F A S C I C U L I M A T H E M A T I C I

Nr 48

Marian Liskowski

SOBOLEV SPACES "WITH MIXED FUNCTIONS"

Abstract

This paper describes some generalization of modular function spaces $L_{\varphi, \psi}$ defined by a modular $I_{\varphi, \psi}(f)=$ $\int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi(y, f(x, y)) d y\right) d x,([3])$. The next part of this paper focuses on using of spaces, defined previously, to introduce Sobolev spaces as a vector subspace of the generalized space $L_{\varphi, \psi}$. Some selected properties of these spaces are presented.

Key words: modular space, Sobolev space.
AMS Mathematics Subject Classification: 46A80, 46E30, 46E35.

1. Basic notions

Let us denote $T=(a, b) \times(c, d) \subset R^{2},-\infty<c<d<+\infty$ and let $L(T)$ be the space of Lebesgue integrable real functions on T, with equality almost everywhere. Let real functions $\varphi:(a, b) \times R \rightarrow[0,+\infty)$ and ψ : $(c, d) \times R \rightarrow[0,+\infty)$ satisfy the following conditions:

1. φ and ψ are measurable functions of the first variable for every fixed value of the second one;
2. $\varphi(t, u)$ and $\psi(t, u)$ are even, convex and continuous at zero with respect to the second variable, $\varphi(t, 0)=\psi(t, 0)=0, \varphi(t, u)>0$ and $\psi(t, u)>0$ if $u \neq 0$ for a.e. t.
3. $\int_{a}^{b} \varphi(t, u) d t<\infty, \int_{c}^{d} \psi(t, u) d t<\infty$ for every u.

2. Selected properties of the space $L_{\varphi, \psi}$

For any function $f \in L(T)$ we define a functional

$$
\begin{equation*}
I_{\varphi, \psi}(f)=\int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi(y, f(x, y)) d y\right) d x \tag{1}
\end{equation*}
$$

and we denote by $L_{\varphi, \psi}(T)$ the vector space of all functions f from $L(T)$ such that $I_{\varphi \cdot \psi}(\lambda f)<\infty$ for some $\lambda>0,([2])$. By $E_{\varphi, \psi}(T)$ we denote the
vector space of all finite elements of $L(T)$ i.e. such that $I_{\varphi \cdot \psi}(\lambda f)<\infty$ for every $\lambda>0$. The functional $I_{\varphi, \psi}$ is a convex modular in $L(T)$, hence

$$
\|f\|_{\varphi, \psi}=\inf \left\{u>0: I_{\varphi, \psi}\left(\frac{f}{u}\right) \leq 1\right\}
$$

is norm in $L_{\varphi, \psi}(T)$. Convergence $f_{n} \rightarrow f$ in the sense of this norm is equivalent to the condition

$$
\begin{equation*}
I_{\varphi, \psi}\left(\lambda\left(f_{n}-f\right)\right) \rightarrow 0, \quad n \rightarrow \infty \tag{2}
\end{equation*}
$$

for every $\lambda>0$. If (2) holds only for some $\lambda>0$, we say that the sequence f_{n} is convergent to f in the sense of the modular $I_{\varphi, \psi}$.

Theorem 1. The space $L_{\varphi, \psi}(T)$ is complete with respect to the modular $I_{\varphi, \psi}$. Moreover, $L_{\varphi, \psi}(T)$ is also complete in the sense of the norm $\|\cdot\|_{\varphi, \psi}$.

Proof. Let $\left(f_{n}\right)$ be a Cauchy sequence in the sense of $I_{\varphi, \psi}$ in $L_{\varphi, \psi}(T)$. Then $\left(f_{n}\right)$ is also a Cauchy sequence in measure. Thus there exists a measurable function f such that $\left(f_{n}\right)$ is convergent in measure to f. So $\left(f_{n}\right)$ contains a subsequence $\left(f_{n_{k}}\right)$ convergent to f almost everywhere in T. Hence, for fixed n and a.e. $y \in(c, d)$ we have $\psi\left(y, \lambda\left(f_{n}(x, y)-f_{n_{k}}(x, y)\right)\right) \rightarrow$ $\psi\left(\lambda\left(f_{n}(x, y)-f(x, y)\right)\right)$ for a.e. $x \in(a, b)$ as $k \rightarrow \infty$, for $\lambda>0$. Applying Fatou lemma with respect to the variable y and then with respect to the variable x we obtain

$$
\begin{aligned}
\int_{a}^{b} \varphi(x & \left., \int_{c}^{d} \psi\left(y, \lambda\left(f_{n}(x, y)-f(x, y)\right)\right) d y\right) d x \\
& =\int_{a}^{b} \varphi\left(x, \int_{c}^{d} \lim _{k \rightarrow \infty} \psi\left(y, \lambda\left(f_{n}(x, y)-f_{n_{k}}(x, y)\right)\right) d y\right) d x \\
& \leq \liminf _{k \rightarrow \infty} I_{\varphi, \psi}\left(\lambda\left(f_{n}-f_{n_{k}}\right)\right) \leq \varepsilon
\end{aligned}
$$

for sufficiently large n. Thus $I_{\varphi, \psi}\left(\lambda\left(f_{n}-f\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for some $\lambda>0$. From the inequality

$$
I_{\varphi, \psi}\left(\frac{1}{2} \lambda f\right) \leq I_{\varphi, \psi}\left(\lambda\left(f_{n}-f\right)\right)+I_{\varphi, \psi}\left(\lambda f_{n}\right)
$$

we conclude that $f \in L_{\varphi, \psi}(T)$.
Let $S(T)$ be the set of all simple functions from $L(T)$ and let $L^{\infty}(T)$ be the set of essentially bounded functions from $L(T)$. Then $S(T) \subset$ $L^{\infty}(T)$. Let us denote $K=\operatorname{supess}_{(x, y) \in T}|f(x, y)|$ for $f \in L^{\infty}(T)$. Then $I_{\varphi, \psi}(\lambda f)<\infty$ for every $\lambda>0$. Thus $L^{\infty}(T) \subset E_{\varphi, \psi}(T)$.

Lemma 1. The set $S(T)$ of simple functions on T is dense in $L_{\varphi, \psi}(T)$ in the sense of the modular $I_{\varphi, \psi}$. Moreover, $S(T)$ is dense in $E_{\varphi, \psi}(T)$ in the sense of the norm.

Proof. Let $f \in L_{\varphi, \psi}(T), f \geq 0$, and let $\lambda>0$ be a constant such that $I_{\varphi, \psi}(\lambda f)<\infty$. Let $\left(f_{n}\right)$ be a non-decreasing sequence of nonnegative simple functions such that $f_{n} \rightarrow f$ on T. Then

$$
f(x, y) \geq f(x, y)-f_{n}(x, y)
$$

for arbitrary n and every $(x, y) \in T$. Hence

$$
\psi(y, \lambda f(x, y)) \geq \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

for any $\lambda>0$ and $(x, y) \in T$. Since $f \in L_{\varphi, \psi}(T)$, we have $\int_{c}^{d} \psi(y, \lambda f(x, y)) d y$ $<\infty$ for a.e. $x \in(a, b))$ and for sufficiently small $\lambda>0$. By the dominated convergence theorem we obtain

$$
\int_{c}^{d} \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) d y \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

for a.e. $x \in(a, b)$. Using continuity of φ with respect to the second variable, we have

$$
\varphi\left(x, \int_{c}^{d} \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) d y\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

almost everywhere in (a, b). Moreover

$$
\varphi\left(x, \int_{c}^{d} \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) d y\right) \leq \varphi\left(x, \int_{c}^{d} \psi(y, \lambda f(x, y)) d y\right)
$$

and $\int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi(y, \lambda f(x, y)) d y\right) d x<\infty$ for sufficiently small $\lambda>0$. Applying the dominated convergence theorem again, we obtain $I_{\varphi, \psi}\left(\lambda\left(f_{n}-f\right)\right)$ $\rightarrow 0$ as $n \rightarrow \infty$ for small $\lambda>0$. Thus $\left(f_{n}\right)$ is convergent to f in the sense of the modular $I_{\varphi, \psi}$. If $f \in L_{\varphi, \psi}(T)$ is arbitrary, we may split f into positive and negative parts and apply the above result. Arguing in the like manner it is shown that $S(T)$ is dense also in $E_{\varphi, \psi}(T)$ in the sense of the norm.

Let $S_{0}(T)$ be the set of all simple functions of the form $g(x, y)=$ $\sum_{i=1}^{n} b_{i} \chi_{A_{i}}(x, y)$, where b_{i} are rational numbers and $\chi_{A_{i}}$ are the characteristic functions of the measurable sets $A_{i} \subset T$.

Lemma 2. The set $S_{0}(T)$ is dense in the sense of the $\operatorname{modular} I_{\varphi, \psi}$ in $S(T)$.

Proof. Let $h \in S(T), h(x, y)=\sum_{i=1}^{n} a_{i} \chi_{B_{i}}(x, y)$, where $B_{i} \subset T$ are measurable, pairwise disjoint and $\left|B_{i}\right|<\infty$. We denote $r=\max _{1 \leq i \leq n}\left|a_{i}\right|$. Let $\lambda>0$ and $\varepsilon>0$ be given. By the condition 3 and separability of Lebesgue measure, there exists a sequence $\left(A_{n}\right)$ of sets $A_{n} \subset T$ such that for every set B_{i} we may choose a set $A_{k_{i}}$ in $\left(A_{n}\right)$ in such manner, that

$$
\iint_{A_{k_{i}} \dot{-} B_{i}} \varphi(x, 1) \psi(y, \lambda r) d x d y<\frac{\varepsilon}{n} .
$$

Let us take $B=\bigcup_{i=1}^{n} B_{i}$ and let $\delta>0$ be fixed. We choose rational numbers $b_{1}, b_{2}, \ldots, b_{n}$ in such that $\left|b_{i}-a_{i}\right|<\delta$ and $\left|b_{i}\right|<2 r$ for $i=1,2, \ldots, n$. Then

$$
|h(x, y)-g(x, y)| \leq 2 r \sum_{i=1}^{n}\left|\chi_{B_{i}}(x, y)-\chi_{A_{k_{i}}}(x, y)\right|+\delta \chi_{B}(x, y)
$$

Hence

$$
\begin{aligned}
\psi\left(y, \frac{1}{4} \lambda\right. & (h(x, y)-g(x, y))) \\
& \leq \psi\left(y, \lambda r \sum_{i=1}^{n}\left(\chi_{B_{i}}(x, y)-\chi_{A_{k_{i}}}(x, y)\right)\right)+\psi\left(y, \lambda \delta \chi_{B}(x, y)\right) \\
& =\sum_{i=1}^{n} \psi(y, \lambda r)\left|\chi_{B_{i}}(x, y)-\chi_{A_{k_{i}}}(x, y)\right|+\psi(y, \lambda \delta) \chi_{B}(x, y) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\int_{c}^{d} \psi(y, & \left.\frac{1}{4} \lambda(h(x, y)-g(x, y))\right) d y \\
\leq & \sum_{i=1}^{n} \int_{c}^{d} \psi(y, \lambda r)\left|\chi_{B_{i}}(x, y)-\chi_{A_{k_{i}}}(x, y)\right| d y \\
& +\int_{c}^{d} \psi(y, \lambda \delta) \chi_{B}(x, y) d y
\end{aligned}
$$

By convexity of φ we have

$$
\begin{aligned}
\int_{a}^{b} \varphi(x, & \left.\int_{c}^{d} \psi\left(y, \frac{1}{4} \lambda(h(x, y)-g(x, y))\right) d y\right) d x \\
\leq & \sum_{i=1}^{n} \int_{a}^{b} \varphi\left(x, 2 \int_{c}^{d} \psi(y, \lambda r)\left|\chi_{B_{i}}(x, y)-\chi_{A_{k_{i}}}(x, y)\right| d y\right) d x \\
& +\int_{a}^{b} \varphi\left(x, 2 \int_{c}^{d} \psi(y, \lambda r) \chi_{B}(x, y) d y\right) d x=\sum_{i=1}^{n} I_{i}+I
\end{aligned}
$$

Let us denote $L=\int_{c}^{d} \psi(y, \lambda r) d y$. Applying Jensen's inequality, we obtain

$$
\begin{aligned}
I_{i} & \leq \frac{1}{L} \int_{a}^{b} \int_{c}^{d} \varphi\left(x, 2 L\left(\chi_{B_{i}}(x, y)-\chi_{A_{k_{i}}}(x, y)\right)\right) \psi(y, \lambda r) d x d y \\
& \leq c \iint_{A_{k_{i}} \dot{-B}} \varphi(x, 1) \psi(y, \lambda r) d x d y
\end{aligned}
$$

It is easy to see that $I<\varepsilon$ for sufficiently small $\delta>0$. Consequently,

$$
I_{\varphi, \psi}\left(\frac{1}{4} \lambda(h-g)\right) \leq \sum_{i=1}^{n} \frac{\varepsilon c}{n}+\varepsilon=\varepsilon(c+1)
$$

This shows that the set $S_{0}(T)$ is dense in $S(T)$ in the sense of the modular.
By Lemma 1 and Lemma 2 we obtain
Theorem 2. The space $L_{\varphi, \psi}(T)$ is separable in the sense of $I_{\varphi, \psi}$.
The real functions Φ_{1} and Φ_{2} defined on a product $(\alpha, \beta) \times R$ satisfy the condition (\star) if there holds the following inequality

$$
\Phi_{1}(t, u) \leq c_{1} \Phi_{2}\left(t, c_{2} u\right)+F(t)
$$

for all $u>0$ and almost every $t \in(\alpha, \beta)$, where F is a nonnegative, integrable function in (α, β) and c_{1}, c_{2} are positive constants.

Theorem 3. If pairs of functions $\left(\varphi_{1}, \varphi_{2}\right)$ and $\left(\psi_{1}, \psi_{2}\right)$ satisfy the condition (\star), then $L_{\varphi_{2}, \psi_{2}}(T) \subset L_{\varphi_{1}, \psi_{1}}(T)$.

Proof. We have

$$
\varphi_{1}(x, u) \leq K_{1} \varphi_{2}\left(x, K_{2} u\right)+h(x)
$$

for all $u>0$ and almost every $x \in(a, b)$, where h is a nonnegative and integrable function in $(a, b), K_{1}, K_{2}>0$. We have also

$$
\psi_{1}(y, u) \leq L_{1} \psi_{2}\left(y, L_{2} u\right)+g(y)
$$

for all $u>0$ and almost every $y \in(c, d)$, where g is a nonnegative and integrable function in $(c, d), L_{1}, L_{2}>0$.

Let $f \in L_{\varphi_{2}, \psi_{2}}(T)$ and let us denote $\lambda_{0}=\frac{\lambda}{2 L_{1} L_{2} K_{2}}$, where $\lambda>0$ is such that $I_{\varphi_{2}, \psi_{2}}(\lambda f)<\infty$. We may suppose that $L_{1}>$ 1and $K_{2}>1$. Then

$$
\psi_{1}\left(y, \lambda_{0} f(x, y)\right) \leq \frac{1}{2 K_{2}} \psi_{2}(y, \lambda f(x, y))+g(y)
$$

and

$$
\int_{c}^{d} \psi_{1}\left(y, \lambda_{0} f(x, y)\right) d y \leq \frac{1}{2 K_{2}} \int_{c}^{d} \psi_{2}(y, \lambda f(x, y)) d y+\int_{c}^{d} g(y) d y
$$

Hence we obtain

$$
\begin{aligned}
\varphi_{1}\left(x, \int_{c}^{d} \psi_{1}\left(y, \lambda_{0} f(x, y)\right) d y\right) \leq & \frac{1}{2} K_{1} \varphi_{2}\left(x, \int_{c}^{d} \psi_{2}(y, \lambda f(x, y)) d y\right) \\
& +\frac{1}{2} h(x)+\frac{1}{2} \varphi_{1}\left(x, 2 \int_{c}^{d} g(y) d y\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b} \varphi_{1}\left(x, \int_{c}^{d}\right. & \left.\psi_{1}\left(y, \lambda_{0} f(x, y)\right) d y\right) d x \leq K_{1} I_{\varphi_{2}, \psi_{2}}(\lambda f) \\
& +\int_{a}^{b} \varphi_{1}\left(x, 2 \int_{c}^{d} g(y) d y\right) d x+\int_{a}^{b} h(x) d x<\infty
\end{aligned}
$$

This shows that $I_{\varphi_{1}, \psi_{1}}\left(\lambda_{0} f\right)<\infty$ and we conclude that $f \in L_{\varphi_{1}, \psi_{1}}(T)$.
Corollary. If pairs of functions $\left(\varphi_{1}, \varphi_{2}\right)$ and $\left(\psi_{1}, \psi_{2}\right)$ satisfy the condition (\star), the embedding $L_{\varphi_{2}, \psi_{2}}(T) \subset L_{\varphi_{1}, \psi_{1}}(T)$ is continuous.

Proof. If $f \in L_{\varphi_{2}, \psi_{2}}(T)$, then $I_{\varphi_{2}, \psi_{2}}\left(\frac{f}{\|f\|_{\varphi_{2}, \psi_{2}}}\right) \leq 1$. Arguing in analogous manner as in the proof of Theorem 3 we have

$$
\begin{gathered}
\int_{a}^{b} \varphi_{1}\left(x, \int_{c}^{d} \psi_{1}\left(y, \frac{C_{1} f(x, y)}{\|f\|_{\varphi_{2}, \psi_{2}}}\right) d y\right) d x \leq K_{1} I_{\varphi_{2}, \psi_{2}}\left(\frac{f}{\|f\|_{\varphi_{2}, \psi_{2}}}\right) \\
+\int_{a}^{b} \varphi_{1}\left(x, 2 \int_{c}^{d} g(y) d y\right) d x+\int_{a}^{b} h(x) d x \leq C
\end{gathered}
$$

where $C_{1}=\frac{1}{2 L_{1} L_{2} K_{2}}$ and the constants $K_{1}, K_{2}, L_{1}, L_{2}$ are from the condition (\star) for pairs of functions $\left(\varphi_{1}, \varphi_{2}\right)$ and $\left(\psi_{1}, \psi_{2}\right)$. The inequality

$$
\int_{a}^{b} \varphi_{1}\left(x, \int_{c}^{d} \psi_{1}\left(y, \frac{C_{1} f(x, y)}{\|f\|_{\varphi_{2}, \psi_{2}}}\right) d y\right) d x \leq C, \quad \text { where } \quad C \geq 1
$$

implies

$$
\|f\|_{\varphi_{1}, \psi_{1}} \leq \frac{C}{C_{1}}\|f\|_{\varphi_{2}, \psi_{2}} .
$$

3. Concept of Sobolev space "with mixed functions"

Let k be an arbitrary nonnegative integer number and let φ and ψ satisfy the conditions $1-3$. Denote by X the space of real valued, measurable functions f on T possessing distributional derivatives $D^{\alpha} f$ up to order k belonging to the space $L_{\varphi, \psi}(T)$. Define a functional $I_{\varphi, \psi}^{(k)}$ on X

$$
I_{\varphi, \psi}^{(k)}(f)=\sum_{|\alpha| \leq k} \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, D^{\alpha} f(x, y)\right) d y\right) d x
$$

The modular space generating by the modular $I_{\varphi, \psi}^{(k)}$ we denote by $W_{\varphi, \psi}^{k}(T)$. The space $W_{\varphi, \psi}^{k}(T)$ we call the Sobolev space "with mixed functions". Since $I_{\varphi, \psi}^{(k)}$ is a convex modular, so

$$
\|f\|_{\varphi, \psi}^{(k)}=\inf \left\{\varepsilon>0: I_{\varphi, \psi}^{(k)}\left(\varepsilon^{-1} f\right) \leq 1\right\}
$$

is a norm in $W_{\varphi, \psi}^{k}(T)$. Convergence $f_{n} \rightarrow f$ in the sense of the norm $\|\cdot\|_{\varphi, \psi}^{(k)}$ is equivalent to the condition

$$
I_{\varphi, \psi}^{(k)}\left(\lambda\left(f_{n}-f\right)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

for every $\lambda>0$.
Lemma 3. Let ψ be integrable in (c, d) for every u. If $k_{\varphi}=\inf _{x \in(a, b)} \varphi(x, 1)$ >0 and $k_{\psi}=\inf _{y \in(c, d)} \psi(y, 1)>0$, then is true the following inequality

$$
u \leq \frac{1}{k_{\varphi}} \varphi\left(x, \frac{1}{(d-c) k_{\psi}} \int_{c}^{d} \psi(y, u) d y\right)
$$

for $u \geq 1$.
Proof. The condition $k_{\psi}>0$ and continuity of ψ with respect to the second variable imply

$$
\begin{equation*}
u \leq \frac{1}{k_{\psi}} \psi(y, u) \tag{3}
\end{equation*}
$$

for $u \geq 1$. Integrating (3) over $y \in(c, d)$ we obtain

$$
\begin{equation*}
u \leq \frac{1}{(d-c) k_{\psi}} \int_{c}^{d} \psi(y, u) d y \tag{4}
\end{equation*}
$$

for $u \geq 1$. Moreover, for the function φ we have

$$
\begin{equation*}
u \leq \frac{1}{k_{\varphi}} \varphi(x, u) \tag{5}
\end{equation*}
$$

for $u \geq 1$. Applying (4) and (5) we obtain easily that

$$
u \leq \frac{1}{k_{\varphi}} \varphi\left(x, \frac{1}{(d-c) k_{\psi}} \int_{c}^{d} \psi(y, u) d y\right)
$$

Theorem 4. Let ψ be integrable in (c, d) for every u. If k_{φ} and k_{ψ} are positive, then the space $W_{\varphi, \psi}^{k}(T)$ is complete with respect to the norm.

Proof. Let $\left(f_{n}\right)$ be a Cauchy sequence in $W_{\varphi, \psi}^{k}(T)$. This means that $I_{\varphi, \psi}^{(k)}\left(\lambda\left(f_{n}-f_{m}\right)\right) \rightarrow 0$ as $m, n \rightarrow \infty$ for every $\lambda>0$. Then, for every α, $|\alpha| \leq k$, the sequence $\left(D^{\alpha} f_{n}\right)$ is a Cauchy sequence in $L_{\varphi, \psi}(T)$. In particular $\left(f_{n}\right)$ is a Cauchy sequence in $L_{\varphi, \psi}(T)$. By completeness of $L_{\varphi, \psi}(T)$ there exists $f_{0} \in L_{\varphi, \psi}(T)$ such that $\left(f_{n}\right)$ is convergent to f_{0} in the sense of the norm $\|\cdot\|_{\varphi, \psi}$. We will prove that f_{n} are locally integrable on T. We may suppose $k_{\varphi}, k_{\psi} \leq 1$. Let us denote $p=\min (1, d-c)$, then

$$
\begin{aligned}
& \varphi\left(x, \frac{1}{(d-c) k_{\psi}} \int_{c}^{d} \psi\left(y, \frac{p k_{\psi} f_{n}(x, y)}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}}\right) d y\right) \\
& \leq \varphi\left(x, \int_{c}^{d} \psi\left(y, \frac{f_{n}(x, y)}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}}\right) d y\right)
\end{aligned}
$$

Let $B \subset T$ be any compact set and

$$
A=\left\{(x, y) \in B: \frac{p k_{\psi}\left|f_{n}(x, y)\right|}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}} \geq 1\right\}
$$

Then, applying Lemma 3, we obtain

$$
p k_{\psi} \frac{\left|f_{n}(x, y)\right|}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}} \leq \frac{1}{k_{\varphi}} \varphi\left(x, \frac{1}{(d-c) k_{\psi}} \int_{c}^{d} \psi\left(y, \frac{p k_{\psi}\left|f_{n}(x, y)\right|}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}}\right) d y\right)
$$

for $(x, y) \in A$. Hence
(6) $\frac{1}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}} \iint_{B}\left|f_{n}(x, y)\right| d x d y$

$$
\leq \frac{d-c}{p k_{\varphi} k_{\psi}} \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, \frac{f_{n}(x, y)}{\left\|f_{n}\right\|_{\varphi, \psi}^{(k)}}\right) d y\right) d x+\frac{1}{p k_{\psi}}|B|
$$

The inequality (6) implies local integrability of f_{n} in $T, n=1,2, \ldots$ Hence f_{n} defines a regular distribution

$$
T_{f_{n}} g=\iint_{T} f_{n}(x, y) g(x, y) d x d y
$$

where $g \in C_{0}^{\infty}(T)$. For every $\alpha,|\alpha| \leq k$, we have

$$
\begin{equation*}
\left|T_{D^{\alpha} f_{n}} g-T_{D^{\alpha} f_{0}} g\right| \leq C \iint_{K}\left|f_{n}(x, y)-f_{0}(x, y)\right| d x d y \tag{7}
\end{equation*}
$$

where $C=\max _{(x, y) \in T,|\alpha| \leq k}\left|D^{\alpha} g(x, y)\right|$ and $K \subset T, K$ is the support of g. We have from the inequalities (6) and (7)

$$
\begin{aligned}
& \left|T_{D^{\alpha} f_{n}} g-T_{D^{\alpha} f_{0}} g\right| \\
& \quad \leq\left(C_{1} \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, \frac{f_{n}(x, y)-f_{0}(x, y)}{\left\|f_{n}-f_{0}\right\|_{\varphi, \psi}}\right) d y\right) d x+C_{2}|K|\right) \\
& \quad \times\left\|f_{n}-f_{0}\right\|_{\varphi, \psi} \leq\left(C_{1}+C_{2}|K|\right)\left\|f_{n}-f_{0}\right\|_{\varphi, \psi} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Hence $T_{D^{\alpha} f_{n}} \rightarrow T_{D^{\alpha} f_{0}}, n \rightarrow \infty$. Since $\left(D^{\alpha} f_{n}\right),|\alpha| \leq k \mid$, is the Cauchy sequence in $L_{\varphi, \psi}(T)$, thus there exists $f_{\alpha} \in L_{\varphi, \psi}(T)$ such that $\left(T_{D^{\alpha} f_{n}}\right)$ is convergent to $T_{f_{\alpha}}$ as $n \rightarrow \infty$. Consequently $f_{\alpha}=D^{\alpha} f_{0}$ for every $|\alpha| \leq k$. Now, we have $f_{0} \in W_{\varphi, \psi}^{k}(T)$. Moreover, $I_{\varphi, \psi}\left(\lambda\left(D^{\alpha} f_{n}-D^{\alpha} f_{0}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\lambda>0$ and $|\alpha| \leq k$. Thus we proved that $\left(f_{n}\right)$ is convergent to f_{0} with respect to the norm of $W_{\varphi, \psi}^{k}(T)$.

Let us observe, that arguing in a like manner as in the proof of Theorem 3, we obtain the following theorem.

Theorem 5. If pairs of functions $\left(\varphi_{1}, \varphi_{2}\right)$ and $\left(\psi_{1}, \psi_{2}\right)$ satisfy the condition (\star), then $W_{\varphi_{1}, \psi_{1}}^{k}(T) \subset W_{\varphi_{2}, \psi_{2}}^{k}(T)$. The embedding of $W_{\varphi_{1}, \psi_{1}}^{k}(T)$ in $W_{\varphi_{2}, \psi_{2}}^{k}(T)$ is continuous with respect to the norms.

4. Separability of $W_{\varphi, \psi}^{k}(T)$

Let $l=\sum_{|\alpha| \leq k} 1$ and $L_{\varphi, \psi}^{l}(T)=\prod_{i=1}^{l} L_{\varphi, \psi}(T)$. For any $f=\left(f_{i}\right)_{i=1}^{l} \in$ $L_{\varphi, \psi}^{l}$ we define

$$
\rho(f)=\sum_{i=1}^{l} \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, f_{i}(x, y)\right) d y\right) d x
$$

Obviously, ρ is a convex modular in $L_{\varphi, \psi}^{l}(T)$. Let $\|\cdot\|_{l}$ denote the Luxemburg norm in $L_{\varphi, \psi}^{l}(T)$. The space $L_{\varphi, \psi}^{l}(T)$ equipped with this norm is a Banach space.

Suppose that the l indices $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ satisfying $|\alpha| \leq k$ are linearly ordered in a convenient fashion so that with each $f \in W_{\varphi, \psi}^{k}(T)$ we may associate a well-defined vector $P f$ in $L_{\varphi, \psi}^{l}(T)$ given by

$$
P f=\left(D^{\alpha} f\right)_{|\alpha| \leq k}
$$

We have $\|f\|_{\varphi, \psi}^{(k)}=\|P f\|_{l}$ for any $f \in W_{\varphi, \psi}^{k}(T)$. So P is an isometric isomorphism of $W_{\varphi, \psi}^{k}(T)$ onto subspace of $L_{\varphi, \psi}^{l}(T)$.

Theorem 6. The space $W_{\varphi, \psi}^{(k)}$ is separable in the sense of the modular $I_{\varphi, \psi}^{(k)}$.

Proof. The space $L_{\varphi, \psi}^{l}(T)$ is separable in the sense of ρ because $L_{\varphi, \psi}(T)$ is separable in the sense of $I_{\varphi, \psi}$. The operator P is an isometric isomorphism of $W_{\varphi, \psi}^{k}(T)$ onto $W=P\left(W_{\varphi, \psi}^{k}\right) \subset L_{\varphi, \psi}^{l}$. Since $W_{\varphi, \psi}^{k}(T)$ is complete, $P\left(W_{\varphi, \psi}^{k}\right)$ is a closed subspace of $L_{\varphi, \psi}^{l}(T)$. Thus $P\left(W_{\varphi, \psi}^{k}\right)$ is separable in the sense of ρ, and hence $W_{\varphi, \psi}^{k}(T)$ is separable in the sense of $I_{\varphi, \psi}^{(k)}$.

References

[1] Adams R.A., Sobolev spaces, Academic Press, New York, "San Francisco" London, 1975.
[2] Liskowski M., On approximation by means of linear operators in generalized Orlicz spaces, Int. Journal of Pure and Applied Mathematics, 37(2)(2007), 165-180.
[3] Musielak J., On approximation of functions of two variables by integral means and their generalization, Atti Sem. Mat. Univ. Modena, XLVI (1998), 335-349.

> Marian Liskowski
> Institute of Mathematics Poznan University of Technology Piotrowo 3A, 60-965 Poznan e-mail: marian.liskowski@put.poznan.pl

Received on 01.08.2011 and, in revised form, on 13.12.2011.

