$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 48}$

MARIAN LISKOWSKI

SOBOLEV SPACES "WITH MIXED FUNCTIONS"

ABSTRACT. This paper describes some generalization of modular function spaces $L_{\varphi,\psi}$ defined by a modular $I_{\varphi,\psi}(f) = \int_a^b \varphi\left(x, \int_c^d \psi\left(y, f\left(x, y\right)\right) dy\right) dx$, ([3]). The next part of this paper focuses on using of spaces, defined previously, to introduce Sobolev spaces as a vector subspace of the generalized space $L_{\varphi,\psi}$. Some selected properties of these spaces are presented.

KEY WORDS: modular space, Sobolev space.

AMS Mathematics Subject Classification: 46A80, 46E30, 46E35.

1. Basic notions

Let us denote $T = (a, b) \times (c, d) \subset R^2$, $-\infty < c < d < +\infty$ and let L(T) be the space of Lebesgue integrable real functions on T, with equality almost everywhere. Let real functions $\varphi : (a, b) \times R \to [0, +\infty)$ and $\psi : (c, d) \times R \to [0, +\infty)$ satisfy the following conditions:

- 1. φ and ψ are measurable functions of the first variable for every fixed value of the second one;
- 2. $\varphi(t, u)$ and $\psi(t, u)$ are even, convex and continuous at zero with respect to the second variable, $\varphi(t, 0) = \psi(t, 0) = 0$, $\varphi(t, u) > 0$ and $\psi(t, u) > 0$ if $u \neq 0$ for a.e. t.
- 3. $\int_{a}^{b} \varphi(t, u) dt < \infty, \int_{c}^{d} \psi(t, u) dt < \infty \text{ for every } u.$

2. Selected properties of the space $L_{\varphi,\psi}$

For any function $f \in L(T)$ we define a functional

(1)
$$I_{\varphi,\psi}(f) = \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, f\left(x, y\right)\right) dy\right) dx$$

and we denote by $L_{\varphi,\psi}(T)$ the vector space of all functions f from L(T)such that $I_{\varphi,\psi}(\lambda f) < \infty$ for some $\lambda > 0$, ([2]). By $E_{\varphi,\psi}(T)$ we denote the vector space of all finite elements of L(T) i.e. such that $I_{\varphi,\psi}(\lambda f) < \infty$ for every $\lambda > 0$. The functional $I_{\varphi,\psi}$ is a convex modular in L(T), hence

$$||f||_{\varphi,\psi} = inf\left\{u > 0: I_{\varphi,\psi}\left(\frac{f}{u}\right) \le 1\right\}$$

is norm in $L_{\varphi,\psi}(T)$. Convergence $f_n \to f$ in the sense of this norm is equivalent to the condition

(2)
$$I_{\varphi,\psi}(\lambda(f_n - f)) \to 0, \quad n \to \infty$$

for every $\lambda > 0$. If (2) holds only for some $\lambda > 0$, we say that the sequence f_n is convergent to f in the sense of the modular $I_{\varphi,\psi}$.

Theorem 1. The space $L_{\varphi,\psi}(T)$ is complete with respect to the modular $I_{\varphi,\psi}$. Moreover, $L_{\varphi,\psi}(T)$ is also complete in the sense of the norm $\|\cdot\|_{\varphi,\psi}$.

Proof. Let (f_n) be a Cauchy sequence in the sense of $I_{\varphi,\psi}$ in $L_{\varphi,\psi}(T)$. Then (f_n) is also a Cauchy sequence in measure. Thus there exists a measurable function f such that (f_n) is convergent in measure to f. So (f_n) contains a subsequence (f_{n_k}) convergent to f almost everywhere in T. Hence, for fixed n and a.e. $y \in (c,d)$ we have $\psi(y,\lambda(f_n(x,y) - f_{n_k}(x,y))) \to \psi(\lambda(f_n(x,y) - f(x,y)))$ for a.e. $x \in (a,b)$ as $k \to \infty$, for $\lambda > 0$. Applying Fatou lemma with respect to the variable y and then with respect to the variable x we obtain

$$\begin{split} \int_{a}^{b} \varphi \left(x, \int_{c}^{d} \psi \left(y, \lambda \left(f_{n} \left(x, y \right) - f \left(x, y \right) \right) \right) dy \right) dx \\ &= \int_{a}^{b} \varphi \left(x, \int_{c}^{d} \lim_{k \to \infty} \psi \left(y, \lambda \left(f_{n} \left(x, y \right) - f_{n_{k}} \left(x, y \right) \right) \right) dy \right) dx \\ &\leq \liminf_{k \to \infty} I_{\varphi, \psi} \left(\lambda \left(f_{n} - f_{n_{k}} \right) \right) \leq \varepsilon \end{split}$$

for sufficiently large n. Thus $I_{\varphi,\psi}(\lambda(f_n - f)) \to 0$ as $n \to \infty$ for some $\lambda > 0$. From the inequality

$$I_{\varphi,\psi}\left(\frac{1}{2}\lambda f\right) \le I_{\varphi,\psi}\left(\lambda\left(f_n - f\right)\right) + I_{\varphi,\psi}\left(\lambda f_n\right)$$

we conclude that $f \in L_{\varphi,\psi}(T)$.

Let S(T) be the set of all simple functions from L(T) and let $L^{\infty}(T)$ be the set of essentially bounded functions from L(T). Then $S(T) \subset L^{\infty}(T)$. Let us denote $K = \operatorname{supess}_{(x,y)\in T} | f(x,y) |$ for $f \in L^{\infty}(T)$. Then $I_{\varphi,\psi}(\lambda f) < \infty$ for every $\lambda > 0$. Thus $L^{\infty}(T) \subset E_{\varphi,\psi}(T)$. **Lemma 1.** The set S(T) of simple functions on T is dense in $L_{\varphi,\psi}(T)$ in the sense of the modular $I_{\varphi,\psi}$. Moreover, S(T) is dense in $E_{\varphi,\psi}(T)$ in the sense of the norm.

Proof. Let $f \in L_{\varphi,\psi}(T)$, $f \ge 0$, and let $\lambda > 0$ be a constant such that $I_{\varphi,\psi}(\lambda f) < \infty$. Let (f_n) be a non-decreasing sequence of nonnegative simple functions such that $f_n \to f$ on T. Then

$$f(x,y) \ge f(x,y) - f_n(x,y)$$

for arbitrary n and every $(x, y) \in T$. Hence

$$\psi(y, \lambda f(x, y)) \ge \psi(y, \lambda(f(x, y) - f_n(x, y))) \to 0 \text{ as } n \to \infty$$

for any $\lambda > 0$ and $(x, y) \in T$. Since $f \in L_{\varphi, \psi}(T)$, we have $\int_{c}^{d} \psi(y, \lambda f(x, y)) dy < \infty$ for a.e. $x \in (a, b)$ and for sufficiently small $\lambda > 0$. By the dominated convergence theorem we obtain

$$\int_{c}^{d} \psi\left(y, \lambda\left(f\left(x, y\right) - f_{n}\left(x, y\right)\right)\right) dy \to 0 \quad \text{as} \quad n \to \infty$$

for a.e. $x \in (a, b)$. Using continuity of φ with respect to the second variable, we have

$$\varphi\left(x, \int_{c}^{d} \psi\left(y, \lambda\left(f\left(x, y\right) - f_{n}\left(x, y\right)\right)\right) dy\right) \to 0 \quad \text{as} \quad n \to \infty$$

almost everywhere in (a, b). Moreover

$$\varphi\left(x, \int_{c}^{d} \psi\left(y, \lambda\left(f\left(x, y\right) - f_{n}\left(x, y\right)\right)\right) dy\right) \leq \varphi\left(x, \int_{c}^{d} \psi\left(y, \lambda f\left(x, y\right)\right) dy\right)$$

and $\int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, \lambda f\left(x, y\right)\right) dy\right) dx < \infty$ for sufficiently small $\lambda > 0$. Applying the dominated convergence theorem again, we obtain $I_{\varphi,\psi}\left(\lambda\left(f_{n}-f\right)\right) \to 0$ as $n \to \infty$ for small $\lambda > 0$. Thus (f_{n}) is convergent to f in the sense of the modular $I_{\varphi,\psi}$. If $f \in L_{\varphi,\psi}(T)$ is arbitrary, we may split f into positive and negative parts and apply the above result. Arguing in the like manner it is shown that S(T) is dense also in $E_{\varphi,\psi}(T)$ in the sense of the norm.

Let $S_0(T)$ be the set of all simple functions of the form $g(x,y) = \sum_{i=1}^{n} b_i \chi_{A_i}(x,y)$, where b_i are rational numbers and χ_{A_i} are the characteristic functions of the measurable sets $A_i \subset T$.

Lemma 2. The set $S_0(T)$ is dense in the sense of the modular $I_{\varphi,\psi}$ in S(T).

MARIAN LISKOWSKI

Proof. Let $h \in S(T)$, $h(x, y) = \sum_{i=1}^{n} a_i \chi_{B_i}(x, y)$, where $B_i \subset T$ are measurable, pairwise disjoint and $|B_i| < \infty$. We denote $r = \max_{1 \le i \le n} |a_i|$. Let $\lambda > 0$ and $\varepsilon > 0$ be given. By the condition 3 and separability of Lebesgue measure, there exists a sequence (A_n) of sets $A_n \subset T$ such that for every set B_i we may choose a set A_{k_i} in (A_n) in such manner, that

$$\iint_{A_{k_i}-B_i} \varphi\left(x,1\right) \psi\left(y,\lambda r\right) dx dy < \frac{\varepsilon}{n} \,.$$

Let us take $B = \bigcup_{i=1}^{n} B_i$ and let $\delta > 0$ be fixed. We choose rational numbers b_1, b_2, \ldots, b_n in such that $|b_i - a_i| < \delta$ and $|b_i| < 2r$ for $i = 1, 2, \ldots, n$. Then

$$|h(x,y) - g(x,y)| \le 2r \sum_{i=1}^{n} |\chi_{B_i}(x,y) - \chi_{A_{k_i}}(x,y)| + \delta \chi_B(x,y).$$

Hence

$$\psi\left(y,\frac{1}{4}\lambda\left(h\left(x,y\right)-g\left(x,y\right)\right)\right)$$

$$\leq \psi\left(y,\lambda r\sum_{i=1}^{n}\left(\chi_{B_{i}}\left(x,y\right)-\chi_{A_{k_{i}}}\left(x,y\right)\right)\right)+\psi\left(y,\lambda\delta\chi_{B}\left(x,y\right)\right)$$

$$=\sum_{i=1}^{n}\psi\left(y,\lambda r\right)\mid\chi_{B_{i}}\left(x,y\right)-\chi_{A_{k_{i}}}\left(x,y\right)\mid+\psi\left(y,\lambda\delta\right)\chi_{B}\left(x,y\right).$$

Thus, we have

$$\begin{split} \int_{c}^{d} \psi \left(y, \frac{1}{4} \lambda \left(h\left(x, y \right) - g\left(x, y \right) \right) \right) dy \\ &\leq \sum_{i=1}^{n} \int_{c}^{d} \psi \left(y, \lambda r \right) \mid \chi_{B_{i}} \left(x, y \right) - \chi_{A_{k_{i}}} \left(x, y \right) \mid dy \\ &+ \int_{c}^{d} \psi \left(y, \lambda \delta \right) \chi_{B} \left(x, y \right) dy. \end{split}$$

By convexity of φ we have

$$\int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, \frac{1}{4}\lambda\left(h\left(x, y\right) - g\left(x, y\right)\right)\right) dy\right) dx$$

$$\leq \sum_{i=1}^{n} \int_{a}^{b} \varphi\left(x, 2\int_{c}^{d} \psi\left(y, \lambda r\right) \mid \chi_{B_{i}}\left(x, y\right) - \chi_{A_{k_{i}}}\left(x, y\right) \mid dy\right) dx$$

$$+ \int_{a}^{b} \varphi\left(x, 2\int_{c}^{d} \psi\left(y, \lambda r\right) \chi_{B}\left(x, y\right) dy\right) dx = \sum_{i=1}^{n} I_{i} + I.$$

Let us denote $L = \int_{c}^{d} \psi(y, \lambda r) dy$. Applying Jensen's inequality, we obtain

$$I_{i} \leq \frac{1}{L} \int_{a}^{b} \int_{c}^{d} \varphi \left(x, 2L \left(\chi_{B_{i}} \left(x, y \right) - \chi_{A_{k_{i}}} \left(x, y \right) \right) \right) \psi \left(y, \lambda r \right) dx dy$$

$$\leq c \iint_{A_{k_{i}} - B_{i}} \varphi \left(x, 1 \right) \psi \left(y, \lambda r \right) dx dy.$$

It is easy to see that $I < \varepsilon$ for sufficiently small $\delta > 0$. Consequently,

$$I_{\varphi,\psi}\left(\frac{1}{4}\lambda\left(h-g\right)\right) \leq \sum_{i=1}^{n} \frac{\varepsilon c}{n} + \varepsilon = \varepsilon \left(c+1\right).$$

This shows that the set $S_0(T)$ is dense in S(T) in the sense of the modular.

By Lemma 1 and Lemma 2 we obtain

Theorem 2. The space $L_{\varphi,\psi}(T)$ is separable in the sense of $I_{\varphi,\psi}$.

The real functions Φ_1 and Φ_2 defined on a product $(\alpha, \beta) \times R$ satisfy the condition (\star) if there holds the following inequality

(*)
$$\Phi_1(t, u) \le c_1 \Phi_2(t, c_2 u) + F(t)$$

for all u > 0 and almost every $t \in (\alpha, \beta)$, where F is a nonnegative, integrable function in (α, β) and c_1, c_2 are positive constants.

Theorem 3. If pairs of functions (φ_1, φ_2) and (ψ_1, ψ_2) satisfy the condition (\star) , then $L_{\varphi_2,\psi_2}(T) \subset L_{\varphi_1,\psi_1}(T)$.

Proof. We have

$$\varphi_1(x, u) \le K_1 \varphi_2(x, K_2 u) + h(x)$$

for all u > 0 and almost every $x \in (a, b)$, where h is a nonnegative and integrable function in (a, b), K_1 , $K_2 > 0$. We have also

$$\psi_1\left(y,u\right) \le L_1\psi_2\left(y,L_2u\right) + g\left(y\right)$$

for all u > 0 and almost every $y \in (c, d)$, where g is a nonnegative and integrable function in (c, d), L_1 , $L_2 > 0$.

Let $f \in L_{\varphi_2,\psi_2}(T)$ and let us denote $\lambda_0 = \frac{\lambda}{2L_1L_2K_2}$, where $\lambda > 0$ is such that $I_{\varphi_2,\psi_2}(\lambda f) < \infty$. We may suppose that $L_1 > 1$ and $K_2 > 1$. Then

$$\psi_1\left(y,\lambda_0 f\left(x,y\right)\right) \le \frac{1}{2K_2}\psi_2\left(y,\lambda f\left(x,y\right)\right) + g\left(y\right)$$

and

$$\int_{c}^{d} \psi_{1}\left(y, \lambda_{0} f\left(x, y\right)\right) dy \leq \frac{1}{2K_{2}} \int_{c}^{d} \psi_{2}\left(y, \lambda f\left(x, y\right)\right) dy + \int_{c}^{d} g\left(y\right) dy.$$

Hence we obtain

$$\varphi_1\left(x, \int_c^d \psi_1\left(y, \lambda_0 f\left(x, y\right)\right) dy\right) \leq \frac{1}{2} K_1 \varphi_2\left(x, \int_c^d \psi_2\left(y, \lambda f\left(x, y\right)\right) dy\right) \\ + \frac{1}{2} h\left(x\right) + \frac{1}{2} \varphi_1\left(x, 2\int_c^d g\left(y\right) dy\right)$$

and

$$\int_{a}^{b} \varphi_{1}\left(x, \int_{c}^{d} \psi_{1}\left(y, \lambda_{0} f\left(x, y\right)\right) dy\right) dx \leq K_{1} I_{\varphi_{2}, \psi_{2}}\left(\lambda f\right)$$
$$+ \int_{a}^{b} \varphi_{1}\left(x, 2 \int_{c}^{d} g\left(y\right) dy\right) dx + \int_{a}^{b} h\left(x\right) dx < \infty.$$

This shows that $I_{\varphi_1,\psi_1}(\lambda_0 f) < \infty$ and we conclude that $f \in L_{\varphi_1,\psi_1}(T)$.

Corollary. If pairs of functions (φ_1, φ_2) and (ψ_1, ψ_2) satisfy the condition (\star) , the embedding $L_{\varphi_2,\psi_2}(T) \subset L_{\varphi_1,\psi_1}(T)$ is continuous.

Proof. If $f \in L_{\varphi_2,\psi_2}(T)$, then $I_{\varphi_2,\psi_2}\left(\frac{f}{\|f\|_{\varphi_2,\psi_2}}\right) \leq 1$. Arguing in analogous manner as in the proof of Theorem 3 we have

$$\begin{split} \int_{a}^{b} \varphi_{1}\left(x, \int_{c}^{d} \psi_{1}\left(y, \frac{C_{1}f\left(x, y\right)}{\|f\|_{\varphi_{2}, \psi_{2}}}\right) dy\right) dx &\leq K_{1}I_{\varphi_{2}, \psi_{2}}\left(\frac{f}{\|f\|_{\varphi_{2}, \psi_{2}}}\right) \\ &+ \int_{a}^{b} \varphi_{1}\left(x, 2\int_{c}^{d}g\left(y\right) dy\right) dx + \int_{a}^{b}h\left(x\right) dx \leq C, \end{split}$$

where $C_1 = \frac{1}{2L_1L_2K_2}$ and the constants K_1, K_2, L_1, L_2 are from the condition (\star) for pairs of functions (φ_1, φ_2) and (ψ_1, ψ_2). The inequality

$$\int_{a}^{b} \varphi_1\left(x, \int_{c}^{d} \psi_1\left(y, \frac{C_1 f\left(x, y\right)}{\|f\|_{\varphi_2, \psi_2}}\right) dy\right) dx \le C, \quad \text{where} \quad C \ge 1$$

implies

$$\parallel f \parallel_{\varphi_1,\psi_1} \leq \frac{C}{C_1} \parallel f \parallel_{\varphi_2,\psi_2}$$

78

3. Concept of Sobolev space "with mixed functions"

Let k be an arbitrary nonnegative integer number and let φ and ψ satisfy the conditions 1 - 3. Denote by X the space of real valued, measurable functions f on T possessing distributional derivatives $D^{\alpha}f$ up to order k belonging to the space $L_{\varphi,\psi}(T)$. Define a functional $I_{\varphi,\psi}^{(k)}$ on X

$$I_{\varphi,\psi}^{(k)}\left(f\right) = \sum_{|\alpha| \le k} \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, D^{\alpha}f\left(x, y\right)\right) dy\right) dx.$$

The modular space generating by the modular $I_{\varphi,\psi}^{(k)}$ we denote by $W_{\varphi,\psi}^{k}(T)$. The space $W_{\varphi,\psi}^{k}(T)$ we call the Sobolev space "with mixed functions". Since $I_{\varphi,\psi}^{(k)}$ is a convex modular, so

$$\| f \|_{\varphi,\psi}^{(k)} = \inf \left\{ \varepsilon > 0 : I_{\varphi,\psi}^{(k)} \left(\varepsilon^{-1} f \right) \le 1 \right\}$$

is a norm in $W_{\varphi,\psi}^k(T)$. Convergence $f_n \to f$ in the sense of the norm $\|\cdot\|_{\varphi,\psi}^{(k)}$ is equivalent to the condition

$$I_{\varphi,\psi}^{(k)}\left(\lambda\left(f_{n}-f\right)\right) \to 0 \quad \text{as} \quad n \to \infty$$

for every $\lambda > 0$.

Lemma 3. Let ψ be integrable in (c, d) for every u. If $k_{\varphi} = \inf_{x \in (a,b)} \varphi(x, 1) > 0$ and $k_{\psi} = \inf_{y \in (c,d)} \psi(y, 1) > 0$, then is true the following inequality

$$u \leq \frac{1}{k_{\varphi}}\varphi\left(x, \frac{1}{(d-c)k_{\psi}}\int_{c}^{d}\psi\left(y, u\right)dy\right)$$

for $u \geq 1$.

Proof. The condition $k_{\psi} > 0$ and continuity of ψ with respect to the second variable imply

(3)
$$u \le \frac{1}{k_{\psi}}\psi\left(y,u\right)$$

for $u \ge 1$. Integrating (3) over $y \in (c, d)$ we obtain

(4)
$$u \leq \frac{1}{(d-c)k_{\psi}} \int_{c}^{d} \psi(y,u) \, dy$$

for $u \geq 1$. Moreover, for the function φ we have

(5)
$$u \le \frac{1}{k_{\varphi}}\varphi\left(x,u\right)$$

for $u \ge 1$. Applying (4) and (5) we obtain easily that

$$u \leq \frac{1}{k_{\varphi}}\varphi\left(x, \frac{1}{(d-c)k_{\psi}}\int_{c}^{d}\psi(y, u)\,dy\right).$$

Theorem 4. Let ψ be integrable in (c, d) for every u. If k_{φ} and k_{ψ} are positive, then the space $W_{\varphi,\psi}^k(T)$ is complete with respect to the norm.

Proof. Let (f_n) be a Cauchy sequence in $W_{\varphi,\psi}^k(T)$. This means that $I_{\varphi,\psi}^{(k)}(\lambda(f_n - f_m)) \to 0$ as $m, n \to \infty$ for every $\lambda > 0$. Then, for every α , $|\alpha| \leq k$, the sequence $(D^{\alpha}f_n)$ is a Cauchy sequence in $L_{\varphi,\psi}(T)$. In particular (f_n) is a Cauchy sequence in $L_{\varphi,\psi}(T)$. By completeness of $L_{\varphi,\psi}(T)$ there exists $f_0 \in L_{\varphi,\psi}(T)$ such that (f_n) is convergent to f_0 in the sense of the norm $\|\cdot\|_{\varphi,\psi}$. We will prove that f_n are locally integrable on T. We may suppose $k_{\varphi}, k_{\psi} \leq 1$. Let us denote $p = \min(1, d-c)$, then

$$\begin{split} \varphi\left(x, \frac{1}{\left(d-c\right)k_{\psi}} \int_{c}^{d} \psi\left(y, \frac{pk_{\psi}f_{n}\left(x,y\right)}{\parallel f_{n}\parallel_{\varphi,\psi}^{\left(k\right)}}\right) dy\right) \\ & \leq \varphi\left(x, \int_{c}^{d} \psi\left(y, \frac{f_{n}\left(x,y\right)}{\parallel f_{n}\parallel_{\varphi,\psi}^{\left(k\right)}}\right) dy\right). \end{split}$$

Let $B \subset T$ be any compact set and

$$A = \left\{ (x, y) \in B : \frac{pk_{\psi} \mid f_n(x, y) \mid}{\parallel f_n \parallel_{\varphi, \psi}^{(k)}} \ge 1 \right\}.$$

Then, applying Lemma 3, we obtain

$$pk_{\psi}\frac{\mid f_{n}\left(x,y\right)\mid}{\parallel f_{n}\parallel_{\varphi,\psi}^{(k)}} \leq \frac{1}{k_{\varphi}}\varphi\left(x,\frac{1}{\left(d-c\right)k_{\psi}}\int_{c}^{d}\psi\left(y,\frac{pk_{\psi}\mid f_{n}\left(x,y\right)\mid}{\parallel f_{n}\parallel_{\varphi,\psi}^{(k)}}\right)dy\right)$$

for $(x, y) \in A$. Hence

(6)
$$\frac{1}{\|f_n\|_{\varphi,\psi}^{(k)}} \iint_B |f_n(x,y)| dxdy$$
$$\leq \frac{d-c}{pk_{\varphi}k_{\psi}} \int_a^b \varphi\left(x, \int_c^d \psi\left(y, \frac{f_n(x,y)}{\|f_n\|_{\varphi,\psi}^{(k)}}\right) dy\right) dx + \frac{1}{pk_{\psi}} \|B\|$$

The inequality (6) implies local integrability of f_n in T, n = 1, 2, ... Hence f_n defines a regular distribution

$$T_{f_n}g = \iint_T f_n(x, y) g(x, y) \, dx dy,$$

where $g \in C_0^{\infty}(T)$. For every $\alpha, |\alpha| \leq k$, we have

(7)
$$|T_{D^{\alpha}f_{n}}g - T_{D^{\alpha}f_{0}}g| \leq C \iint_{K} |f_{n}(x,y) - f_{0}(x,y)| dxdy$$

where $C = \max_{(x,y)\in T, |\alpha|\leq k} | D^{\alpha}g(x,y) |$ and $K \subset T$, K is the support of g. We have from the inequalities (6) and (7)

$$|T_{D^{\alpha}f_{n}}g - T_{D^{\alpha}f_{0}}g|$$

$$\leq \left(C_{1}\int_{a}^{b}\varphi\left(x,\int_{c}^{d}\psi\left(y,\frac{f_{n}\left(x,y\right) - f_{0}\left(x,y\right)}{\|f_{n} - f_{0}\|_{\varphi,\psi}}\right)dy\right)dx + C_{2} |K|\right)$$

$$\times \|f_{n} - f_{0}\|_{\varphi,\psi} \leq \left(C_{1} + C_{2} |K|\right)\|f_{n} - f_{0}\|_{\varphi,\psi} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

Hence $T_{D^{\alpha}f_n} \to T_{D^{\alpha}f_0}, n \to \infty$. Since $(D^{\alpha}f_n), |\alpha| \leq k|$, is the Cauchy sequence in $L_{\varphi,\psi}(T)$, thus there exists $f_{\alpha} \in L_{\varphi,\psi}(T)$ such that $(T_{D^{\alpha}f_n})$ is convergent to $T_{f_{\alpha}}$ as $n \to \infty$. Consequently $f_{\alpha} = D^{\alpha}f_0$ for every $|\alpha| \leq k$. Now, we have $f_0 \in W^k_{\varphi,\psi}(T)$. Moreover, $I_{\varphi,\psi}(\lambda(D^{\alpha}f_n - D^{\alpha}f_0)) \to 0$ as $n \to \infty$ for every $\lambda > 0$ and $|\alpha| \leq k$. Thus we proved that (f_n) is convergent to f_0 with respect to the norm of $W^k_{\varphi,\psi}(T)$.

Let us observe, that arguing in a like manner as in the proof of Theorem 3, we obtain the following theorem.

Theorem 5. If pairs of functions (φ_1, φ_2) and (ψ_1, ψ_2) satisfy the condition (\star) , then $W_{\varphi_1,\psi_1}^k(T) \subset W_{\varphi_2,\psi_2}^k(T)$. The embedding of $W_{\varphi_1,\psi_1}^k(T)$ in $W_{\varphi_2,\psi_2}^k(T)$ is continuous with respect to the norms.

4. Separability of $W_{\omega,\psi}^{k}(T)$

Let $l = \sum_{|\alpha| \leq k} 1$ and $L_{\varphi,\psi}^{l}(T) = \prod_{i=1}^{l} L_{\varphi,\psi}(T)$. For any $f = (f_{i})_{i=1}^{l} \in L_{\varphi,\psi}^{l}$ we define

$$\rho(f) = \sum_{i=1}^{l} \int_{a}^{b} \varphi\left(x, \int_{c}^{d} \psi\left(y, f_{i}\left(x, y\right)\right) dy\right) dx.$$

Obviously, ρ is a convex modular in $L^{l}_{\varphi,\psi}(T)$. Let $\|\cdot\|_{l}$ denote the Luxemburg norm in $L^{l}_{\varphi,\psi}(T)$. The space $L^{l}_{\varphi,\psi}(T)$ equipped with this norm is a Banach space.

MARIAN LISKOWSKI

Suppose that the *l* indices $\alpha = (\alpha_1, \alpha_2)$ satisfying $|\alpha| \leq k$ are linearly ordered in a convenient fashion so that with each $f \in W^k_{\varphi,\psi}(T)$ we may associate a well-defined vector Pf in $L^l_{\varphi,\psi}(T)$ given by

$$Pf = (D^{\alpha}f)_{|\alpha| < k}.$$

We have $\| f \|_{\varphi,\psi}^{(k)} = \| Pf \|_l$ for any $f \in W_{\varphi,\psi}^k(T)$. So P is an isometric isomorphism of $W_{\varphi,\psi}^k(T)$ onto subspace of $L_{\varphi,\psi}^l(T)$.

Theorem 6. The space $W_{\varphi,\psi}^{(k)}$ is separable in the sense of the modular $I_{\varphi,\psi}^{(k)}$.

Proof. The space $L_{\varphi,\psi}^{l}(T)$ is separable in the sense of ρ because $L_{\varphi,\psi}(T)$ is separable in the sense of $I_{\varphi,\psi}$. The operator P is an isometric isomorphism of $W_{\varphi,\psi}^{k}(T)$ onto $W = P\left(W_{\varphi,\psi}^{k}\right) \subset L_{\varphi,\psi}^{l}$. Since $W_{\varphi,\psi}^{k}(T)$ is complete, $P\left(W_{\varphi,\psi}^{k}\right)$ is a closed subspace of $L_{\varphi,\psi}^{l}(T)$. Thus $P\left(W_{\varphi,\psi}^{k}\right)$ is separable in the sense of ρ , and hence $W_{\varphi,\psi}^{k}(T)$ is separable in the sense of $I_{\varphi,\psi}^{(k)}$.

References

- ADAMS R.A., Sobolev spaces, Academic Press, New York, "San Francisco" London, 1975.
- [2] LISKOWSKI M., On approximation by means of linear operators in generalized Orlicz spaces, Int. Journal of Pure and Applied Mathematics, 37(2)(2007), 165-180.
- [3] MUSIELAK J., On approximation of functions of two variables by integral means and their generalization, Atti Sem. Mat. Univ. Modena, XLVI (1998), 335-349.

MARIAN LISKOWSKI INSTITUTE OF MATHEMATICS POZNAN UNIVERSITY OF TECHNOLOGY PIOTROWO 3A, 60-965 POZNAN *e-mail:* marian.liskowski@put.poznan.pl

Received on 01.08.2011 and, in revised form, on 13.12.2011.