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ON THE REFINED MEASURES OF GROWTH

OF GENERALIZED BIAXIALLY SYMMETRIC

POTENTIALS HAVING INDEX - q

Abstract. To obtain more refined measure of growth the q-pro-
ximate type is constructed for a class of generalized biaxi-
ally symmetric potentials (GBASP’s). Finally, we obtain lower
q−proximate type for GBASP’s. Our results generalize some re-
sults of Kumar [7].
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1. Introduction

Let f(z) =
∑∞

n=0 anz
n be analytic in finite disc DR ≡ {z : |z| < R,

0 < R <∞}. The concept of index - q, the q-order ρR(q) and lower q-order
λR(q) are introduced by Kapoor and Gopal [5] in order to obtain a measure
of growth of the maximum modulus M(r) ≡ M(r, f) = max|z|=r |f(z)|,
0 < r < R, of f(z) when it is rapidly increasing. Thus let M(r) → ∞ as
r → R and for q = 2, 3, ..., set

(1)
ρR(q)
λR(q)

=
lim sup

r → R inf

log[q]M(r)

− log(R−rR )
,

where log[0]M(r) = M(r) and log[q−1]M(r) = log[log[q−2]M(r)]. The func-
tion f(z) is said to have the index - q if ρR(q) <∞ and ρR(q − 1) =∞. If
q is the index of f(z) then ρR(q) is called the q-order of f(z).

The notions of the index and q-order play a significant role in classifying
the rapidly increasing functions analytic in DR. However, these concepts
fail to compare the rates of growth of any two functions analytic in DR that
have same q-order. To refine this scale Gopal and Kapoor [4] studied the
distinct parameters such as q-type for the rates of growth of such functions
as:
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Definition 1. A function analytic in DR and having q-order ρR(q) is
said to be of q-type TR(q) and lower q-type tR(q) if

(2)
lim sup

r → R inf

log[q−1]M(r)

((R− r)/R)−ρR(q)
=

TR(q)
tR(q)

.

In studying a more refined measure of growth of functions analytic in DR

having index - q and q-order ρR(q), we consider a real-valued comparison
function ρR(q, r) (0 < r < R) having the following properties:

(i) ρR(q, r) is positive,continuous and piecewise differentiable in
0 ≤ r0 < r < R.

(ii) limr→R− ρR(q, r)→ ρR(q); (0 ≤ ρR(q) <∞)
(iii) limr→R− −ρ′R(q, r)(R−r) log((R−r)/R) = 0, where ρ′R(q, r) is either

the right or left hand derivative at points where these are different,
and

(iv) limr→R sup log[q−1]M(r)

(R/(R−r))ρR(q,r) = 1.

A function ρR(q, r) satisfying the conditions (i)-(iv) is said to be a q-proxi-
mate order. It is evident that ρR(q, r) has been linked with the q-order
ρR(q, r) and M(r) to give information about the growth of f(z). Since the
q-proximate order ρR(q, r) is not linked with the q-type TR(q), so it be-
comes a natural question to the existence of another constant which should
take into account the q-type of the function and is closely related with its
maximum modulus. In analogy with the q-proximate order we call this func-
tion TR(q, r) as a q-proximate type or simply proximate type of an analytic
function f(z) with index - q.

Definition 2. A real valued function TR(q, r) is said to be a q-proximate
type of a function analytic in DR having index - q, q-order ρR(q) and q-type
TR(q), if for given η(0 < η <∞), TR(q, r) satisfies the following properties:

(a) TR(q, r) is continuous and piecewise differentiable in 0 ≤ r0 < r < R.
(b) TR(q, r)→ TR(q) as r → R−.

(c) (R− r)T
′
R(q,r)

TR(q,r)
→ 0 as r → R, where T ′R(q, r) can be interpreted as

either T ′R(q, r−) or TR(q, r+) when these are different, and

(d) lim supr→R
log[q−2]M(r)

exp{(R/R−r)ρR(q)TR(q,r)}
= η.

To establish the existence of q-proximate type of a function analytic in
DR. We note the following:

Proposition 1. exp{(R/(R−r))ρR(q)TR(q, r)} is monotonically increas-
ing function for r > r0.

Proof. This proposition can be obtain following the lines of a result of
Kumar[7, Thm. 2]. �
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2. Definitions and some basic results about generalized
biaxially symmetric potentials (GBASP’s)

Let F (α,β) be a real-valued regular solution to the generalized biaxially
symmetric potential equation[

∂2

∂x2
+

∂2

∂y2
+

(2α+ 1)

x

∂

∂x
+

(2β + 1)

y

∂

∂y

]
F (α,β) = 0, α > β > −1

2
,

subject to the Cauchy data F
(α,β)
x (0, y) = F

(α,β)
y (x, 0) = 0 which is satisfied

along the singular lines in the open hypersphere
∑(α,β)

R : x2 + y2 < R2 of
finite radius R about the origin. Such functions with even harmonic exten-
sions are referred to as generalized biaxisymmetric potentials (GBSAP’s)
having local expansions of the form

F (α,β)(x, y) =
∞∑
n=0

anR
(α,β)
n (x, y)

in terms of the complete set

R(α,β)
n (x, y) = (x2 + y2)nP (α,β)

n [
[
(x2 − y2)/(x2 + y2)

]
/P (α,β)

n (1),

n = 0, 1, 2, 3, · · · , of biaxisymmetric harmonic potentials, where P
(α,β)
n are

Jacobi Polynomials ([1], [10]). Let the operator Kα,β uniquely associated
even analytic function

f(z) =
∞∑
n=0

anz
2n, z = x+ iy ∈ C, onto GBASP

F (α,β)(x, y) =
∞∑
n=0

anR
(α,β)
n (x, y).

Following McCoy [9], from Karoonwinder’s integral for Jacobi polynomials,

F (α,β)(x, y) = Kα,β(f) =

∫ 1

0

∫ π

0
f(ζ)µα,β(t, s)dsdt

where

µα,β(t, s) = γ1α,β(1− t2)α−β−1t2β+1(sin s)2α

ζ2 = x2 − y2t2 − i2xyt+ cos s

γ1α,β = 2d(α+ 1)d
(

1

2

)
d(α, β)d

(
β +

1

2

)
.
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The inverse operator K−1α,β applies orthogonality of Jacobi polynomials
([1],p.8) and Poisson Kernel ([1], p. 11) to uniquely define the transform

f(z) = K−1α,β(Fα,β) =

∫ +1

−1
F (α,β)(rξ, r(1− ξ2)1/2)να,β

(
(z/r)2, ξ

)
dξ

where να,β(=, ξ) = Sα,β(=, ξ)(1− ξ)α(1 + ξ)β

Sα,β(=, ξ) = ηα,β
1−=

(1 + =)α+β+2
F

(
α+ β + 2

2
;
α+ β + 3

2
;β + 1;

2=(1 + ξ)

(1 + =)2

)

ηα,β = d(α+ β + 2)/2α+β+1d(2α+ 1)d(β + 1).

Here the normalization Kα,β(1) = K−1α,β(1) = 1 is taken place. The Kernel
Sα,β(=, ξ) is analytic on ||=|| < 1 for −1 ≤ ξ ≤ 1.

Let a real valued generalized biaxially symmetric potentials GBASP’s

F (α,β) regular in Σ
(α,β)
R having q-order ρR(q)(0 < ρR(q) < ∞), q-type

TR(q)(0 ≤ TR(q) ≤ ∞) and satisfying in addition (a)-(c). Then, for a
given η(0 < η <∞), TR(q, r) satisfies also:

lim sup
r→R

log[q−2]M(r, F (α,β))

exp{(R/(R− r))ρR(q)TR(q, r)}
= η,

M(r, F (α,β)) = max
x2+y2=r2

|F (α,β)(x, y)|.

The q-proximate type of a real valued GBASP is not uniquely determined.
For example, if we add log[q−2] γ/(R/(R − r))ρR(q), 0 < log[q−2] γ < ∞ in
the q-proximate type TR(q), we again obtain a new q-proximate type for the
same GBASP and the corresponding value of η is divided by log[q−3] γ.

Since R
(α,β)
n (x, y) form complete sets for even harmonic, respectively an-

alytic functions, regular at the origin. The GBASP’s, then, are the natural
extensions of harmonic or analytic functions.Hence we anticipate proper-
ties similar to those of the harmonic functions found from associated an-
alytic f , by taking Ref , the real part of f . The Envelope Method ([2],
[3]) easily establishes that the GBASP F (α,β) is regular in the hypersphere∑(α,β)

R : x2 + y2 < R2 of finite radius R about the origin if, and only if
its associate f is analytic in the disk DR : x2 + y2 < R2. On the singular
axis y = 0, the identity f(x+ i0) = F (α,β)(x, 0), |x| < R can be analytically
continued as f(z) = F (α,β)(z, 0), |z| < R. By the Hadamard three circle the-
orem,we know, if f(z) is analytic in finite disc, logM(r, f) is an increasing
convex function of log r in 0 < r < R. Using this theorem for F (α,β)(x, y) we
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have if F (α,β)(x, y) is regular in open hypersphere Σ
(α,β)
R , logM(r, F (α,β)) is

an increasing convex function of log r in 0 < r < R. It has the representation

logM(r, F (α,β)) = logM(r0, F
(α,β))(3)

+

∫ r

r0

w(x, F (α,β))

x
dx, 0 < r0 < r < R,

where w(x, F (α,β)) is a positive, continuous and piecewise differentiable func-
tion of x. In view of the above properties of GBASP’s the existence of (3)
established by using [11].

McCoy [8] considered the approximation of Pseudoanalytic functions on
the disc. Pseudoanalytic functions are constructed as complex combinations
of real-valued analytic solutions to the Stokes-Beltrami system. These solu-
tions include the GBASP’s. McCoy obtained some coefficient and Bernstein
type growth theorems on the disc. Also, Kapoor and Nautiyal [6] character-
ized the order and type of GBASP’s (not necessarily entire) in terms of rates
of decay of approximation errors on both sup norm and Lp-norm, 1 ≤ p <∞,
for q = 2.To obtain more refined measure of growth of GBASP’s ,in this pa-
per, we define q-proximate type of GBASP’s having index - q and then prove
its existence. The idea is further extended by defining the λq-proximate
type and establish its existence also. It is significant to mention here that
Kumar[7] obtained some results for q = 2. Our results and methods in the
present paper are different from all those of authors mentioned above.

Now we prove

Lemma 1. For a real valued GBASP F (α,β), regular in hyper sphere∑(α,β)
R and having q-order ρR(q) and lower q-order λR(q), such that

(4)
lim sup

r → R inf

(R− r)w(r, F (α,β))M(r, F (α,β))

∆[q−1]M(r, F (α,β))
=

γR(q)
δR(q)

,

then

(5) δR(q) ≤ λR(q) ≤≤ ρR(q) ≤ γR(q),

where

∆[q−1]M(r, F (α,β)) = Πq−1
i=0 log[i]M(r, F (α,β)).

Proof. For given ε > 0 and 0 < r0 < r < R, we have from (4)

(6) δR(q)− ε < (R− r)w(r, F (α,β))M(r, F (α,β))

r∆[q−1]M(r, F (α,β))
< γR(q) + ε.
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On differentiating (3), we get

(7)
M ′(r, F (α,β))

M(r, F (α,β))
=
w(r, F (α,β))

r

On using (7) in (6), we obtain

(8)
δR(q)− ε
(R− r)

<
M ′(r, F (α,β))

∆[q−1]M(r, F (α,β)
<
γR(q) + ε

(R− r)
.

For q = 2 the result has been obtained by Kumar [7]. Now consider the
case for q > 2, integrating (8), we get

(δR(q)− ε) log(1/(R− r)) < log[q]M(r, F (α,β)) < (γR(q) + ε) log(1/(R− r)).

Dividing above equation by log(R/(R− r)) we get

0(1) + (δR(q)− ε) < log[q]M(r, F (α,β))

log(R/(R− r))
< (γR(q) + ε) + o(1)

as r → R. Proceeding to limits, we get the requires results i.e., (5). �

Lemma 2. Let a real valued GBASP F (α,β) regular in open hyper sphere

Σ
(α,β)
R having q-order ρR(q)(0 < ρR(q) <∞), q-type TR(q) and lower q-type

tR(q) such that

(9)
lim sup

r → R inf

w(r, F (α,β))M(r, F (α,β))

r∆[q−1]M(r, F (α,β))(R/(R− r))ρR(q)+1
=

γ∗R(q)
δ∗R(q)

,

then

(10) δ∗R(q) ≤ ρR(q)tR(q) ≤ ρR(q)TR(q) ≤ γ∗R(q).

Proof. Using(9) for ε > 0 and 0 < r0 < r < R, we get

(11) δ∗R(q)− ε < w(r, F (α,β))M(r, F (α,β))

r∆[q−2]M(r, F (α,β))(R/(R− r))ρR(q)+1
< γ∗R(q) + ε

In view of (7), (11) gives

(δ∗R(q)− ε)(R/(r − r))ρR(q)+1 <
M ′(r, F (α,β))

∆[q−2]M(r, F (α,β))
(12)

< (γ∗R(q) + ε)(R/(R− r))ρR(q)+1
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For q = 2, integrating (12) we get

(δ∗R(2)− ε)(R/(R− r))ρ(2)/ρR(2) < logM(r, F (α,β))

< (γ∗R(2) + ε)(R/(R− r))ρR(2)/ρR(2)

or

(δ∗R(2)− ε) < ρR(2)
logM(r, F (α,β))

(R/R− r)ρR(2)
< (γ∗R(2) + ε).

Proceeding to limits, we get

(13) δ∗R(2) ≤ ρR(2)tR(2) ≤ ρR(2)TR(2) ≤ γ∗R(2).

Now for q > 2, similarly on integrating (12) we get

(δ∗R(q)− ε)(R/(R− r))ρR(q)

ρR(q)
< log[q−1]M(r, F (α,β))

< (γ∗R(q) + ε)
(R/(R− r))ρR(q)

ρR(q)

On applying the limits we get

(14) δ∗R(q) ≤ ρR(q)tR(q) ≤ ρR(q)TR(q) ≤ γ∗R(q)

combining (13) and (14), we get (10). Hence the proof is completed. �

Now we prove

3. Main results

3.1. q - Proximate type

Theorem 1. Let a real valued GBASP F (α,β) regular in open hypersphere

Σ
(α,β)
R having q-order ρR(q)(0 < ρR(q) <∞) and q-type TR(q)(0 ≤ TR(q) ≤
∞) such that limits in (4) and (9) exist. Then, for a positive real number
η, log(η−1 log[q−2]

M(r, F (α,β))/(R/(R− r))ρR(q) is a q-proximate type of a GBASP F (α,β).

Proof. Let

(15) SρR(q, r) =
log(η−1 log[q−2]M(r, F (α,β)))

log(R/(R− r))ρR(q)
.

Since log[q−1]M(r, F (α,β)) is positive, continuous and increasing function of
r for R > r > r0 > 0, which is differentiable in adjacent open intervals, it fol-
lows that SρR(q, r) satisfies (c). Existence of limit in (9) implies that F (α,β)
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is of perfectly regular growth and moreover, SρR(q, r)→ TR(q, r) as r → R.
Differentiating (15), we obtain

S′ρR(q, r)

SρR(q, r)
=

M ′(r, F (α,β))

log(η−1 log[q−2]M(r, F (α,β)))∆[q−2]M(r, F (α,β))
− ρR(q)

(R− r)

or

(R− r)SρR(q, r)

SρR(q, r)
' w(r, F (α,β))M(r, F (α,β))(R− r)

r∆[q−1]M(r, F (α,β))
− ρR(q)

Proceeding to limits as r → R and taking (1.4)into account, we get

(R− r)S′ρR(q, r)

SρR(q, r)
→ 0 as r → R.

Thus SρR(q,r) satisfies the condition (c).
From (15), (d) is easily obtained. In this way all the conditions for

SρR(q, r) to be a q-proximate type of GBASP F (α,β) are satisfied and hence
the proof of the theorem is completed. �

Definition 3. A real valued GBASP F (α,β) is said to be of irregular
growth if 0 < λR(q) 6= ρR(q) <∞.

3.2. Lower q-proximate type

Lemma 3. The lower q-type of a real valued GBASP F (α,β) of irregular
growth is zero.

Proof. If F (α,β) is of irregular growth then ρR(q) > λR(q) > 0. We have

(16) lim inf
R→r

log[q]M(r, F (α,β))

log(R/(R− r))
= λR(q).

Since M(r, F (α,β))→∞ as r → R, log+ may be replaced by log. For given
ε > 0 and r > r0(ε),

log[q]M(r, F (α,β)) < (λR(q)− ε) log(R/(R− r))

or

(17) log[q−1]M(r, F (α,β)) < (R/(R− r))λR(q)−ε

whereas for a sequence of values of r →∞,

(18) log[q−1]M(r, F (αβ)) < (R/(R− r))λR(q)+ε
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Dividing (17),(18) by (R/(R− r))ρR(q) and passing to limits to the argu-
ment shows that

lim inf
r→R

log[q−1]M(r, F (α,β))

(R/(R− r))ρR(q)
= 0.

Hence the proof is completed. �

From Lemma 3, we conclude that the case tR(q) > 0 is only limited to
the study of GBASP Fα,β of regular q-growth. In such case we can define
similarly lower q-proximate type. But to be more general, let λR(q) be such
that

(19) lim inf
r→R

log[q−1]M(r, F (α,β))

(R/(R− r))λR(q)
= tλR(q),

tλR(q) is said to be the λR(q)-type of GBASP F (α,β). If ρR(q) = λR(q),
then tλR(q) is the same as lower q-type tR(q). There exist GBASP F (α,β)

for which tλR(q) is nonzero and finite. For such GBASP F (α,β) we define
λR(q)−proximate type as follows:

Definition 4. A real valued positive function tλR(q, r) is said to be a
λR(q)-proximate type of GBASP F (α,β) having index - q, q-order ρR(q),
lower q-order λR(q) and λR(q)−type tλR(q)(0 < tλR(q) < ∞) if for given
η > 0, tλR(q, r) satisfies the following properties:

(i) tλR(q, r) is continuous and piecewise differentiable for r → r0,
(ii) tλR(q, r)→ tλR(q) as r → R,

(iii)
(R−r)t′λR (q,r)

tλR (q,r) → 0 as r → R, where t′λR(q, r) is either the left or right

hand derivative at points where these are different, and

(iv) lim infr→R
log[q−2]M(r,F (α,β))

exp{(R/(R−r))λR(q)tλR (q,r)} = η.

Now we have

Theorem 2. For every GBASP F (α,β) of q-order ρR(q), lower q-order
λR(q) and λR(q)−type tλR(q)(0 < tλR(q) <∞), there exists a lower q-proximate
type tλR(q, r) satisfying (i) through (iv).

Proof. This theorem can be proved in a similar manner as Theorem 1
for the case TR(q, r), so we omit the proof. �

Theorem 3. Let a real valued GBASP F (α,β) regular in open hypersphere∑(α,β)
R and having q-order ρR(q), lower q-order λR(q)(0 ≤ λR(q) ≤ ρR(q) <

∞), q-type TR(q) and lower q-type tR(q). Then

(20)
c/tR(q)
d/tR(q)

≤ lim
r→R

(R− r)S′ρR(q, r)

SρR(q, r)
+ ρR(q) ≤ c

tR(q)
,
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where

(21)
lim sup

r → R inf

w(r, F (α,β))RM(r, F (α,β))

r(R/(R− r))ρR(q)+1∆[q−2]M(r, F (α,β))
=

c
d
.

Moreover, if F (α,β) is of irregular growth then

(22) −∞ ≤ lim
r→R

(R− r)SλR(q, r)

SλR(q, r)
≤ d

tλR(q, r)
− λR(q),

where SλR(q, r) is a function in (1.15) corresponding to λR(q) and tλR(q) is
the λR(q)−type of F (α,β).

Proof. By (3) and the definition of q-type TR(q) and lower q-type tR(q)
we observe that

(23)
lim sup

r → R inf

log[q−2](
∫ r
r0

w(x,F (α,β))
x dx)

(R/(R− r))ρR(q)
=

TR(q)
tR(q)

,

similarly, for GBASP F (α,β) of irregular growth,

(24) lim inf
r→R

log[q−2](
∫ r
r0

w(x,F (α,β))
x dx)

(R/(R− r))λR(q)
= tλR(q).

Fix r0 ∈ [0,∞] such that η = log[q−1]M(r0, F
(α,β)). Hence

lim
r→R

log(η−1 log[q−2]M(r, F (α,β))) = log[q−2]
∫ r

r0

w(x, F (α,β))

x
dx.

On differentiating (15), we have

S′ρR(q, r)

SρR(q, r)
=

M ′(r, F (α,β))

log(η−1 log[q−2]M(r, F (α,β))∆[q−2]M(r, F (α,β)))
− ρR(q)

R− r

=
w(r, F (α,β))M(r, F (α,β))

r log[q−2](
∫ r
r0

w(x,F (α,β))
x dx)∆[q−2]M(r, F (α,β))

− ρR(q)

(R− r)

(R− r)S′ρR(q, r)

SρR(q, r)
+ ρR(q)

=
w(r, F (α,β))R

r(R/(R− r))∆[q−2]M(r, F (α,β)) log[q−2]
∫ r
r0

w(r,F (α,β))
x dx

.

Proceeding to limits in above and using (21), (23) and (24),we get (20).
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In case ρR(q) > λR(q), we have

SλR(q, r) =
log(η−1 log[q−2]M(r, F (α,β)))

(R/(R− r))λR(q)
=

log[q−2]
∫ r
r0

w(x,F (α,β))
x dx

(R/(R− r))λR(q)
.

Similarly using (24),we get (20). �
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