _{\delta \rightarrow 0^{+}} \omega_{b}(f, \delta)=0
$$

where

$$
E:=\left\{f \in C[0, \infty): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}} \text { is finite }\right\} .
$$

The next theorem gives the rate of convergence of the operators $G_{n}^{q}(f ; x)$ to $f(x)$, for all $f \in E$.

Theorem 4. Let $f \in E$ and let $\omega_{b+1}(f, \delta)(b>0)$ be its modulus of continuity on the finite interval $[0, b+1] \subset[0, \infty)$. Then for fixed $q \in(0,1)$, we have

$$
\left\|G_{n}^{q}(f ; x)-f(x)\right\|_{C[0, b]} \leq N_{f}\left(1+b^{2}\right) \delta_{n}(b)+2 \omega_{b+1}\left(f, \sqrt{\delta_{n}(b)}\right)
$$

Proof. The proof is based on the following inequality

$$
\begin{align*}
\left|G_{n}^{q}(f ; x)-f(x)\right| \leq & N_{f}\left(1+b^{2}\right) G_{n}^{q}\left((t-x)^{2} ; x\right) \tag{15}\\
& +\left(1+\frac{G_{n}^{q}(|t-x| ; x)}{\delta}\right) \omega_{b+1}(f, \delta)
\end{align*}
$$

for all $(x, t) \in[0, b] \times[0, \infty):=S$.
To prove (15) we write

$$
\begin{aligned}
& S=S_{1} \cup S_{2}:=\{(x, t): 0 \leq x \leq b, 0 \leq t \leq b+1\} \\
& \cup\{(x, t): 0 \leq x \leq b, t>b+1\}
\end{aligned}
$$

If $(x, t) \in S_{1}$, we can write

$$
\begin{equation*}
|f(t)-f(x)| \leq \omega_{b+1}(f,|t-x|) \leq\left(1+\frac{|t-x|}{\delta}\right) \omega_{b+1}(f, \delta) \tag{16}
\end{equation*}
$$

where $\delta>0$. On the other hand, if $(x, t) \in S_{2}$, using the fact that $t-x>1$, we have

$$
\begin{align*}
|f(t)-f(x)| & \leq M_{f}\left(1+x^{2}+t^{2}\right) \tag{17}\\
& \leq M_{f}\left(2+3 x^{2}+2(t-x)^{2}\right) \\
& \leq N_{f}\left(1+b^{2}\right)(t-x)^{2}
\end{align*}
$$

where $N_{f}=6 M_{f}$. Combining (16) and (17), we get (15).
Now from (15) it follows that

$$
\begin{aligned}
\left|G_{n}^{q}(f ; x)-f(x)\right| \leq & N_{f}\left(1+b^{2}\right) G_{n}^{q}\left((t-x)^{2} ; x\right) \\
& +\left(1+\frac{G_{n}^{q}(|t-x| ; x)}{\delta}\right) \omega_{b+1}(f, \delta) \\
\leq & N_{f}\left(1+b^{2}\right) G_{n}^{q}\left((t-x)^{2} ; x\right) \\
& +\left(1+\frac{\left[G_{n}^{q}\left((t-x)^{2} ; x\right)\right]^{1 / 2}}{\delta}\right) \omega_{b+1}(f, \delta) .
\end{aligned}
$$

By Lemma 2 we have

$$
\begin{gathered}
G_{n}^{q}\left((t-x)^{2} ; x\right) \leq \delta_{n}(b) \\
\left|G_{n}^{q}(f ; x)-f(x)\right| \leq N_{f}\left(1+b^{2}\right) \delta_{n}(b)+\left(1+\frac{\sqrt{\delta_{n}(b)}}{\delta}\right) \omega_{b+1}(f, \delta)
\end{gathered}
$$

Choosing $\delta=\sqrt{\delta_{n}(b)}$, we get the desired estimation.
Acknowledgements. The authors are thankful to referee for valuable suggestions for better presentation of the paper.

References

[1] Agratini O., Doğru O., Weighed approximation by q-Szász-King type operators, Taiwanese J. Math., 14(2010), 1283-1296.
[2] Aral A., A generalization of Szász Mirakyan operators based on q-integers, Math. Comput. Model., 47(2008), 1052-1062.
[3] Aral A., Gupta V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Analysis, 72(2010), 1171-1180.
[4] Aral A., Gupta V., The q-derivative and applications to q-Szász Mirakyan operators, Calcolo, 43(3)(2006), 151-170.
[5] DeVore R.A., Lorentz G.G., Constructive Approximation, Springer, Berlin, (1993).
[6] Gasper G., Rahman M., Basic Hypergeometrik Series, Encyclopedia of Mathematics and its Applications, Vol 35, Cambridge University Press, Cambridge, UK, 1990.
[7] Gupta V., A note on modified Szász operators, Bull. Inst. Math. Acad. Sinica, 21(3)(1993), 275-278.
[8] Gupta V., Aral A., Convergence of the q-analogue of Szász Beta operators, Applied Mathematics and Computation, 216(2010), 374-380.
[9] Gupta V., Heping W., The rate of convergence of q-Durrmeyer operators for $0<q<1$, Math. Methods Appl. Sci., 31(16)(2008), 1946-1955.
[10] Kac V.G., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[11] Koornwinder T.H., q-Special Functions, a Tutorial, in: M. Gerstenhaber, J. Stasheff (Eds), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemp. Math., 134 (1992), Amer. Math.Soc. 1992.
[12] Mahmudov N.I., On q-parametric Szász-Mirakjan operators, Mediterr J. Math., 7(3)(2010), 297-311.
[13] Mahmudov N.I., Kaffaoglu H., On q-Szász-Durrmeyer operators, Central Eur. J. Math., 8(2)(2010), 399-409.
[14] Prasad G., Agrawal P.n., Kasana H.S., Approximation of functions on $[0, \infty]$ by a new sequence of modified Szász operators, Math. Forum, 6(2)(1983), 1-11.
[15] Radu C., Taraibe S., Veteleanu A., On the rate of convergence of a new q-Szász-Mirakjan operators, Stud. Univ. Babes-Bolyai Math., 56(2)(2011), 527-535.
[16] De Sole A., Kac V.G., On integral representation of q-gamma and q-beta functions, AttiAccad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16(1)(2005), 11-29.

Vijay Gupta
 School of Applied Sciences

Netaji Subhas Institute of Technology
Sector 3 Dwarka, New Delhi 110078 India
e-mail: vijaygupta2001@hotmail.com

Ali Aral and Muzeyyen Ozhavzali
 Kirikalle University

Faculty of Science and Arts Department of Mathematics Yahşinan, Turkey
e-mail: aliaral73@yahoo.com or thavzalimuzeyyen@hotmail.com
Received on 01.05.2011 and, in revised form, on 13.06.2011.

[^0]: * The work was done jointly, while the first author visited Kırıkkale University during September 2010, supported by The Scientific and Tecnological Research Council of Turkey

