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SOBOLEV SPACES ”"WITH MIXED FUNCTIONS”

ABSTRACT. This paper describes some generalization of mod-
ular function spaces L,y defined by a modular I, (f) =

f; © (x, fcd ¥ (y, f(x,y)) dy) dzx, ([3]). The next part of this paper

focuses on using of spaces, defined previously, to introduce Sobolev
spaces as a vector subspace of the generalized space L . Some
selected properties of these spaces are presented.
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1. Basic notions

Let us denote T = (a,b) x (¢,d) C R? —o0o < ¢ < d < +oco and let
L (T) be the space of Lebesgue integrable real functions on 7', with equality
almost everywhere. Let real functions ¢ : (a,b) x R — [0,+00) and 1 :
(¢,d) x R — [0,400) satisfy the following conditions:
1. ¢ and 1 are measurable functions of the first variable for every fixed
value of the second one;
2. ¢ (t,u) and 1 (t,u) are even, convex and continuous at zero with respect
to the second variable, ¢ (¢,0) = (¢,0) =0, ¢ (t,u) > 0 and ¢ (t,u) >0
if u # 0 for a.e. t.
3. f;gp (t,u)dt < oo, fcdz/J (t,u)dt < oo for every u.

2. Selected properties of the space L,

For any function f € L (1) we define a functional

(1) Lo (1) = | bso(a:, / dwy,f(x,y))dy) da

and we denote by L (1) the vector space of all functions f from L (T')
such that I, (Af) < oo for some A > 0, ([2]). By E, (T) we denote the
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vector space of all finite elements of L (T') i.e. such that I, (Af) < oo for
every A > 0. The functional I, is a convex modular in L ("), hence

: f
| fllop = inf {u >0: I,y (u <1
is norm in Ly, (7). Convergence f, — f in the sense of this norm is
equivalent to the condition

(2) IoyMN(fn—1f)) =0, n—o0

for every A > 0. If (2) holds only for some X\ > 0, we say that the sequence
fn is convergent to f in the sense of the modular I, .

Theorem 1. The space Ly, (T) is complete with respect to the modular
I,.. Moreover, Ly (T) is also complete in the sense of the norm || - ||,.-

Proof. Let (f,)be a Cauchy sequence in the sense of I, yin Ly (T').
Then (f,) is also a Cauchy sequence in measure. Thus there exists a mea-
surable function f such that (f,,) is convergent in measure to f. So (f,,) con-
tains a subsequence (fp, ) convergent to f almost everywhere in 7. Hence,
for fixed n and a.e. y € (¢,d) we have ¥ (y, A (fn (z,y) — fo, (z,y))) —
YA (fn (z,y) — f(x,y))) for a.e. z € (a,b) as k — oo, for A > 0. Applying
Fatou lemma with respect to the variable y and then with respect to the
variable  we obtain

/abw (x,/cdw(y,A(fn (z,y) — f(x,y)))dy> da
B /abw <"’“ /cd lim (5 A (fu (2.9) = fu, (2,9))) dy) dz

<liminf Loy (A (fo = fr)) <€

for sufficiently large n. Thus I,y (A (fn — f)) — 0 as n — oo for some
A > 0. From the inequality

o (5) = Tasw O = )+ Lo O

we conclude that f € Ly (T). [

Let S (T') be the set of all simple functions from L (T) and let L (T)
be the set of essentially bounded functions from L (7). Then S(T) C
L (T). Let us denote K = supess(, et | f(%,y) | for f € L>(T). Then
I, (Af) < oo for every A > 0. Thus L™ (T') C E,y (T).
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Lemma 1. The set S (T') of simple functions on T is dense in Ly (T)
in the sense of the modular 1, . Moreover, S(T) is dense in E,y (T) in
the sense of the norm.

Proof. Let f € L,y (T), f > 0, and let A > 0 be a constant such that
I, (Af) < oo. Let (fn) be a non-decreasing sequence of nonnegative simple
functions such that f,, — f on T. Then

f(xvy) > f(a:,y) - fn (%,y)

for arbitrary n and every (z,y) € T. Hence

Y (y, A\ (2,9) 2 (y, \(f (2,9) = fu(z,9))) >0 as n— o0

for any A > 0 and (z,y) € T. Since f € L,y (T), we have fcdw (y, \f (z,y)) dy
< oo for a.e. x € (a,b)) and for sufficiently small A > 0. By the dominated
convergence theorem we obtain

d
/1/1(97)\(f(1’ay)—fn(x,y)))dy—m a5 1o oo

for a.e. x € (a,b). Using continuity of ¢ with respect to the second variable,
we have

so(x,/cdw(yak(f(w,y)—fn(ﬂ%y)))dy)—>0 as  n — 0o

almost everywhere in (a,b). Moreover

1y WA @)~ fa () W) <o | "W (@) )

and f(f © <x, fcd¢ (y, Af (z,9)) dy) dx < oo for sufficiently small A > 0. Ap-

plying the dominated convergence theorem again, we obtain I, y, (A (fn — f))
— 0 as n — oo for small A > 0. Thus (f,,) is convergent to f in the sense of
the modular I, . If f € Ly, (T') is arbitrary, we may split f into positive
and negative parts and apply the above result. Arguing in the like manner
it is shown that S (7') is dense also in E, 4 (T) in the sense of the norm. W

Let So(T') be the set of all simple functions of the form g (z,y) =
o bixa, (z,y), where b; are rational numbers and x4, are the charac-
teristic functions of the measurable sets A; C T.

Lemma 2. The set Sy (T') is dense in the sense of the modular I in
S(T).
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Proof. Let h € S(T), h(z,y) = Y ;" aixp, (x,y), where B; C T are
measurable, pairwise disjoint and | B; |< co. We denote r = maxj<j<n | a; |.
Let A > 0 and € > 0 be given. By the condition 3 and separability of
Lebesgue measure, there exists a sequence (A,) of sets A, C T such that
for every set B; we may choose a set Ay, in (A;) in such manner, that

I ewnvan ey < <.
Ak, —B; n

Let us take B = |J_; B; and let 6 > 0 be fixed. We choose rational numbers
b1,ba, ..., by in such that | b;—a; |[< d and | b; |< 2r fori =1,2,...,n. Then

| B (2,y) — g () [ 20> | X, (2,9) = XA, (,9) | + OxB (2,9) .
i=1

Hence

o (1A 0o -0 )

n

< (y, Ay (x (@,) = xay, (x, y))) + ¢ (y, Aoxs (z,y))
=1

=Y Uy, ) | xa, (@,9) = xay, (2.9) | +0 (4, 76) X (2,y)
=1

Thus, we have
d 1
[ (50— )
nood
< Z/ ¥ (Y, Ar) | xB, (z,y) — xa,, (z,y) | dy
i=17¢

d
+/ Y (y, o) xB (z,y) dy.

By convexity of ¢ we have

/aw (x’/cdd; <y iA(h (2, y) _g(x,y))> dy> "

n b d
< Z/ @ <w2/ ¥ (Y, Ar) | xs, (2,y) = xa,, (2,9) | dy) dx
i—=17a c

b d n
+/ s0<x72/ w(y,M)xB(x,y)dy> de =Y Li+1.
a c i=1
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Let us denote L = fcdw (y, A\r) dy. Applying Jensen’s inequality, we obtain
fs b [ e (20 (10 ) - s (00)) 0 ) oy

= //Ak ¢ (2, 1) (y, Ar) dzdy.

It is easy to see that I < e for sufficiently small § > 0. Consequently,

1 n
I,y <4)\(h—g)> SZ%%—s:s(chl).
i=1

This shows that the set Sy (T') is dense in S (T) in the sense of the modular. B
By Lemma 1 and Lemma 2 we obtain
Theorem 2. The space L,y (T) is separable in the sense of I, .

The real functions ®; and @5 defined on a product («, 8) x R satisfy the
condition (%) if there holds the following inequality

(%) Dy (t,u) < c1Pg (¢, cou) + F (1)

for all w > 0 and almost every t € («, ), where F' is a nonnegative, integrable
function in (o, 8) and c¢1, c2 are positive constants.

Theorem 3. If pairs of functions (¢1,p2) and (11,12) satisfy the con-
dition (x), then Ly, y, (T') C Ly, 4, (T).

Proof. We have
o1 (z,u) < Kypo (2, Kou) + h (x)

for all u > 0 and almost every = € (a,b), where h is a nonnegative and
integrable function in (a,b), K1, K9 > 0. We have also

Y1 (y,u) < L1a (y, Lau) + g (y)

for all w > 0 and almost every y € (c¢,d), where g is a nonnegative and
integrable function in (¢, d), Ly, Lo > 0.

Let f € Ly, y, (T) and let us denote A\g = m, where A > 0 is such
that I, 4, (Af) < co. We may suppose that L; > land K3 > 1. Then

Y1 (y, Do f (z,9)) < ﬁwg (¥, Mf (2,9) + 9 ()
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and

d d d
| oot @y < g [T @ad+ ot

Hence we obtain
d d
©1 <:c/c (O (y,Aof(ﬂfyy))dy> < %sz (x/c Vo (y, Mf (w,y))dy>
1 1 d
+ gh(w) + ¢ <x2/ 9(y) dy)

and

b d
/ o1 (x / W, Aof<x,y>>dy) dz < K11, 5, (M)

+/abgpl <x,2/cdg(y)dy> dﬂc+/abh(:v)dx<oo.

This shows that I, 4, (Aof) < oo and we conclude that f € Ly, 5, (7). B

Corollary. If pairs of functions (p1,92) and (11,12) satisfy the condi-
tion (x), the embedding Ly, ., (T) C Ly, y, (T) is continuous.

Proof. If f € Ly, (T), then Ly, (i
gous manner as in the proof of Theorem 3 we have

b d C
/a o1 <f”/ v (y [ ffH(Z) > dy) o< Kilgy, <| i Hl ¢2>
b d b
+ [l (m/ g(y)dy)dx+/ h (@) da < C,

where C7 = m and the constants K, K5, L1, Lo are from the condition
(%) for pairs of functions (¢1, v2) and (11,12). The inequality

b d
/ $1 <=’E,/ 1 <y, le(x,y)> dy) der < C, where C>1
a c ” f ||902,1ZJ2

implies

) < 1. Arguing in analo-

C
H f Hsm,wlg a H f H‘P27¢2 .
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3. Concept of Sobolev space “with mixed functions”

Let k be an arbitrary nonnegative integer number and let ¢ and v satisfy
the conditions 1 - 3. Denote by X the space of real valued, measurable
functions f on T possessing distributional derivatives D*f up to order k
belonging to the space L, (T'). Define a functional I<(p],€1)/1 on X

1, (f) = }:‘/bw<ledw<ylff<ay»dy>dm

laf<k 7@

The modular space generating by the modular I;kz)ﬁ we denote by Wf;w (T).

The space Wg’w (T') we call the Sobolev space “with mixed functions”. Since

Ig(oli)b is a convex modular, so
k . k) / —
| f ||£02b: inf {5 >0 : I;ﬂ)p (e 1f) < 1}

is a norm in W;fw (T). Convergence f, — f in the sense of the norm || - prkzb
is equivalent to the condition

k
I;w(/\(fn—f))%o as n — oo
for every A > 0.

Lemma 3. Let ) be integrable in (c,d) for everyu. Ifk, = inf,c(qp) ¢ (z,1)
>0 and ky = infyccq) ¥ (y,1) > 0, then is true the following inequality

1 1 d
u < ESO (x’(d—c)kw/c ¢(yau)dy>

foru>1.

Proof. The condition k; > 0 and continuity of ¢ with respect to the
second variable imply

3) WS )

for u > 1. Integrating (3) over y € (¢, d) we obtain
1 d

(4) ug(d—c)kw/c ¥ (y,u)dy

for w > 1. Moreover, for the function ¢ we have

o) ws ()

= o
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for w > 1. Applying (4) and (5) we obtain easily that

e oo [ o).

Theorem 4. Let 1) be integrable in (c,d) for every u. If k, and ky are
positive, then the space Wgw (T) is complete with respect to the norm.

Proof. Let (f,) be a Cauchy sequence in W;fﬂ/} (T"). This means that

I(k (A (fn — fm)) — 0 as m,n — oo for every A > 0. Then, for every a,
] o ]< k, the sequence (D f,,) is a Cauchy sequence in L, 4, (T'). In particular
(fn) is a Cauchy sequence in L,y (T'). By completeness of L, (T') there
exists fo € Ly (T') such that (fy,) is convergent to fy in the sense of the
norm | - ||x. We will prove that f, are locally integrable on 7. We may
suppose ki, ky < 1. Let us denote p = min (1,d — c), then

1 d Pky fn (2, y)
@ x)@/c P |y, —

_ k
(d—c I fa 1S,
d n x’
<eplz, | Y y,if( y)
(k)
c I £ 11,

Let B C T be any compact set and

ky | fn (@,
A={(z,y)€B: Phy [ fo (@ 9) | o

(k)
Then, applying Lemma 3, we obtain
PGS ) IR R R /d Py | fo (2.y) |
k) = "(d — k
I £, ~ ke \ (@) ky I fa I,

for (x,y) € A. Hence

(6) | fn (2,y) | dedy
| fn || /

d_ b d - 1
< kl:/go x,/w f(xy)) dy | dr+ — | B|.
DPRpRy Ja c ||fn|] Dky
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The inequality (6) implies local integrability of f, in T, n = 1,2,... Hence
fn defines a regular distribution

Tfngz//T I (2,y) g (,y) dzdy,

where g € C§° (T'). For every «,| a |< k, we have

(7) | Tpef,9 — Tpef,g |< C//K | fn (2, y) — fo (z,y) | dedy

where C' = max(, y)erjaj<k | D9 (%,y) | and K C T, K is the support of g.
We have from the inequalities (6) and (7)

| Tpef,g — Tpeyyg |

b d fn(xvy)_fo(‘r’y)> ) )
S(lea“o("’“”/c ¢<y’ e Tolow @) 0t G2l K]

X || fo = fo llouw< (C1+C2 | K |) || fa = fo llppy—0 as n— oc.

Hence Tpayf, — Tpef,, n — oo. Since (D*f,), | o |< k| , is the Cauchy
sequence in L, (T), thus there exists f, € Loy (T') such that (Tpay,) is
convergent to Tt as n — oo. Consequently f, = D®fy for every | o |< k.
Now, we have fy € Wg,w (T). Moreover, I, (A (D“f, — D%fo)) — 0 as
n — oo for every A > 0 and | a |[< k. Thus we proved that (f,,) is convergent
to fo with respect to the norm of Wf;ﬂﬁ (7). [ |

Let us observe, that arguing in a like manner as in the proof of Theorem 3,
we obtain the following theorem.

Theorem 5. If pairs of functions (¢1,¢2) and (Y1,12) satisfy the con-
dition (%), then Wﬁ?l»ﬂ’l (T) C W£2,¢2 (T'). The embedding of W;fhw1 (T) in
ngjw (T') is continuous with respect to the norms.

4. Separability of W}  (T)

Let | =Ygz 1 and LL , (T) = [Tisy Ly (7). For any f = (fi)i_; €
Lfo » We define

! b d
p(f) :;/a " (33/6 ¥ (y, fi (x,y))dy> dx.

Obviously, p is a convex modular in L., , (T). Let || - ||; denote the Lux-

emburg norm in Livﬂl) (T'). The space pr’w (T') equipped with this norm is a
Banach space.
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Suppose that the [ indices a@ = (a1, ag) satisfying | o |< k are linearly
ordered in a convenient fashion so that with each f € W£¢ (T) we may

associate a well-defined vector Pf in prw (T)given by
Pf=(D"f)a<k -

We have || f ||§0k2ﬁ:|| Pf | for any f € ijw (T'). So P is an isometric
isomorphism of W:’f , (T') onto subspace of Lia » (D).

Theorem 6. The space Wg?p is separable in the sense of the modular
%)
R
Proof. The space pr o (I) is separable in the sense of p because Ly, y (T')
is separable in the sense of I, ,,. The operator P is an isometric isomorphism

of W:;w (T) onto W = P <W£7w> C pr’w. Since W:j’w (T) is complete,

P (W;f’w) is a closed subspace of Liw (T'). Thus P <W£7¢> is separable in

the sense of p, and hence W:j  (T) is separable in the sense of I S(Dk) . [
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