
F A S C I C U L I M A T H E M A T I C I

Nr 48 2012

P.P. Murthy, K. Tas and B.S. Choudhary

WEAK CONTRACTION MAPPINGS
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Abstract. The intent of this note is to prove some fixed point
and common fixed theorems in a Saks spaces by introducing a
weaker inequality analogue to Albert and Delabriere [1]. We have
also introduced a control functions which is certainly weaker con-
traction condition available in the literature of Metric Fixed Point
Theory and Applications.
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1. Introduction

The Banach contraction mapping principle is widely recognized as the
source of metric fixed point theory.

A mapping T : X → X, where (X, d) is a metric space is said to be a
contraction mapping if for all x, y ∈ X,

(1) d(Tx, Ty) ≤ λd(x, y), where 0 < λ < 1.

According to the contraction mapping principle, any mapping T satisfying
(1) in a complete metric space will have a unique fixed point. This principle
has been generalised in different directions by mathematicians over the years.
Also in the contemporary research it remains a heavily investigated branch
of research. The works noted in [1], [2], [4], [10], [14] [16] and [22] are some
examples from this line of research.

Throughout this paper, (Xs, d) = (X,N1, N2) denotes a Saks space, and
N1 is equivalent to N2 on X. In brief we shall define X as a Saks space.
The following lemma due to Orlicz [26] is useful for the proof of our main
theorem:

Lemma 1. Let X be a Saks space. Then the following statements are
equivalent:

(i) N1 is equivalent to N2 on X.
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(ii) (X,N1) is a Banach space and N1 ≤ N2 on X.
(iii) (X,N2) is a Frechet space and N2 ≤ N1 on X.

In [1] Alber and Guerre-Delabriere introduced the concept of weak con-
traction in Hilbert spaces. Rhoades [18] has shown that the result which
Alber et al. had proved in [1] is also valid in complete metric spaces. We
state the result of Rhoades which follows:

Definition 1 (Weakly contractive mapping). A mapping T : X → X,
where (Xs, d) = (X,N1, N2) is a Saks space is said to be weakly contractive
if

(2) N2(Tx− Ty) ≤ N2(x− y)− φ(N2(x− y)),

where x, y ∈ X and φ : [0,∞) → [0,∞) is a continuous and nondecreasing
function such that φ(t) = 0 if and only if t = 0.

If we take φ(t) = (1 − λ)t where 0 < λ < 1, then (2) reduces to in the
metric space setting.

Theorem 1 ([18]). If T : X → X is a weakly contractive mapping, where
(X, d) is a complete metric space, then T has a unique fixed point.

Weak inequalities of the above type have been used to establish fixed
point results in a number of subsequent works some of which are noted in
[5], [6], [13], [21] and [23].

There is another important generalization of the Banach contraction prin-
ciple given by Khan et al. in [15] where they used a control function, and
called altering distance function.

Definition 2 (Altering distance function [15]). A function ψ : [0,∞)→
[0,∞) is called an altering distance function if the following properties are
satisfied:

(i) ψ is monotone increasing and continuous
(ii) ψ(t) = 0 if and only if t = 0.

The following generalisation of the Banach contraction mapping principle
was proved in [15].

Theorem 2 ([15]). Let (X, d) be a complete metric space, ψ be an altering
distance function and f : X → X be a self mapping which satisfies the
following inequality:

(3) ψ(d(fx, fy)) ≤ λψ(d(x, y))

for all x, y ∈ X and for some 0 < λ < 1, then f has a unique fixed point.
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In fact Khan et al. had proved a more general theorem [15, Theorem 2]
of which the above result is a corollary.

Altering distance has been used in metric fixed point theory in a number
of papers, some of which are noted in [17], [19] and [20]. In [7], [8] and [3]
respectively, two, three and four variable generalizations of altering distance
function have been introduced and applied to fixed point problems. It has
also been extended to the case of multivalued and fuzzy mappings [9]. The
concept of altering distance function has also been extended to fixed point
problems in Menger spaces ([10], [11] and [12]).

The purpose of this paper is to work out fixed point results for map-
pings in metric spaces by use of weak inequalities and the altering distance
function.

2. Main result

Theorem 3. Let (Xs, d) = (X,N1, N2) is a Saks space in which N1 is
equivalent to N2 on X. Let T : X → X be a self mapping which satisfies the
following inequality:

(4) Ψ(N2(Tx− Ty)) ≤ Ψ(M(x, y))− Φ(N(x, y))

where x, y ∈ X, x 6= y,

M(x, y) = max

{
N2(x− y),

1

2
(N2(x− Tx) +N2(y − Ty)),(5)

1

2
(N2(y − Tx) +N2(x− Ty))

}
,

(6) N(x, y) = min{N2(x− y),
1

2
(N2(y − Tx) +N2(x− Ty))},

Φ : [0,∞) → [0,∞) is a lower semi continuous function with Φ(t) > 0 for
all t ∈ (0,∞) and Φ(0) = 0 and Ψ : [0,∞)→ [0,∞) is an altering distance
function (Definition 2) which in addition is strictly monotone increasing.
Then there is a unique fixed point of T .

Proof. Let x0 ∈ X. We define a sequence {xn} in X, such that for all
n ≥ 0,

(7) xn+1 = Txn

If xn = xn+1, then xn is a fixed point of T . Hence we assume for all n ≥ 0,

(8) xn 6= xn+1.
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Putting x = xn and y = xn+1 in (4), we have

Ψ(N2(xn+1 − xn+2)) = Ψ(N2(Txn − Txn+1))(9)

≤ Ψ(M(xn, xn+1))− Φ(N(xn, xn+1)).

Now,

M(xn, xn+1) = max

{
N2(xn − xn+1),(10)

1

2
(N2(xn − xn+1) + N2(xn+1 − xn+2)),

1

2
(N2(xn+1 − xn+1) +N2(xn − xn+2))

}
and

N(xn, xn+1) = min

{
N2(xn − xn+1),(11)

1

2
(N2(xn+1 − xn+1) +N2(xn − xn+2))

}
.

If possible, let for some n, N2(xn − xn+1) < N2(xn+1 − xn+2).
Then by the triangular inequality

0 < N2(xn+1 − xn+2)−N2(xn − xn+1) ≤ N2(xn − xn+2).

Hence by virtue of (8), we have N(xn, xn+1) > 0. Then from (9), (10), (11)
and our assumption, we have

Ψ(N2(xn+1 − xn+2)) ≤ Ψ(N2(xn+1 − xn+2))− Φ(N(xn, xn+1))

< Ψ(N2(xn+1 − xn+2)),

which is a contradiction. Hence for all n ≥ 0,

(12) N2(xn+1 − xn+2) ≤ N2(xn − xn+1)

In view of (12), we obtain from (10) and (11), for all n ≥ 0,

(13) M(xn, xn+1) = N2(xn − xn+1).

(14) N(xn, xn+1) =
1

2
(N2(xn − xn+2)) .

Putting (13) and (14) in (9), we have for all n ≥ 0,

(15) Ψ(N2(xn+1 − xn+2)) ≤ Ψ(N2(xn − xn+1))− Φ(
1

2
(N2(xn − xn+2))).
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Again (12) implies that the sequence {N2(xn − xn+1)} is a monotone de-
creasing sequence of non-negative real numbers. Hence there exists r ≥ 0
such that

lim
n→∞

N2(xn − xn+1) = r.

Again

N2(xn − xn+2)− 2r ≤ N2(xn, xn+1) +N2(xn+1 − xn+2)− 2r.

This implies that

|N2(xn − xn+2)− 2r| ≤ |N2(xn − xn+1)− r|+ |N2(xn+1 − xn+2)− r| → 0

as n→∞. Thus

lim
n→∞

N2(xn − xn+2) = 2r.

Making n → ∞ in (15), by the continuity of Ψ-function and the lower
semi continuity of Φ -function, we have Ψ(r) ≤ Ψ(r)−Φ(12r), which by the
properties of Ψ-function and Φ-function implies that r = 0. Hence we have,

(16) lim
n→∞

N2(xn − xn+1) = 0.

Next we show that {xn} is a Cauchy sequence. If otherwise, there exists
ε > 0 and sequences of natural numbers {m(k)} and {n(k)} such that for
every natural number k,

(17) n(k) > m(k) > k

and

(18) N2(xm(k) − xn(k)) ≥ ε.

Corresponding to m(k) we can choose n(k) to be the smallest integer such
that (18) is satisfied. Then we have

(19) N2(xm(k) − xn(k)−1) < ε.

Further, (18) implies N2(Txm(k)−1 − Txn(k)−1) 6= 0. Hence xm(k)−1 6=
xn(k)−1. Putting x = xm(k)−1 and y = xn(k)−1 in (4), (5) and (6) respectively,
we have for all k,

Ψ(N2(xm(k) − xn(k))) = Ψ(N2(Txm(k)−1 − Txn(k)−1))(20)

≤ Ψ(M(xm(k)−1, xn(k)−1))

− Φ(N(xm(k)−1, xn(k)−1))
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where

M(xm(k)−1, xn(k)−1 = max

{
N2(xm(k)−1 − xn(k)−1),(21)

1

2
(N2(xm(k)−1, xm(k)) +N2(xn(k)−1 − xn(k))),

1

2
(N2(xn(k)−1 − xm(k)) +N2(xm(k)−1 − xn(k)))

}
and

N(xm(k)−1, xn(k)−1) = min

{
N2(xm(k)−1 − xn(k)−1),(22)

1

2
(N2(xn(k)−1 − xm(k)) +N2(xm(k)−1 − xn(k)))

}
.

Then for every positive integer k we have,

ε ≤ N2(xm(k), xn(k))

≤ N2(xm(k) − xn(k)−1) +N2(xn(k)−1 − xn(k))
< ε+N2(xn(k)−1 − xn(k)) (by (2.16))

Making k →∞ in the above inequality, we obtain by(16),

(23) lim
k→∞

d(xm(k), xn(k)) = ε.

Again for all k,

N2(xm(k)−1 − xn(k)−1) ≤ N2(xm(k)−1 − xm(k))

+ N2(xm(k) − xn(k)) +N2(xn(k) − xn(k)−1)

and

N2(xm(k) − xn(k)) ≤ N2(xm(k) − xm(k)−1)

+ N2(xm(k)−1 − xn(k)−1) +N2(xn(k)−1 − xn(k)).

Making k →∞ and using (16) and (23) in the above two inequalities, we
obtain,

(24) lim
k→∞

N2(xm(k)−1 − xn(k)−1) = ε.

Again for all positive integer k,

N2(xm(k)−1 − xn(k)) ≤ N2(xm(k)−1 − xm(k)) +N2(xm(k) − xn(k))
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and

N2(xm(k) − xn(k)) ≤ N2(xm(k) − xm(k)−1) +N2(xm(k)−1 − xn(k)).

Making k → ∞ and using (16) and (23) in the above inequalities, we
have,

(25) lim
k→∞

N2(xm(k)−1 − xn(k)) = ε.

Also for every positive integer k,

N2(xn(k)−1 − xm(k)) ≤ N2(xn(k)−1 − xn(k)) +N2(xn(k) − xm(k))

and

N2(xn(k) − xm(k)) ≤ N2(xn(k) − xn(k)−1) +N2(xn(k)−1 − xm(k)).

Making k →∞ in the above inequalities, we have using (16) and (23),

(26) lim
k→∞

N2(xn(k)−1 − xm(k)) = ε.

Making k → ∞ in (20) and using (16), (21) - (26), we have by continuity
of Ψ-function and lower semi continuity of Φ-function,

Ψ(ε) ≤ Ψ(ε)− Φ(ε).

Then we have by virtue of a property of Φ -function that it is a contra-
diction with ε > 0. Hence {xn} is a Cauchy sequence with respect to N1.
From Lemma 1, (X,N1) is a Banach space, therefore and therefore {xn} be
a convergent sequence and converges to a point z in X.

Let,

(27) xn → z as n→∞.

By (8), there exists a subsequence {xn(k)} of {xn} such that z 6= xn(k) for
all k. Substituting x = xn(k) and y = z in (4), (5) and (6) we obtain

(28) Ψ(N2(xn(k)+1 − Tz)) ≤ Ψ(M(xn(k) − z))− Φ(N(xn(k) − z))

where

M(xn(k), z) = max

{
N2(xn(k) − z),(29)

1

2
(N2(xn(k) − xn(k)+1) +N2(z − Tz)),

1

2
(N2(xn(k) − Tz) +N2(z − xn(k)+1))

}
,
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N(xn(k), z) = min

{
N2(xn(k) − z),(30)

1

2
(N2(xn(k) − Tz) +N2(z − xn(k)+1))

}
.

Making k → ∞ in the above inequalities, we obtain Ψ(N2(z − Tz)) ≤
Ψ(12(N2(z−Tz))), which contradicts the strict monotone increasing property
of the function ψ unless N2(z− Tz) = 0, that is, z = Tz. Hence z is a fixed
point of T .

We next establish that the fixed point is unique. Let z1 and z2 be two
fixed points of T and z1 6= z2, then putting x = z1 and y = z2 in (4), (5)
and (6) respectively, we obtain,

Ψ(N2(z1 − z2)) ≤ Ψ(N2(z1 − z2))− Φ(N2(z1 − z2)),

which, by virtue of a property of Φ functions implies N2(z1 − z2) = 0, that
is z1 = z2.

This completes the proof of the theorem. �

Theorem 4. Let (Xs, d) = (X,N1, N2) is a Saks space in which N1 is
equivalent to N2 on X and let T : X → X be such that for all x, y ∈ X with
x 6= y, the following inequality is satisfied:

(31) Ψ(N2(Tx− Ty)) ≤ Ψ(M(x, y))− h(Q(x, y)),

where

M(x, y) = max

{
{N2(x− y),

1

2
(N2(x− Tx) +N2(y − Ty)),(32)

1

2
(N2(y − Tx) +N2(x− Ty))

}
,

Q(x, y) = min

{
N2(x− y),

1

2
(N2(x− Tx) +N2(y − Ty)),(33)

1

2
(N2(y − Tx) +N2(x− Ty))

}
,

where h : [0,∞) → [0,∞) is such that h(t) > 0 and lower semi-continuous
for all t > 0, h is discontinuous at t = 0 with h(0) = 0, and Ψ : [0,∞) →
[0,∞) is an altering distance function. Then T has a unique fixed point.

Proof. Starting with arbitrary x0 ∈ X, we construct the sequence {xn}
as in (7). Further we assume (8) for all n ≥ 0, otherwise the fixed point of
T automatically exists. Putting x = xn and y = xn+1 in (31), for all n ≥ 0,

(34) Ψ(N2(xn+1, xn+2)) ≤ Ψ(M(xn, xn+1))− h(Q(xn, xn+1)),
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where,

M(xn, xn+1) = max

{
N2(xn − xn+1),(35)

1

2
(N2(xn − xn+1) +N2(xn+1 − xn+2)),

1

2
(N2(xn+1 − xn+1) +N2(xn − xn+2))

}
and

Q(xn, xn+1) = min

{
N2(xn − xn+1),(36)

1

2
(N2(xn − xn+1) +N2(xn+1 − xn+2)),

1

2
(N2(xn+1 − xn+1) +N2(xn − xn+2))

}
.

If possible, let for some n,

N2(xn − xn+1) < N2(xn+1 − xn+2).

Then by the triangular inequality 0 < N2(xn+1 − xn+2)−N2(xn − xn+1) ≤
N2(xn − xn+2). Then from (34), (35) and (36) we have by the properties of
h-function

Ψ(N2(xn+1 − xn+2)) < Ψ(N2(xn+1 − xn+2)),

which is a contradiction. Hence for all n ≥ 0,

(37) N2(xn+1 − xn+2) ≤ N2(xn − xn+1).

In view of (37), we obtain from (35) and (36) respectively, for all n ≥ 0,

M(xn, xn+1) = N2(xn − xn+1) and Q(xn, xn+1) =
1

2
(N2(xn − xn+2)).

Using the above relations we have for all n ≥ 0,

(38) Ψ(N2(xn+1 − xn+2)) ≤ Ψ(N2(xn − xn+1))− h(
1

2
N2(xn − xn+2)).

Again, (37) implies that the sequence {N2(xn − xn+1)} is a monotone de-
creasing sequence of non-negative real numbers. Hence there exists r ≥ 0
such that lim

n→∞
N2(xn − xn+1) = r.

As already observed in the proof of Theorem 3, in view of the above limit
we have that

lim
n→∞

N2(xn − xn+2) = 2r.
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If possible, let r > 0. Making n→∞ in (38) and using the above relations,
by continuity of Ψ-function and by lower semi-continuity of h-function,
we have Ψ(r) ≤ Ψ(r) − h(r), which by a property of h-function implies a
contradiction. Hence we have,

(39) lim
n→∞

N2(xn − xn+1) = 0.

Next we prove that {xn} is a Cauchy sequence. If otherwise, we can have
some ε > 0 and corresponding subsequences {xm(k)} and {xn(k)} of {xn}
such that for every natural number k, n(k) > m(k) > k and

(40) d(xm(k), xn(k)) ≥ ε

and

(41) N2(xm(k) − xn(k)−1) < ε.

From (40), N2(Txm(k)−1 − Txn(k)−1) 6= 0, hence xm(k)−1 6= xn(k)−1.
Further, proceeding identically as in Theorem 3, we have,

(42) lim
k→∞

N2(xm(k) − xn(k)) = ε,

(43) lim
k→∞

N2(xm(k) − xn(k)−1) = ε,

(44) lim
k→∞

N2(xm(k)−1 − xn(k)) = ε,

and

(45) lim
k→∞

N2(xm(k)−1 − xn(k)−1) = ε.

Now putting x = xm(k)−1 and y = xn(k)−1 in (31), (32) and (33) we get, for
all k ≥ 0,

Ψ(N2(xm(k) − xn(k))) ≤ Ψ(M(xm(k)−1 − xn(k)−1))(46)

− h(Q(xm(k)−1 − xn(k)−1)).

Now,

M(xm(k)−1, xn(k)−1) = max

{
N2(xm(k)−1 − xn(k)−1),(47)

1

2
(N2(xm(k)−1 − xm(k)) +N2(xn(k)−1 − xn(k))),

1

2
(N2(xm(k)−1 − xn(k)) +N2(xn(k)−1 − xm(k)))

}
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and

Q(xm(k)−1, xn(k)−1) = min

{
N2(xm(k)−1 − xn(k)−1),(48)

1

2
(N2(xm(k)−1 − xm(k)) +N2(xn(k)−1 − xn(k))),

1

2
(N2(xm(k)−1 − xn(k)) +N2(xn(k)−1 − xm(k)))

}
.

Making k → ∞ and using (39), (42), (43), (44) and (45), we obtain from
(47) and (48)

(49) lim
k→∞

M(xm(k)−1 − xn(k)−1) = ε

(50) lim
k→∞

Q(xm(k)−1 − xn(k)−1) = 0

Further, making k →∞ in (2.43), using (2.46) and (2.47), by continuity
of Ψ we obtain,

(51) Ψ(ε) ≤ Ψ(ε)− lim
k→∞

h(Q(xm(k)−1 − xn(k)−1)).

By (48) and the fact that h has a discontinuity at t = 0 and h(t)̇ > 0 for
t > 0, we observe that the last term of the right hand side of the above
inequality is non zero. Hence we arrive at a contradiction. Hence {xn} is a
Cauchy sequence with respect to N1. From Lemma 1, ( X, N1) is a Banach
space, therefore and therefore {xn} be a convergent sequence and converges
to a point z in X.

Let,
xn → z as n→∞.

By (8), there exists a subsequence {xn(k)} of {xn} such that z 6= xn(k) for all
k ≥ 0. Substituting x = xn(k) and y = z in (31), (32) and (33), we obtain,

Ψ(d(xn(k)+1, T z)) ≤ Ψ(M(xn(k), z))− h(Q(xn(k), z))

where,

M(xn(k), z) = max

{
N2(xn(k) − z),

1

2
(N2(xn(k) − xn(k)+1) +N2(z − Tz)),

1

2
(N2(xn(k) − Tz) +N2(z − xn(k)+1))

}
,

Q(xn(k), z) = min

{
N2(xn(k) − z),

1

2
(N2(xn(k) − xn(k)+1) +N2(z − Tz)),

1

2
(N2(xn(k) − Tz) +N2(z − xn(k)+1))

}
.
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Making k → ∞ in the above expressions and using discontinuity of h, we
obtain,

Ψ(N2(z − Tz)) < Ψ(
1

2
(N2(z − Tz))),

which implies that N2(z−Tz) = 0, that is, z = Tz. Hence z is a fixed point
of T .

We next establish that the fixed point is unique. Let z1 and z2 be two
fixed points of T and z1 6= z2. Putting x = z1 and y = z2 in (31), (32) and
(33), we obtain,

Ψ(d(z1, z2)) ≤ Ψ(N2(z1 − z2))− h(N2(z1 − z2)),

which by virtue of a property of h function implies N2(z1 − z2) = 0, that is
z1 = z2.

This completes the proof of the Theorem 4. �
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