$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 48}$ 2012

S. Sedghi, I. Altun and N. Shobe

SOME PROPERTIES OF *T*-METRIC SPACES AND A COMMON FIXED POINT THEOREM

ABSTRACT. In this paper, we introduce the new definitions of T-metric space and give some properties of it. Also, we prove a common fixed point theorem for for four mappings under the condition of weakly compatible in complete T-metric spaces. A lot of fixed point theorems on ordinary metric space are special case of our main result, since every ordinary metric space is also T-metric space.

KEY WORDS: T-metric space, contractive mapping, fixed point.

AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

It is well known that the Banach contraction principle is a fundamental result in fixed point theory. After this classical result, many authors have extended, generalized and improved this theorem in different ways (See for details, [1], [4], [5], [6]). Also recently, fixed and common fixed point results in different types of spaces have been developed. For example, ultra metric spaces [14], fuzzy metric spaces [9] and uniform spaces [13]. In this paper we introduce the new definitions of T-metric space and give some properties of it. After then, we prove a common fixed point theorem for four mappings under the condition of weakly compatible in complete T-metric spaces. We begin this paper by giving the definition of ultra metric space.

Definition 1 ([14]). Let (X, d) be a metric space. If the metric d satisfies strong triangle inequality:

$$d(x,y) \le \max\{d(x,z), d(z,y)\} \quad \forall x, y, z \in X$$

then d is called an ultra metric on X and the pair (X, d) is called an ultra metric space. An ultra metric space (X, d) is said to be spherically complete if every shrinking collection of balls in X has a nonempty intersection.

Rao and Kishore [11] proved the following:

Theorem 1. Let (X, d) be a spherically complete ultra metric space. If f and F are self maps on X satisfying $F(X) \subseteq f(X)$,

$$d(Fx,Fy) < \max\{d(fx,fy), d(fx,Fx), d(fy,Fy)\} \quad \forall x,y \in X, \ x \neq y$$

then there exists $z \in X$ such that fz = Fz. Further if f and F are coincidentally commuting at z then z is the unique common fixed point of fand F.

In the following, we introduce a new binary operation which is a probable modification of the definition of ordinary metric. In Section 2, we give the definition of T-metric and some properties of it. In Section 3, we prove a common fixed point theorem for four weakly compatible maps in complete T-metric spaces satisfying a new contractive type condition.

2. *T*-metric spaces

In what follows, N is the set of all natural numbers and \mathbb{R}^+ is the set of all nonnegative real numbers.

Let $\diamond : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ be a binary operation satisfying the following conditions:

 $(i) \diamond$ is associative and commutative,

 $(ii) \diamond$ is continuous,

(*iii*) $a \diamond 0 = a$ for all $a \in \mathbb{R}^+$,

 $(iv) \ a \diamond b \leq c \diamond d \text{ whenever } a \leq c \text{ and } b \leq d \text{, for each } a, b, c, d \in \mathbb{R}^+.$

Five typical examples of \diamond are:

 $a \diamond_1 b = \max\{a, b\}, a \diamond_2 b = \sqrt{a^2 + b^2}, a \diamond_3 b = a + b, a \diamond_4 b = ab + a + b$ and $a \diamond_5 b = (\sqrt{a} + \sqrt{b})^2$ for each $a, b \in \mathbb{R}^+$. It is easy to see that:

 $a\diamond_1 b \le a\diamond_2 b \le a\diamond_3 b \le \min\{a\diamond_4 b, a\diamond_5 b\}.$

Lemma 1. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous, onto and increasing map. If defined $a \diamond b = f^{-1}(f(a) + f(b))$ for every $a, b \in \mathbb{R}^+$, then \diamond is a binary operation.

Proof. It is easy to see that \diamond is an increasing in both items, commutative, associative and continuous satisfying $a \diamond 0 = f^{-1}(f(a) + f(0)) = f^{-1}(f(a)) = a$ for all $a \in [0, \infty)$.

Example 1. If function $f : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ defined by $f(x) = e^x - 1$, then it is easy to see that f is a continuous, onto and increasing function. Also, for every $a, b \in \mathbb{R}^+$ we have $a \diamond b = \ln(e^a + e^b - 1)$ is a binary operation. **Lemma 2.** Let \diamond be a binary operation on \mathbb{R}^+ satisfying the conditions (*i*)-(*iv*).

(a) If $r, r' \ge 0$, then $\max\{r, r'\} \le r \diamond r'$.

(b) If $0 < \delta < r$, then there exist a $0 < \delta' < r$ such that $\delta' \diamond \delta < r$.

(c) For every $\epsilon > 0$ there exist a $\delta > 0$ such that $\delta \diamond \delta < \epsilon$.

Proof. (a) Since $r' \ge 0$ by properties (iii) and (iv) of binary operation \diamond we have $r \diamond r' \ge r \diamond 0 = r$. Similarly we have $r \diamond r' \ge r'$.

(b) Let $0 < \delta < r$. Suppose for every $\delta' > 0$ we have $\delta' \diamond \delta \ge r$. In particular if take $\delta' = \frac{1}{n}$ then we have $\frac{1}{n} \diamond \delta \ge r$. Thus, this implies that $0 \diamond \delta \ge r$ as $n \to \infty$, which is a contradiction. Hence by part (i) of this lemma we get $\delta' \le \delta' \diamond \delta < r$.

(c) Let $\epsilon > 0$. Suppose for every $\delta > 0$, we have $\delta \diamond \delta \ge \epsilon$. For $\delta = \frac{1}{n}$ we have $\frac{1}{n} \diamond \frac{1}{n} \ge \epsilon$, hence as $n \to \infty$ we get $0 \ge \epsilon$, which is a contradiction.

Now we introduce the new concept of T-metric.

Definition 2. Let X be a nonempty set. A T-metric on X is a function $T: X^2 \to \mathbb{R}$ that satisfies the following conditions: for each $x, y, z \in X$

(a) $T(x,y) \ge 0$ and T(x,y) = 0 if and only if x = y,

- (b) T(x,y) = T(y,x),
- (c) $T(x,y) \leq T(x,z) \diamond T(y,z)$.

The 3-tuple (X, T, \diamond) is called a T-metric space.

Example 2. (i) Every ordinary metric d is a T-metric with $a \diamond b = a + b$. (ii) Every ultra metric d is a T-metric with $a \diamond b = \max\{a, b\}$.

(*iii*) Let $X = \mathbb{R}$ and $T(x, y) = \sqrt{|x - y|}$ for every $x, y \in \mathbb{R}$. If we take $a \diamond b = \sqrt{a^2 + b^2}$, then we have

$$T(x,y) = \sqrt{|x-y|} \\ \leq \sqrt{|x-z| + |z-y|} \\ = \sqrt{\sqrt{|x-z|^2} + \sqrt{|z-y|^2}} \\ = T(x,z) \diamond T(z,y).$$

Therefore the function T is a T-metric on X.

(iv) Let $X = \mathbb{R}$ and $T(x, y) = (x - y)^2$ for every $x, y \in \mathbb{R}$. If we take $a \diamond b = (\sqrt{a} + \sqrt{b})^2$, then we have

$$T(x,y) = (x-y)^2 = |x-y|^2$$

$$\leq (|x-z|+|z-y|)^2$$

$$= (\sqrt{|x-z|^2} + \sqrt{|z-y|^2})^2$$

$$= T(x,z) \diamond T(z,y).$$

Therefore the function T is a T-metric on X.

Remark 1. For fixed $0 \le \alpha \le \frac{\pi}{4}$ if there exist β, γ such that

$$0 \le \alpha \le \beta + \gamma < \frac{\pi}{2},$$
$$\tan \alpha \le \tan \beta + \tan \gamma + \tan \beta \tan \gamma.$$

then

Example 3. Let X = [0, 1] and $T(x, y) = \tan(\frac{\pi}{4}|x - y|)$ for every $x, y \in X$. If we take $a \diamond b = a + b + ab$, then by Remark 1 we have

$$T(x,y) = \tan(\frac{\pi}{4}|x-y|)$$

$$\leq \tan(\frac{\pi}{4}|x-z|) + \tan(\frac{\pi}{4}|z-y|) + \tan(\frac{\pi}{4}|x-z|)\tan(\frac{\pi}{4}|z-y|)$$

$$= T(x,z) \diamond T(z,y).$$

Therefore the function T is a T-metric on X.

Let (X, T, \diamond) be a *T*-metric space. For r > 0 define

$$B_T(x,r) = \{ y \in X : T(x,y) < r \}.$$

Definition 3. Let (X, T, \diamond) be a *T*-metric space r > 0 and $A \subset X$.

- (a) The set $B_T(x,r) = \{y \in X : T(x,y) < r\}$ is called an open ball centered at x and radius r.
- (b) If for every $x \in A$ there exists r > 0 such that $B_T(x,r) \subset A$, then the subset A is called open subset of X.
- (c) The subset A of X is said to be T-bounded if there exists r > 0 such that T(x, y) < r for all $x, y \in A$.
- (d) A sequence $\{x_n\}$ in X converges to x if $T(x_n, x) \to 0$ as $n \to \infty$ and write $\lim_{n\to\infty} x_n = x$. That is for each $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $T(x_n, x) < \epsilon$ for all $n \ge n_0$, then $\{x_n\}$ converges to x.
- (e) A sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $T(x_n, x_m) < \epsilon$ for all $n, m \ge n_0$.
- (f) The T-metric space (X, T, \diamond) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all open subset of X, then τ is a topology on X (induced by the T-metric T).

Lemma 3. Let (X,T,\diamond) be a *T*-metric space. If r > 0, then the open ball $B_T(x,r)$ with center $x \in X$ and radius r is an open set.

Proof. Let $y \in B_T(x, r)$, hence T(x, y) < r. If we set $T(x, y) = \delta$ then by Lemma 2 there exists $\delta' > 0$ such that $\delta' \diamond \delta < r$. Now, we prove that $B_T(y, \delta') \subseteq B_T(x, r)$. Let $z \in B_T(y, \delta')$, then by triangular inequality we have

$$T(x,z) \le T(x,y) \diamond T(y,z) < \delta \diamond \delta' < r.$$

Hence $B_T(y, \delta') \subseteq B_T(x, r)$. That is $B_T(x, r)$ is an open set.

Lemma 4. Let (X, T, \diamond) be a *T*-metric space. If sequence $\{x_n\}$ in *X* converges to *x*, then *x* is unique.

Proof. Let $x_n \to y$. For every $\epsilon > 0$ by Lemma 2 we can choose a $\delta > 0$ such that $\delta \diamond \delta < \epsilon$. Now, since $\{x_n\}$ converges to x and y, for this δ there exists $n_1 \in \mathbb{N}$ such that $T(x_n, x) < \delta$ for all $n \ge n_1$ and there exists $n_2 \in \mathbb{N}$ such that $T(x_n, y) < \delta$ for all $n \ge n_2$. If set $n_0 = \max\{n_1, n_2\}$, then for all $n \ge n_0$ by triangular inequality we have

$$T(x,y) \le T(x,x_n) \diamond T(x_n,y) < \delta \diamond \delta < \epsilon.$$

Hence T(x, y) = 0 and so x = y.

Lemma 5. Let (X, T, \diamond) be a *T*-metric space. Then every convergent sequence $\{x_n\}$ in X is a Cauchy sequence.

Proof. For every $\epsilon > 0$ by Lemma 2 we can choose a $\delta > 0$ such that $\delta \diamond \delta < \epsilon$. Since $x_n \to x$ there exists $n_0 \in \mathbb{N}$ such that $T(x_n, x) < \delta$ for all $n \ge n_0$. Thus for all $n, m \ge n_0$ by triangular inequality we have

$$T(x_n, x_m) \le T(x_n, x) \diamond T(x, x_m) < \delta \diamond \delta < \epsilon.$$

Hence sequence $\{x_n\}$ is a Cauchy sequence.

Definition 4. Let (X, T, \diamond) be a *T*-metric space. *T* is said to be continuous, if

$$\lim_{n \to \infty} T(x_n, y_n) = T(x, y)$$

whenever

$$\lim_{n \to \infty} T(x_n, x) = \lim_{n \to \infty} T(y_n, y) = 0.$$

Lemma 6. Let (X, T, \diamond) be a *T*-metric space. Then *T* is a continuous function.

Proof. Let $\lim_{n\to\infty} T(x_n, x) = \lim_{n\to\infty} T(y_n, y) = 0$, then by triangular inequality we have

$$T(x_n, y_n) \le T(x_n, x) \diamond T(x, y) \diamond T(y, y_n).$$

Hence we have

$$\lim_{n \to \infty} \sup T(x_n, y_n) \le T(x, y).$$

Similarly, we have

$$T(x,y) \le T(x,x_n) \diamond T(x_n,y_n) \diamond T(y_n,y)$$

and so

$$T(x,y) \le \lim_{n \to \infty} \inf T(x_n, y_n).$$

Therefore we have

$$\lim_{n \to \infty} T(x_n, y_n) = T(x, y).$$

3. Fixed point result

In this section we give some fixed point results on T-metric spaces. In these results we use an implicit relation for contractive condition. Implicit relation technique on metric space have been used in many articles (See [2], [3], [7], [10], [12]).

Definition 5. Let \mathbb{R}^+ be the set of all non-negative real numbers and let \mathcal{H} be the set of all continuous functions $H : (\mathbb{R}^+)^5 \to \mathbb{R}$ satisfying the following conditions:

 $H_1: H(t_1, \dots, t_5)$ is non-decreasing in t_1 and non-increasing in t_2, \dots, t_5 . $H_2:$ there exists $h \in (0, 1)$ such that

$$H(u, v, v, u, v \diamond u) \le 0 \quad or \quad H(u, v, u, v, v \diamond u) \le 0$$

implies $u \leq hv$.

 $H_3: H(u, 0, 0, u, u) > 0, H(u, 0, u, 0, u) > 0$ and $H(u, u, 0, 0, u \diamond u) > 0$, for all u > 0.

Now, we give some examples.

Example 4. Let $a \diamond b = a + b$ for all $a, b \in [0, \infty)$ and $H(t_1, \dots, t_5) = t_1 - \alpha \max\{t_2, t_3, t_4\} - \beta t_5$, where $\alpha, \beta \ge 0$ and $\alpha + 2\beta < 1$.

 H_1 : Obvious.

 H_2 : Let u > 0 and

$$H(u, v, v, u, v \diamond u) = H(u, v, v, u, v + u)$$

= $u - \alpha \max\{u, v\} - \beta(v + u) \le 0.$

Thus $u \leq \max\{(\alpha + \beta)u + \beta v, (\alpha + \beta)v + \beta u\}$. Now if $u \geq v$, then $u \leq (\alpha + \beta)u + \beta v \leq (\alpha + 2\beta)u$, a contradiction. Thus u < v and $u \leq (\alpha + \beta)v + \beta u$ and so $u \leq \frac{\alpha + \beta}{1 - \beta}v$. Similarly, let u > 0 and

$$H(u, v, u, v, v \diamond u) = H(u, v, u, v, v + u)$$

= $u - \alpha \max\{u, v\} - \beta(v + u) \le 0$,

then we have $u \leq \frac{\alpha+\beta}{1-\beta}v$. If u = 0, then $u \leq \frac{\alpha+\beta}{1-\beta}v$. Thus H_2 is satisfying with $h = \frac{\alpha+\beta}{1-\beta} < 1$.

110

$$\begin{split} H_3: H(u,0,0,u,u) &= H(u,0,u,0,u) = u(1-\alpha-\beta) > 0 \text{ and} \\ H(u,u,0,0,u\diamond u) &= H(u,u,0,0,u+u) = u(1-\alpha-2\beta) > 0, \end{split}$$

for all u > 0. Therefore $H \in \mathcal{H}$.

Example 5. Let $a \diamond b = (\sqrt{a} + \sqrt{b})^2$ for all $a, b \in [0, \infty)$ and $H(t_1, \dots, t_5) = t_1 - m \max\{t_2, t_3, t_4, \frac{1}{4}t_5\}$, where $0 \le m < 1$.

 H_1 : Obvious. H_2 : Let u > 0 and

$$H(u, v, v, u, v \diamond u) = H(u, v, v, u, \frac{1}{4}(\sqrt{v} + \sqrt{u})^2)$$

= $u - m \max\{u, v, \frac{1}{4}(\sqrt{v} + \sqrt{u})^2\} \le 0$.

Thus $u \leq m \max\{u, v\}$. Now if $u \geq v$, then $u \leq mu$, a contradiction. Thus u < v and $u \leq mv$. Similarly, let u > 0 and

$$H(u, v, u, v, v \diamond u) = H(u, v, u, v, \frac{1}{4}(\sqrt{v} + \sqrt{u})^2) = u - m \max\{u, v\} \le 0,$$

then we have $u \leq mv$. If u = 0, then $u \leq mv$. Thus H_2 is satisfying with h = m < 1.

 $H_3: H(u, 0, 0, u, u) = H(u, 0, u, 0, u) = H(u, u, 0, 0, u \diamond u) = u(1-m) > 0,$ for all u > 0. Therefore $H \in \mathcal{H}$.

Lemma 7. Let (X, T, \diamond) be *T*-metric space with $a \diamond b \leq (\sqrt{a} + \sqrt{b})^2$. If for all $n \in \mathbb{N}$

$$T(x_{n+1}, x_n) \le kT(x_n, x_{n-1})$$

for 0 < k < 1, then the sequence $\{x_n\}$ is a Cauchy sequence.

Proof. For all $n \in \mathbb{N}$, we have

$$T(x_{n+1}, x_n) \le kT(x_n, x_{n-1}) \le \dots \le k^n T(x_1, x_0).$$

Thus for m > n we have

$$\begin{split} T(x_n, x_m) &\leq T(x_n, x_{n+1}) \diamond T(x_{n+1}, x_{n+2}) \diamond \cdots \diamond T(x_{m-1}, x_m) \\ &\leq (\sqrt{T(x_n, x_{n+1})} + \sqrt{T(x_{n+1}, x_{n+2})} + \cdots + \sqrt{T(x_{m-1}, x_m)})^2 \\ &\leq (k^{\frac{n}{2}} \sqrt{T(x_1, x_0)} + k^{\frac{n+1}{2}} \sqrt{T(x_1, x_0)} + \cdots + k^{\frac{m-1}{2}} \sqrt{T(x_1, x_0)})^2 \\ &\leq (\sum_{j=n}^{m-1} k^{\frac{j}{2}})^2 T(x_1, x_0) = (\frac{k^{\frac{n}{2}} - k^{\frac{m}{2}}}{1 - \sqrt{k}})^2 T(x_1, x_0) \\ &\leq (\frac{k^{\frac{n}{2}}}{1 - \sqrt{k}})^2 T(x_1, x_0). \end{split}$$

Hence the sequence $\{x_n\}$ is a Cauchy sequence.

In 1998, Jungck and Rhoades [8] introduced the following concept of weak compatibility.

Definition 6. Let f and F be mappings from a T-metric space (X, T, \diamond) into itself. Then the pair (F, f) is said to be weak compatible if f and F commute at their coincidence points, that is, fx = Fx implies that fFx = Ffx.

Theorem 2. Let (X, T, \diamond) be a complete *T*-metric space where $a \diamond b \leq (\sqrt{a} + \sqrt{b})^2$. Let *F*, *G*, *f* and *g* be four self-mappings of *X* satisfying the following conditions:

(i) $F(X) \subseteq g(X), \ G(X) \subseteq f(X) \ and \ f(X) \ or \ g(X) \ is \ a \ closed \ subset of X$,

(ii) the pairs (F, f) and (G, g) are weakly compatible,

(iii) there exists $H \in \mathcal{H}$ such that

$$H(T(Fx, Gy), T(fx, gy), T(fx, Fx), T(gy, Gy),$$
$$T(fx, Gy) \diamond T(gy, Fx)) \leq 0$$

for all x, y in X,

Then there exists a unique $p \in X$ such that p = fp = gp = Fp = Gp.

Proof. Let x_0 be an arbitrary point in X. By (i), we choose a point x_1 in X such that $y_0 = gx_1 = Fx_0$. For this point x_1 there exists a point x_2 in X such that $y_1 = fx_2 = Gx_1$, and so on. Continuing in this manner we can define a sequence $\{x_n\}$ as follows

$$y_{2n} = gx_{2n+1} = Fx_{2n}, \qquad y_{2n+1} = fx_{2n+2} = Gx_{2n+1},$$

for $n = 0, 1, 2, \cdots$. We prove that $\{y_n\}$ is a Cauchy sequence. From (*iii*), we have

$$H\left(T(Fx_{2n}, Gx_{2n+1}), T(fx_{2n}, gx_{2n+1}), T(fx_{2n}, Fx_{2n}), T(gx_{2n+1}, Gx_{2n+1}), T(fx_{2n}, Gx_{2n+1}) \diamond T(gx_{2n+1}, Fx_{2n})\right) \le 0.$$

Thus we get

$$H(T(y_{2n}, y_{2n+1}), T(y_{2n-1}, y_{2n}), T(y_{2n-1}, y_{2n}), T(y_{2n}, y_{2n+1}), T(y_{2n-1}, y_{2n+1}) \diamond T(y_{2n}, y_{2n})) \le 0.$$

Using H_1 we get

$$H(T(y_{2n}, y_{2n+1}), T(y_{2n-1}, y_{2n}), T(y_{2n-1}, y_{2n}), T(y_{2n}, y_{2n+1}), T(y_{2n-1}, y_{2n}) \diamond T(y_{2n}, y_{2n+1})) \le 0.$$

That is

$$H(u, v, v, u, v \diamond u) \le 0,$$

where $u = T(y_{2n}, y_{2n+1})$ and $v = T(y_{2n-1}, y_{2n})$. Hence, from H_2 , there exists $h \in (0, 1)$ such that

$$T(y_{2n}, y_{2n+1}) \le hT(y_{2n-1}, y_{2n}).$$

Similarly, from (iii), we have

$$H\left(T(Fx_{2n+2}, Gx_{2n+1}), T(fx_{2n+2}, gx_{2n+1}), T(fx_{2n+2}, Fx_{2n+2}), T(gx_{2n+1}, Gx_{2n+1}), T(fx_{2n+2}, Gx_{2n+1}) \diamond T(gx_{2n+1}, Fx_{2n+2})\right) \le 0.$$

Thus we have

$$H(T(y_{2n+2}, y_{2n+1}), T(y_{2n+1}, y_{2n}), T(y_{2n+1}, y_{2n+2}), T(y_{2n}, y_{2n+1}), T(y_{2n+1}, y_{2n+1}) \diamond T(y_{2n}, y_{2n+2})) \le 0.$$

Using H_1 we have

$$H\left(T(y_{2n+2}, y_{2n+1}), T(y_{2n+1}, y_{2n}), T(y_{2n+1}, y_{2n+2}), T(y_{2n}, y_{2n+1}), T(y_{2n}, y_{2n+1}) \diamond T(y_{2n+1}, y_{2n+2})\right) \le 0.$$

That is

$$H(u, v, u, v, v \diamond u) \le 0,$$

where $u = T(y_{2n+2}, y_{2n+1})$ and $v = T(y_{2n+1}, y_{2n})$. Hence, from H_2 , we have

 $T(y_{2n+2}, y_{2n+1}) \le hT(y_{2n+1}, y_{2n}).$

Therefore, we obtain

$$T(y_n, y_{n+1}) \le hT(y_{n-1}, y_n)$$

for all $n = 0, 1, \dots$. Hence by Lemma 2 the sequence $\{y_n\}$ is Cauchy in X. By completeness X there exist $p \in X$ such that

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} g x_{2n+1} = \lim_{n \to \infty} F x_{2n} = p,$$

and

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} f x_{2n+2} = \lim_{n \to \infty} G x_{2n+1} = p.$$

Suppose that g(X) is closed, then for some $v \in X$ we have $p = gv \in g(X)$. Putting $x = x_{2n}, y = v$ in (*iii*), we get

$$H(T(Fx_{2n}, Gv), T(fx_{2n}, gv), T(fx_{2n}, Fx_{2n}), T(gv, Gv), T(fx_{2n}, Gv) \diamond T(gv, Fx_{2n})) \le 0.$$

Thus, we have

$$H(T(y_{2n}, Gv), T(y_{2n-1}, gv), T(y_{2n-1}, y_{2n}), T(gv, Gv), T(y_{2n-1}, Gv) \diamond T(gv, y_{2n})) \le 0.$$

On making $n \to \infty$, we have

$$H(T(p,Gv),T(p,gv),T(p,p),T(p,Gv),T(p,Gv)\diamond T(p,p)) \le 0.$$

Thus we get,

$$H(T(p,Gv), 0, 0, T(p,Gv), T(p,Gv)) \le 0.$$

That is, $H(u, 0, 0, u, u) \leq 0$, hence from H_3 , we get u = T(p, Gv) = 0. Hence Gv = p = gv. From weak compatibility of (G, g), we have Ggv = gGv, hence Gp = gp. Putting $x = x_{2n}$, y = p in (*iii*), we get

$$H(T(Fx_{2n}, Gp), T(fx_{2n}, gp), T(fx_{2n}, Fx_{2n}), T(gp, Gp), T(fx_{2n}, Gp) \diamond T(gp, Fx_{2n})) \le 0.$$

Thus, we have

$$H(T(y_{2n}, gp), T(y_{2n-1}, gp), T(y_{2n-1}, y_{2n}), T(gp, gp),$$
$$T(y_{2n-1}, gp) \diamond T(gp, y_{2n})) \leq 0.$$

On making $n \to \infty$, we get

$$H(T(p,gp), T(p,gp), T(p,p), T(gp,gp), T(p,gp) \diamond T(gp,p)) \leq 0.$$

That is, $H(u, u, 0, 0, u \diamond u) \leq 0$, hence from H_3 , we have u = T(p, gp) = 0. Hence gp = p. Therefore, Gp = p. Since $Gp \in f(X)$, then there exists $w \in X$ such that fw = Gp = gp = p. Now putting x = w, y = p in (*iii*), we get

$$\begin{split} H\left(T(Fw,Gp),T(fw,gp),T(fw,Fw),T(gp,Gp),\right.\\ \left.T(fw,Gp)\diamond T(gp,Fw)\right)&\leq 0. \end{split}$$

and so we have

$$H(T(Fw, p), 0, T(p, Fw), 0, T(p, Fw)) \le 0.$$

That is, $H(u, 0, u, 0, u) \leq 0$, hence from H_3 , we have u = T(Fw, p) = 0. Hence Fw = p = Gp = fw = gp. Since Fw = fw and the pair (F, f) is weakly compatible, then we obtain Fp = Ffw = fFw = fp. Therefore, we obtain Fp = Gp = fp = gp = p. The proof is similar when f(X) is assumed to be closed subset of X.

To see the p is unique, suppose that q = gq = fq = Fq = Gq, then from *(iii)* we have

 $H(T(Fp, Gq), T(fp, gq), T(fp, Fp), T(gq, Gq), T(fp, Gq) \diamond T(gq, Fp)) \leq 0,$ therefore $H(T(p, q), T(p, q), 0, 0, T(p, q) \diamond T(p, q) \leq 0,$ that is T(p, q) = 0. It follows that p = q.

Corollary 1. Let F, G be self-mappings of a complete T-metric space (X, T, \diamond) where $a \diamond b \leq (\sqrt{a} + \sqrt{b})^2$, such that satisfying:

(iv) $H(T(Fx, Gy), T(x, y), T(x, Fx), T(y, Gy), T(x, Gy) \diamond T(y, Fx)) \leq 0$ for every x, y in X, where $H \in \mathcal{H}$. Then there exists a unique $p \in X$ such that p = Fp = Gp.

Proof. Follows from Theorem 2 with f = g = I dentity mapping.

Corollary 2. Let F, G, f and g be four self-mappings of a complete T-metric space (X, T, \diamond) where $a \diamond b \leq (\sqrt{a} + \sqrt{b})^2$, satisfying:

(i) $Fx \subseteq g(X), Gx \subseteq f(X)$ for every $x \in X$,

- (ii) The pair (F, f) and (G, g) are weakly compatible,
- $(iii) T(Fx, Gy) \le m \max\{T(fx, gy), T(fx, Fx), T(gy, Gy)\}$

 $\times \frac{1}{4}(T(fx,Gy)\diamond T(gy,Fx))$

for every x, y in X, where $0 \le m < 1$. Suppose that one of g(X) or f(X) is a closed subset of X, then there exists a unique $p \in X$ such that p = fp = gp = Fp = Gp.

Proof. Follows from Theorem 2 with

$$H(t_1, t_2, t_3, t_4, t_5) = t_1 - m \max\{t_2, t_3, t_4, \frac{1}{4}t_5\}.$$

If we combine Theorem 2 with Example 4 we have the following corollary.

Corollary 3. Let F, G, f and g be four self-mappings of a complete T-metric space (X, T, \diamond) where $a \diamond b = a + b$, satisfying:

(i) $Fx \subseteq g(X), Gx \subseteq f(X)$ for every $x \in X$,

- (ii) The pair (F, f) and (G, g) are weakly compatible,
- (*iii*) $T(Fx, Gy) \le \alpha \max\{T(fx, gy), T(fx, Fx), T(gy, Gy)\}$ + $\beta(T(fx, Gy) + T(gy, Fx))$

for every x, y in X, where $\alpha, \beta \ge 0$ and $\alpha + 2\beta < 1$. Suppose that one of g(X) or f(X) is a closed subset of X, then there exists a unique $p \in X$ such that p = fp = gp = Fp = Gp.

Example 6. Let X = [0, 1], $T(x, y) = \sqrt{|x - y|}$ and $a \diamond b = (\sqrt{a} + \sqrt{b})^2$, then (X, T, \diamond) is a complete *T*-metric space. Define $F, G, f, g : X \to X$ as follows:

$$Fx = \frac{1}{2}, \qquad Gx = \begin{cases} \frac{1}{2}, & x \in [0, \frac{1}{2}] \\ \frac{3}{7}, & x \in (\frac{1}{2}, 1] \end{cases},$$
$$\left(\frac{1}{2}, & x \in [0, \frac{1}{2}] \\ \frac{1}{7}, & x \in [0, \frac{1}{2}] \end{cases}\right)$$

$$fx = \begin{cases} 2, & x \in [0, 2] \\ \frac{x+1}{4}, & x \in (\frac{1}{2}, 1] \end{cases}, \quad gx = \begin{cases} 1 & x, & x \in [0, 2] \\ 0, & x \in (\frac{1}{2}, 1] \end{cases}.$$

It is clear that $F(X) = \{\frac{1}{2}\} \subseteq g(X) = \{0\} \cup [\frac{1}{2}, 1], \ G(X) = \{\frac{3}{7}, \frac{1}{2}\} \subseteq f(X) = (\frac{3}{8}, \frac{1}{2}] \text{ and } g(X) \text{ is closed subset of } X.$ Now we consider the following cases:

Case 1. If $x \in [0, \frac{1}{2}]$ and $y \in [0, \frac{1}{2}]$, then

$$T(Fx, Gy) = 0 \le \sqrt{\frac{4}{21}}T(fx, gy).$$

Case 2. If $x \in [0, \frac{1}{2}]$ and $y \in (\frac{1}{2}, 1]$, then

$$T(Fx,Gy) = \sqrt{\left|\frac{1}{2} - \frac{3}{7}\right|} = \sqrt{\frac{1}{14}} \le \sqrt{\frac{4}{21}}\sqrt{\frac{1}{2}} = \sqrt{\frac{4}{21}}T(fx,gy).$$

Case 3. If $x \in (\frac{1}{2}, 1]$ and $y \in [0, \frac{1}{2}]$, then

$$T(Fx, Gy) = 0 \le \sqrt{\frac{4}{21}}T(fx, gy).$$

Case 4. If $x \in (\frac{1}{2}, 1]$ and $y \in (\frac{1}{2}, 1]$, then

$$T(Fx, Gy) = \sqrt{\left|\frac{1}{2} - \frac{3}{7}\right|} = \sqrt{\frac{1}{14}} = \sqrt{\frac{4}{21}}\sqrt{\frac{3}{8}}$$
$$\leq \sqrt{\frac{4}{21}}\sqrt{\left|\frac{x+1}{4}\right|} \leq \sqrt{\frac{4}{21}}T(fx, gy)$$

Therefore, we obtain

$$T(Fx, Gy) \leq \sqrt{\frac{4}{21}} T(fx, gy)$$

$$\leq \sqrt{\frac{4}{21}} \max\left\{T(fx, gy), T(fx, Fx), T(gy, Gy), \frac{1}{4}(T(fx, Gy) \diamond T(gy, Fx))\right\}$$

for all $x, y \in X$. That is, the condition *(iii)* of Theorem 2 is satisfied with

$$H(t_1, \cdots, t_5) = t_1 - \sqrt{\frac{4}{21}} \max\{t_2, t_3, t_4, \frac{1}{4}t_5\}.$$

Also, the coincidence points of F and f are $\frac{1}{2}$ and 1, and it is clear that F and f are commuting at $\frac{1}{2}$ and 1. Similarly, the only coincidence point of G and g is $\frac{1}{2}$, and G and g are commuting at $\frac{1}{2}$. Thus F and f as well as G and g are weakly compatible. Consequently all conditions of Theorem 2 are satisfied and so these mappings have a unique common fixed point on X.

Remark 2. We can obtain several fixed point results on ordinary metric spaces as a special case of Theorem 2.

Acknowledgement. The authors are grateful to the referees for their valuable comments in modifying the first version of this paper.

References

- AGARWAL R.P., O'REGAN D., SAHU D.R., Theory for Lipschitzian-Type Mappings with Applications, Fixed Point, Springer, 2009.
- [2] ALIOUCHE A., POPA V., Common fixed point theorems for occasionally weakly compatible mappings via implicit relations, *Filomat*, 22(2)(2008), 99-107.
- [3] ALTUN I., TURKOGLU D., Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, *Taiwanese J. Math.*, 13(4)(2009), 1291-1304.
- [4] BERINDE V., Iterative Approximation of Fixed Points, Springer, 2007.
- [5] CIRIC LJ.B., Fixed Point Theory, Contraction Mapping Principle, Faculty of Mechanical Enginearing, Beograd, 2003.
- [6] GRANAS A., DUGUNDJI J., Fixed Point Theory, Springer, 2010.
- [7] IMDAD M., KUMAR S., KHAN M.S., Remarks on some fixed point theorems satisfying implicit relation, *Rad. Math.*, 11(2002), 135-143.
- [8] JUNGCK G., RHOADES B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.
- [9] MIHEŢ D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3)(2004), 431-439.

- [10] POPA V., Some fixed point theorems for compatible mappings satisfying an implicit relation, *Demonstratio Math.*, 32(1)(1999), 157-163.
- [11] RAO K.P.R., KISHORE G.N.V., Common fixed point theorems in ultra metric spaces, *Punjab University Journal of Mathematics*, 40(2008), 31-35.
- [12] SEDGHI S., ALTUN I., SHOBE N., A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces, Appl. Anal. Discrete Math., 2(2)(2008), 189-196.
- [13] TURKOGLU D., Fixed point theorems on uniform spaces, Indian J. Pure Appl. Math., 34(3)(2003), 453-459.
- [14] ROOVIJ A.C.M.V., Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

Shaban Sedghi Department of Mathematics Islamic Azad University Qaemshahr Branch, Qaemshahr, P.O.Box 163, Iran *e-mail:* sedghi_gh@yahoo.com

> ISHAK ALTUN DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS KIRIKKALE UNIVERSITY 71450 YAHSIHAN, KIRIKKALE, TURKEY *e-mail:* ishakaltun@yahoo.com

NABI SHOBE DEPARTMENT OF MATHEMATICS ISLAMIC AZAD UNIVERSITY SCIENCE AND RESEARCH BRANCH 14778 93855 TEHRAN, IRAN *e-mail:* nabi_shobe@yahoo.com

Received on 04.06.2011 and, in revised form, on 22.07.2011.