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SOBOLEV SPACES ”WITH MIXED FUNCTIONS”

Abstract. This paper describes some generalization of mod-
ular function spaces Lϕ,ψ defined by a modular Iϕ,ψ (f) =∫ b
a
ϕ
(
x,
∫ d
c
ψ (y, f (x, y)) dy

)
dx, ([3]). The next part of this paper

focuses on using of spaces, defined previously, to introduce Sobolev
spaces as a vector subspace of the generalized space Lϕ,ψ. Some
selected properties of these spaces are presented.

Key words: modular space, Sobolev space.

AMS Mathematics Subject Classification: 46A80, 46E30, 46E35.

1. Basic notions

Let us denote T = (a, b) × (c, d) ⊂ R2, −∞ < c < d < +∞ and let
L (T ) be the space of Lebesgue integrable real functions on T , with equality
almost everywhere. Let real functions ϕ : (a, b) × R → [0,+∞) and ψ :
(c, d)×R→ [0,+∞) satisfy the following conditions:
1. ϕ and ψ are measurable functions of the first variable for every fixed

value of the second one;
2. ϕ (t, u) and ψ (t, u) are even, convex and continuous at zero with respect

to the second variable, ϕ (t, 0) = ψ (t, 0) = 0, ϕ (t, u) > 0 and ψ (t, u) > 0
if u 6= 0 for a.e. t.

3.
∫ b
a ϕ (t, u) dt <∞,

∫ d
c ψ (t, u) dt <∞ for every u.

2. Selected properties of the space Lϕ,ψ

For any function f ∈ L (T ) we define a functional

(1) Iϕ,ψ (f) =

∫ b

a
ϕ

(
x,

∫ d

c
ψ (y, f (x, y)) dy

)
dx

and we denote by Lϕ,ψ (T ) the vector space of all functions f from L (T )
such that Iϕ.ψ (λf) < ∞ for some λ > 0, ([2]). By Eϕ,ψ (T ) we denote the
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vector space of all finite elements of L (T ) i.e. such that Iϕ.ψ (λf) < ∞ for
every λ > 0. The functional Iϕ,ψ is a convex modular in L (T ), hence

‖f‖ϕ,ψ = inf

{
u > 0 : Iϕ,ψ

(
f

u

)
≤ 1

}
is norm in Lϕ,ψ (T ). Convergence fn → f in the sense of this norm is
equivalent to the condition

(2) Iϕ,ψ (λ (fn − f))→ 0, n→∞

for every λ > 0. If (2) holds only for some λ > 0, we say that the sequence
fn is convergent to f in the sense of the modular Iϕ,ψ.

Theorem 1. The space Lϕ,ψ (T ) is complete with respect to the modular
Iϕ,ψ. Moreover, Lϕ,ψ (T ) is also complete in the sense of the norm ‖ · ‖ϕ,ψ.

Proof. Let (fn)be a Cauchy sequence in the sense of Iϕ,ψin Lϕ,ψ (T ).
Then (fn) is also a Cauchy sequence in measure. Thus there exists a mea-
surable function f such that (fn) is convergent in measure to f . So (fn) con-
tains a subsequence (fnk) convergent to f almost everywhere in T . Hence,
for fixed n and a.e. y ∈ (c, d) we have ψ (y, λ (fn (x, y)− fnk (x, y))) →
ψ (λ (fn (x, y)− f (x, y))) for a.e. x ∈ (a, b) as k →∞, for λ > 0. Applying
Fatou lemma with respect to the variable y and then with respect to the
variable x we obtain∫ b

a
ϕ

(
x,

∫ d

c
ψ (y, λ (fn (x, y)− f (x, y))) dy

)
dx

=

∫ b

a
ϕ

(
x,

∫ d

c
lim
k→∞

ψ (y, λ (fn (x, y)− fnk (x, y))) dy

)
dx

≤ lim inf
k→∞

Iϕ,ψ (λ (fn − fnk)) ≤ ε

for sufficiently large n. Thus Iϕ,ψ (λ (fn − f)) → 0 as n → ∞ for some
λ > 0. From the inequality

Iϕ,ψ

(
1

2
λf

)
≤ Iϕ,ψ (λ (fn − f)) + Iϕ,ψ (λfn)

we conclude that f ∈ Lϕ,ψ (T ). �

Let S (T ) be the set of all simple functions from L (T ) and let L∞ (T )
be the set of essentially bounded functions from L (T ). Then S (T ) ⊂
L∞ (T ). Let us denote K = supess(x,y)∈T | f (x, y) | for f ∈ L∞ (T ). Then
Iϕ,ψ (λf) <∞ for every λ > 0. Thus L∞ (T ) ⊂ Eϕ,ψ (T ).
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Lemma 1. The set S (T ) of simple functions on T is dense in Lϕ,ψ (T )
in the sense of the modular Iϕ,ψ. Moreover, S (T ) is dense in Eϕ,ψ (T ) in
the sense of the norm.

Proof. Let f ∈ Lϕ,ψ (T ), f ≥ 0, and let λ > 0 be a constant such that
Iϕ,ψ (λf) <∞. Let (fn) be a non-decreasing sequence of nonnegative simple
functions such that fn → f on T . Then

f (x, y) ≥ f (x, y)− fn (x, y)

for arbitrary n and every (x, y) ∈ T . Hence

ψ (y, λf (x, y)) ≥ ψ (y, λ (f (x, y)− fn (x, y)))→ 0 as n→∞

for any λ > 0 and (x, y) ∈ T . Since f ∈ Lϕ,ψ (T ), we have
∫ d
c ψ (y, λf (x, y)) dy

<∞ for a.e. x ∈ (a, b)) and for sufficiently small λ > 0. By the dominated
convergence theorem we obtain∫ d

c
ψ (y, λ (f (x, y)− fn (x, y))) dy → 0 as n→∞

for a.e. x ∈ (a, b). Using continuity of ϕ with respect to the second variable,
we have

ϕ

(
x,

∫ d

c
ψ (y, λ (f (x, y)− fn (x, y))) dy

)
→ 0 as n→∞

almost everywhere in (a, b). Moreover

ϕ

(
x,

∫ d

c
ψ (y, λ (f (x, y)− fn (x, y))) dy

)
≤ ϕ

(
x,

∫ d

c
ψ (y, λf (x, y)) dy

)
and

∫ b
a ϕ
(
x,
∫ d
c ψ (y, λf (x, y)) dy

)
dx <∞ for sufficiently small λ > 0. Ap-

plying the dominated convergence theorem again, we obtain Iϕ,ψ (λ (fn − f))
→ 0 as n→∞ for small λ > 0. Thus (fn) is convergent to f in the sense of
the modular Iϕ,ψ. If f ∈ Lϕ,ψ (T ) is arbitrary, we may split f into positive
and negative parts and apply the above result. Arguing in the like manner
it is shown that S (T ) is dense also in Eϕ,ψ (T ) in the sense of the norm. �

Let S0 (T ) be the set of all simple functions of the form g (x, y) =∑n
i=1 biχAi (x, y), where bi are rational numbers and χAi are the charac-

teristic functions of the measurable sets Ai ⊂ T .

Lemma 2. The set S0 (T ) is dense in the sense of the modular Iϕ,ψ in
S (T ).
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Proof. Let h ∈ S (T ), h (x, y) =
∑n

i=1 aiχBi (x, y), where Bi ⊂ T are
measurable, pairwise disjoint and | Bi |<∞. We denote r = max1≤i≤n | ai |.
Let λ > 0 and ε > 0 be given. By the condition 3 and separability of
Lebesgue measure, there exists a sequence (An) of sets An ⊂ T such that
for every set Bi we may choose a set Aki in (An) in such manner, that∫∫

Aki
�
−Bi

ϕ (x, 1)ψ (y, λr) dxdy <
ε

n
.

Let us take B =
⋃n
i=1Bi and let δ > 0 be fixed. We choose rational numbers

b1, b2, . . . , bn in such that | bi−ai |< δ and | bi |< 2r for i = 1, 2, . . . , n. Then

| h (x, y)− g (x, y) |≤ 2r
n∑
i=1

| χBi (x, y)− χAki (x, y) | + δχB (x, y) .

Hence

ψ

(
y,

1

4
λ (h (x, y)− g (x, y))

)
≤ ψ

(
y, λr

n∑
i=1

(χBi (x, y)− χAki (x, y))

)
+ ψ (y, λδχB (x, y))

=
n∑
i=1

ψ (y, λr) | χBi (x, y)− χAki (x, y) | +ψ (y, λδ)χB (x, y) .

Thus, we have∫ d

c
ψ

(
y,

1

4
λ (h (x, y)− g (x, y))

)
dy

≤
n∑
i=1

∫ d

c
ψ (y, λr) | χBi (x, y)− χAki (x, y) | dy

+

∫ d

c
ψ (y, λδ)χB (x, y) dy.

By convexity of ϕ we have∫ b

a
ϕ

(
x,

∫ d

c
ψ

(
y,

1

4
λ (h (x, y)− g (x, y))

)
dy

)
dx

≤
n∑
i=1

∫ b

a
ϕ

(
x, 2

∫ d

c
ψ (y, λr) | χBi (x, y)− χAki (x, y) | dy

)
dx

+

∫ b

a
ϕ

(
x, 2

∫ d

c
ψ (y, λr)χB (x, y) dy

)
dx =

n∑
i=1

Ii + I.
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Let us denote L =
∫ d
c ψ (y, λr) dy. Applying Jensen’s inequality, we obtain

Ii ≤
1

L

∫ b

a

∫ d

c
ϕ
(
x, 2L

(
χBi (x, y)− χAki (x, y)

))
ψ (y, λr) dxdy

≤ c

∫∫
Aki

�
−Bi

ϕ (x, 1)ψ (y, λr) dxdy.

It is easy to see that I < ε for sufficiently small δ > 0. Consequently,

Iϕ,ψ

(
1

4
λ (h− g)

)
≤

n∑
i=1

εc

n
+ ε = ε (c+ 1) .

This shows that the set S0 (T ) is dense in S (T ) in the sense of the modular. �

By Lemma 1 and Lemma 2 we obtain

Theorem 2. The space Lϕ,ψ (T ) is separable in the sense of Iϕ,ψ.

The real functions Φ1 and Φ2 defined on a product (α, β)×R satisfy the
condition (?) if there holds the following inequality

(?) Φ1 (t, u) ≤ c1Φ2 (t, c2u) + F (t)

for all u > 0 and almost every t ∈ (α, β), where F is a nonnegative, integrable
function in (α, β) and c1, c2 are positive constants.

Theorem 3. If pairs of functions (ϕ1, ϕ2) and (ψ1, ψ2) satisfy the con-
dition (?), then Lϕ2,ψ2 (T ) ⊂ Lϕ1,ψ1 (T ).

Proof. We have

ϕ1 (x, u) ≤ K1ϕ2 (x,K2u) + h (x)

for all u > 0 and almost every x ∈ (a, b), where h is a nonnegative and
integrable function in (a, b), K1, K2 > 0. We have also

ψ1 (y, u) ≤ L1ψ2 (y, L2u) + g (y)

for all u > 0 and almost every y ∈ (c, d), where g is a nonnegative and
integrable function in (c, d), L1, L2 > 0.

Let f ∈ Lϕ2,ψ2 (T ) and let us denote λ0 = λ
2L1L2K2

, where λ > 0 is such
that Iϕ2,ψ2 (λf) <∞. We may suppose that L1 > 1and K2 > 1. Then

ψ1 (y, λ0f (x, y)) ≤ 1

2K2
ψ2 (y, λf (x, y)) + g (y)



78 Marian Liskowski

and ∫ d

c
ψ1 (y, λ0f (x, y)) dy ≤ 1

2K2

∫ d

c
ψ2 (y, λf (x, y)) dy +

∫ d

c
g (y) dy.

Hence we obtain

ϕ1

(
x,

∫ d

c
ψ1 (y, λ0f (x, y)) dy

)
≤ 1

2
K1ϕ2

(
x,

∫ d

c
ψ2 (y, λf (x, y)) dy

)
+

1

2
h (x) +

1

2
ϕ1

(
x, 2

∫ d

c
g (y) dy

)
and ∫ b

a
ϕ1

(
x,

∫ d

c
ψ1 (y, λ0f (x, y)) dy

)
dx ≤ K1Iϕ2,ψ2 (λf)

+

∫ b

a
ϕ1

(
x, 2

∫ d

c
g (y) dy

)
dx+

∫ b

a
h (x) dx <∞.

This shows that Iϕ1,ψ1 (λ0f) <∞ and we conclude that f ∈ Lϕ1,ψ1 (T ). �

Corollary. If pairs of functions (ϕ1, ϕ2) and (ψ1, ψ2) satisfy the condi-
tion (?), the embedding Lϕ2,ψ2 (T ) ⊂ Lϕ1,ψ1 (T ) is continuous.

Proof. If f ∈ Lϕ2,ψ2 (T ), then Iϕ2,ψ2

(
f

‖f‖ϕ2,ψ2

)
≤ 1. Arguing in analo-

gous manner as in the proof of Theorem 3 we have∫ b

a
ϕ1

(
x,

∫ d

c
ψ1

(
y,
C1f (x, y)

‖ f ‖ϕ2,ψ2

)
dy

)
dx ≤ K1Iϕ2,ψ2

(
f

‖ f ‖ϕ2,ψ2

)
+

∫ b

a
ϕ1

(
x, 2

∫ d

c
g (y) dy

)
dx+

∫ b

a
h (x) dx ≤ C,

where C1 = 1
2L1L2K2

and the constantsK1, K2, L1, L2 are from the condition
(?) for pairs of functions (ϕ1, ϕ2) and (ψ1, ψ2). The inequality∫ b

a
ϕ1

(
x,

∫ d

c
ψ1

(
y,
C1f (x, y)

‖ f ‖ϕ2,ψ2

)
dy

)
dx ≤ C, where C ≥ 1

implies

‖ f ‖ϕ1,ψ1≤
C

C1
‖ f ‖ϕ2,ψ2 .

�



Sobolev spaces ”with mixed functions” 79

3. Concept of Sobolev space “with mixed functions”

Let k be an arbitrary nonnegative integer number and let ϕ and ψ satisfy
the conditions 1 - 3. Denote by X the space of real valued, measurable
functions f on T possessing distributional derivatives Dαf up to order k

belonging to the space Lϕ,ψ (T ). Define a functional I
(k)
ϕ,ψ on X

I
(k)
ϕ,ψ (f) =

∑
|α|≤k

∫ b

a
ϕ

(
x,

∫ d

c
ψ (y,Dαf (x, y)) dy

)
dx.

The modular space generating by the modular I
(k)
ϕ,ψ we denote by W k

ϕ,ψ (T ).

The space W k
ϕ,ψ (T ) we call the Sobolev space “with mixed functions”. Since

I
(k)
ϕ,ψ is a convex modular, so

‖ f ‖(k)ϕ,ψ= inf
{
ε > 0 : I

(k)
ϕ,ψ

(
ε−1f

)
≤ 1
}

is a norm in W k
ϕ,ψ (T ). Convergence fn → f in the sense of the norm ‖ · ‖(k)ϕ,ψ

is equivalent to the condition

I
(k)
ϕ,ψ (λ (fn − f))→ 0 as n→∞

for every λ > 0.

Lemma 3. Let ψ be integrable in (c, d) for every u. If kϕ = infx∈(a,b) ϕ (x, 1)
> 0 and kψ = infy∈(c,d) ψ (y, 1) > 0, then is true the following inequality

u ≤ 1

kϕ
ϕ

(
x,

1

(d− c) kψ

∫ d

c
ψ (y, u) dy

)
for u ≥ 1.

Proof. The condition kψ > 0 and continuity of ψ with respect to the
second variable imply

(3) u ≤ 1

kψ
ψ (y, u)

for u ≥ 1. Integrating (3) over y ∈ (c, d) we obtain

(4) u ≤ 1

(d− c) kψ

∫ d

c
ψ (y, u) dy

for u ≥ 1. Moreover, for the function ϕ we have

(5) u ≤ 1

kϕ
ϕ (x, u)
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for u ≥ 1. Applying (4) and (5) we obtain easily that

u ≤ 1

kϕ
ϕ

(
x,

1

(d− c) kψ

∫ d

c
ψ (y, u) dy

)
.

�

Theorem 4. Let ψ be integrable in (c, d) for every u. If kϕ and kψ are
positive, then the space W k

ϕ,ψ (T ) is complete with respect to the norm.

Proof. Let (fn) be a Cauchy sequence in W k
ϕ,ψ (T ). This means that

I
(k)
ϕ,ψ (λ (fn − fm)) → 0 as m,n → ∞ for every λ > 0. Then, for every α,
| α |≤ k, the sequence (Dαfn) is a Cauchy sequence in Lϕ,ψ (T ). In particular
(fn) is a Cauchy sequence in Lϕ,ψ (T ). By completeness of Lϕ,ψ (T ) there
exists f0 ∈ Lϕ,ψ (T ) such that (fn) is convergent to f0 in the sense of the
norm ‖ · ‖ϕ,ψ. We will prove that fn are locally integrable on T . We may
suppose kϕ, kψ ≤ 1. Let us denote p = min (1, d− c), then

ϕ

x, 1

(d− c) kψ

∫ d

c
ψ

y, pkψfn (x, y)

‖ fn ‖(k)ϕ,ψ

 dy


≤ ϕ

x,∫ d

c
ψ

y, fn (x, y)

‖ fn ‖(k)ϕ,ψ

 dy

 .

Let B ⊂ T be any compact set and

A =

(x, y) ∈ B :
pkψ | fn (x, y) |
‖ fn ‖(k)ϕ,ψ

≥ 1

 .

Then, applying Lemma 3, we obtain

pkψ
| fn (x, y) |
‖ fn ‖(k)ϕ,ψ

≤ 1

kϕ
ϕ

x, 1

(d− c) kψ

∫ d

c
ψ

y, pkψ | fn (x, y) |
‖ fn ‖(k)ϕ,ψ

 dy


for (x, y) ∈ A. Hence

1

‖ fn ‖(k)ϕ,ψ

∫∫
B
| fn (x, y) | dxdy(6)

≤ d− c
pkϕkψ

∫ b

a
ϕ

x,∫ d

c
ψ

y, fn (x, y)

‖ fn ‖(k)ϕ,ψ

 dy

 dx+
1

pkψ
| B | .
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The inequality (6) implies local integrability of fn in T , n = 1, 2, . . . Hence
fn defines a regular distribution

Tfng =

∫∫
T
fn (x, y) g (x, y) dxdy,

where g ∈ C∞0 (T ). For every α, | α |≤ k, we have

(7) | TDαfng − TDαf0g |≤ C
∫∫

K
| fn (x, y)− f0 (x, y) | dxdy

where C = max(x,y)∈T,|α|≤k | Dαg (x, y) | and K ⊂ T , K is the support of g.
We have from the inequalities (6) and (7)

| TDαfng − TDαf0g |

≤
(
C1

∫ b

a
ϕ

(
x,

∫ d

c
ψ

(
y,
fn (x, y)− f0 (x, y)

‖ fn − f0 ‖ϕ,ψ

)
dy

)
dx+ C2 | K |

)
× ‖ fn − f0 ‖ϕ,ψ≤ (C1 + C2 | K |) ‖ fn − f0 ‖ϕ,ψ→ 0 as n→∞.

Hence TDαfn → TDαf0 , n → ∞. Since (Dαfn), | α |≤ k| , is the Cauchy
sequence in Lϕ,ψ (T ), thus there exists fα ∈ Lϕ,ψ (T ) such that (TDαfn) is
convergent to Tfαas n → ∞. Consequently fα = Dαf0 for every | α |≤ k.
Now, we have f0 ∈ W k

ϕ,ψ (T ). Moreover, Iϕ,ψ (λ (Dαfn −Dαf0)) → 0 as
n→∞ for every λ > 0 and | α |≤ k. Thus we proved that (fn) is convergent
to f0 with respect to the norm of W k

ϕ,ψ (T ). �

Let us observe, that arguing in a like manner as in the proof of Theorem 3,
we obtain the following theorem.

Theorem 5. If pairs of functions (ϕ1, ϕ2) and (ψ1, ψ2) satisfy the con-
dition (?), then W k

ϕ1,ψ1
(T ) ⊂ W k

ϕ2,ψ2
(T ). The embedding of W k

ϕ1,ψ1
(T ) in

W k
ϕ2,ψ2

(T ) is continuous with respect to the norms.

4. Separability of W k
ϕ,ψ (T )

Let l =
∑
|α|≤k 1 and Llϕ,ψ (T ) =

∏l
i=1 Lϕ,ψ (T ). For any f = (fi)

l
i=1 ∈

Llϕ,ψ we define

ρ (f) =
l∑

i=1

∫ b

a
ϕ

(
x,

∫ d

c
ψ (y, fi (x, y)) dy

)
dx.

Obviously, ρ is a convex modular in Llϕ,ψ (T ). Let ‖ · ‖l denote the Lux-

emburg norm in Llϕ,ψ (T ). The space Llϕ,ψ (T ) equipped with this norm is a
Banach space.
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Suppose that the l indices α = (α1, α2) satisfying | α |≤ k are linearly
ordered in a convenient fashion so that with each f ∈ W k

ϕ,ψ (T ) we may

associate a well-defined vector Pf in Llϕ,ψ (T )given by

Pf = (Dαf)|α|≤k .

We have ‖ f ‖(k)ϕ,ψ=‖ Pf ‖l for any f ∈ W k
ϕ,ψ (T ). So P is an isometric

isomorphism of W k
ϕ,ψ (T ) onto subspace of Llϕ,ψ (T ).

Theorem 6. The space W
(k)
ϕ,ψ is separable in the sense of the modular

I
(k)
ϕ,ψ.

Proof. The space Llϕ,ψ (T ) is separable in the sense of ρ because Lϕ,ψ (T )
is separable in the sense of Iϕ,ψ. The operator P is an isometric isomorphism

of W k
ϕ,ψ (T ) onto W = P

(
W k
ϕ,ψ

)
⊂ Llϕ,ψ. Since W k

ϕ,ψ (T ) is complete,

P
(
W k
ϕ,ψ

)
is a closed subspace of Llϕ,ψ (T ). Thus P

(
W k
ϕ,ψ

)
is separable in

the sense of ρ, and hence W k
ϕ,ψ (T ) is separable in the sense of I

(k)
ϕ,ψ. �
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