# F A S C I C U L I M A T H E M A T I C I 

S. Sedghi, I. Altun and N. Shobe

# SOME PROPERTIES OF T-METRIC SPACES AND A COMMON FIXED POINT THEOREM 


#### Abstract

In this paper, we introduce the new definitions of $T$-metric space and give some properties of it. Also, we prove a common fixed point theorem for for four mappings under the condition of weakly compatible in complete $T$-metric spaces. A lot of fixed point theorems on ordinary metric space are special case of our main result, since every ordinary metric space is also $T$-metric space.


KEY words: $T$-metric space, contractive mapping, fixed point.
AMS Mathematics Subject Classification: 54H25, 47H10.

## 1. Introduction

It is well known that the Banach contraction principle is a fundamental result in fixed point theory. After this classical result, many authors have extended, generalized and improved this theorem in different ways (See for details, [1], [4], [5], [6]). Also recently, fixed and common fixed point results in different types of spaces have been developed. For example, ultra metric spaces [14], fuzzy metric spaces [9] and uniform spaces [13]. In this paper we introduce the new definitions of $T$-metric space and give some properties of it. After then, we prove a common fixed point theorem for four mappings under the condition of weakly compatible in complete $T$-metric spaces. We begin this paper by giving the definition of ultra metric space.

Definition 1 ([14]). Let $(X, d)$ be a metric space. If the metric $d$ satisfies strong triangle inequality:

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\} \quad \forall x, y, z \in X
$$

then $d$ is called an ultra metric on $X$ and the pair $(X, d)$ is called an ultra metric space. An ultra metric space $(X, d)$ is said to be spherically complete if every shrinking collection of balls in $X$ has a nonempty intersection.

Rao and Kishore [11] proved the following:

Theorem 1. Let $(X, d)$ be a spherically complete ultra metric space. If $f$ and $F$ are self maps on $X$ satisfying $F(X) \subseteq f(X)$,

$$
d(F x, F y)<\max \{d(f x, f y), d(f x, F x), d(f y, F y)\} \quad \forall x, y \in X, x \neq y
$$

then there exists $z \in X$ such that $f z=F z$. Further if $f$ and $F$ are coincidentally commuting at $z$ then $z$ is the unique common fixed point of $f$ and $F$.

In the following, we introduce a new binary operation which is a probable modification of the definition of ordinary metric. In Section 2, we give the definition of $T$-metric and some properties of it. In Section 3, we prove a common fixed point theorem for four weakly compatible maps in complete $T$-metric spaces satisfying a new contractive type condition.

## 2. T-metric spaces

In what follows, $\mathbb{N}$ is the set of all natural numbers and $\mathbb{R}^{+}$is the set of all nonnegative real numbers.

Let $\diamond: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a binary operation satisfying the following conditions:
$(i) \diamond$ is associative and commutative,
$($ ii $) \diamond$ is continuous,
(iii) $a \diamond 0=a$ for all $a \in \mathbb{R}^{+}$,
(iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in \mathbb{R}^{+}$.

Five typical examples of $\diamond$ are:
$a \diamond_{1} b=\max \{a, b\}, a \diamond_{2} b=\sqrt{a^{2}+b^{2}}, a \diamond_{3} b=a+b, a \diamond_{4} b=a b+a+b$ and $a \diamond_{5} b=(\sqrt{a}+\sqrt{b})^{2}$ for each $a, b \in \mathbb{R}^{+}$. It is easy to see that:

$$
a \diamond_{1} b \leq a \diamond_{2} b \leq a \diamond_{3} b \leq \min \left\{a \diamond_{4} b, a \diamond_{5} b\right\}
$$

Lemma 1. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous, onto and increasing map. If defined $a \diamond b=f^{-1}(f(a)+f(b))$ for every $a, b \in \mathbb{R}^{+}$, then $\diamond$ is a binary operation.

Proof. It is easy to see that $\diamond$ is an increasing in both items, commutative, associative and continuous satisfying $a \diamond 0=f^{-1}(f(a)+f(0))=$ $f^{-1}(f(a))=a$ for all $a \in[0, \infty)$.

Example 1. If function $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$defined by $f(x)=e^{x}-1$, then it is easy to see that $f$ is a continuous, onto and increasing function. Also, for every $a, b \in \mathbb{R}^{+}$we have $a \diamond b=\ln \left(e^{a}+e^{b}-1\right)$ is a binary operation.

Lemma 2. Let $\diamond$ be a binary operation on $\mathbb{R}^{+}$satisfying the conditions (i)-(iv).
(a) If $r, r^{\prime} \geq 0$, then $\max \left\{r, r^{\prime}\right\} \leq r \diamond r^{\prime}$.
(b) If $0<\delta<r$, then there exist a $0<\delta^{\prime}<r$ such that $\delta^{\prime} \diamond \delta<r$.
(c) For every $\epsilon>0$ there exist $a \delta>0$ such that $\delta \diamond \delta<\epsilon$.

Proof. (a) Since $r^{\prime} \geq 0$ by properties (iii) and (iv) of binary operation $\diamond$ we have $r \diamond r^{\prime} \geq r \diamond 0=r$. Similarly we have $r \diamond r^{\prime} \geq r^{\prime}$.
(b) Let $0<\delta<r$. Suppose for every $\delta^{\prime}>0$ we have $\delta^{\prime} \diamond \delta \geq r$. In particular if take $\delta^{\prime}=\frac{1}{n}$ then we have $\frac{1}{n} \diamond \delta \geq r$. Thus, this implies that $0 \diamond \delta \geq r$ as $n \rightarrow \infty$, which is a contradiction. Hence by part (i) of this lemma we get $\delta^{\prime} \leq \delta^{\prime} \diamond \delta<r$.
(c) Let $\epsilon>0$. Suppose for every $\delta>0$, we have $\delta \diamond \delta \geq \epsilon$. For $\delta=\frac{1}{n}$ we have $\frac{1}{n} \diamond \frac{1}{n} \geq \epsilon$, hence as $n \rightarrow \infty$ we get $0 \geq \epsilon$, which is a contradiction.

Now we introduce the new concept of $T$-metric.
Definition 2. Let $X$ be a nonempty set. A T-metric on $X$ is a function $T: X^{2} \rightarrow \mathbb{R}$ that satisfies the following conditions: for each $x, y, z \in X$
(a) $T(x, y) \geq 0$ and $T(x, y)=0$ if and only if $x=y$,
(b) $T(x, y)=T(y, x)$,
(c) $T(x, y) \leq T(x, z) \diamond T(y, z)$.

The 3-tuple $(X, T, \diamond)$ is called a T-metric space.
Example 2. (i) Every ordinary metric $d$ is a $T$-metric with $a \diamond b=a+b$.
(ii) Every ultra metric $d$ is a $T$-metric with $a \diamond b=\max \{a, b\}$.
(iii) Let $X=\mathbb{R}$ and $T(x, y)=\sqrt{|x-y|}$ for every $x, y \in \mathbb{R}$. If we take $a \diamond b=\sqrt{a^{2}+b^{2}}$, then we have

$$
\begin{aligned}
T(x, y) & =\sqrt{|x-y|} \\
& \leq \sqrt{|x-z|+|z-y|} \\
& =\sqrt{\sqrt{|x-z|^{2}}+\sqrt{|z-y|^{2}}} \\
& =T(x, z) \diamond T(z, y) .
\end{aligned}
$$

Therefore the function $T$ is a $T$-metric on $X$.
(iv) Let $X=\mathbb{R}$ and $T(x, y)=(x-y)^{2}$ for every $x, y \in \mathbb{R}$. If we take $a \diamond b=(\sqrt{a}+\sqrt{b})^{2}$, then we have

$$
\begin{aligned}
T(x, y) & =(x-y)^{2}=|x-y|^{2} \\
& \leq(|x-z|+|z-y|)^{2} \\
& =\left(\sqrt{|x-z|^{2}}+\sqrt{|z-y|^{2}}\right)^{2} \\
& =T(x, z) \diamond T(z, y) .
\end{aligned}
$$

Therefore the function $T$ is a $T$-metric on $X$.

Remark 1. For fixed $0 \leq \alpha \leq \frac{\pi}{4}$ if there exist $\beta, \gamma$ such that
then

$$
\begin{gathered}
0 \leq \alpha \leq \beta+\gamma<\frac{\pi}{2} \\
\tan \alpha \leq \tan \beta+\tan \gamma+\tan \beta \tan \gamma
\end{gathered}
$$

Example 3. Let $X=[0,1]$ and $T(x, y)=\tan \left(\frac{\pi}{4}|x-y|\right)$ for every $x, y \in$ $X$. If we take $a \diamond b=a+b+a b$, then by Remark 1 we have

$$
\begin{aligned}
T(x, y) & =\tan \left(\frac{\pi}{4}|x-y|\right) \\
& \leq \tan \left(\frac{\pi}{4}|x-z|\right)+\tan \left(\frac{\pi}{4}|z-y|\right)+\tan \left(\frac{\pi}{4}|x-z|\right) \tan \left(\frac{\pi}{4}|z-y|\right) \\
& =T(x, z) \diamond T(z, y)
\end{aligned}
$$

Therefore the function $T$ is a $T$-metric on $X$.
Let $(X, T, \diamond)$ be a $T$-metric space. For $r>0$ define

$$
B_{T}(x, r)=\{y \in X: T(x, y)<r\} .
$$

Definition 3. Let $(X, T, \diamond)$ be a T-metric space $r>0$ and $A \subset X$.
(a) The set $B_{T}(x, r)=\{y \in X: T(x, y)<r\}$ is called an open ball centered at $x$ and radius $r$.
(b) If for every $x \in A$ there exists $r>0$ such that $B_{T}(x, r) \subset A$, then the subset $A$ is called open subset of $X$.
(c) The subset $A$ of $X$ is said to be $T$-bounded if there exists $r>0$ such that $T(x, y)<r$ for all $x, y \in A$.
(d) A sequence $\left\{x_{n}\right\}$ in $X$ converges to $x$ if $T\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ and write $\lim _{n \rightarrow \infty} x_{n}=x$. That is for each $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $T\left(x_{n}, x\right)<\epsilon$ for all $n \geq n_{0}$, then $\left\{x_{n}\right\}$ converges to $x$.
(e) A sequence $\left\{x_{n}\right\}$ in $X$ is called a Cauchy sequence if for each $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $T\left(x_{n}, x_{m}\right)<\epsilon$ for all $n, m \geq n_{0}$.
$(f)$ The $T$-metric space $(X, T, \diamond)$ is said to be complete if every Cauchy sequence is convergent.

Let $\tau$ be the set of all open subset of $X$, then $\tau$ is a topology on $X$ (induced by the $T$-metric $T$ ).

Lemma 3. Let $(X, T, \diamond)$ be a T-metric space. If $r>0$, then the open ball $B_{T}(x, r)$ with center $x \in X$ and radius $r$ is an open set.

Proof. Let $y \in B_{T}(x, r)$, hence $T(x, y)<r$. If we set $T(x, y)=\delta$ then by Lemma 2 there exists $\delta^{\prime}>0$ such that $\delta^{\prime} \diamond \delta<r$. Now, we prove that $B_{T}\left(y, \delta^{\prime}\right) \subseteq B_{T}(x, r)$. Let $z \in B_{T}\left(y, \delta^{\prime}\right)$, then by triangular inequality we have

$$
T(x, z) \leq T(x, y) \diamond T(y, z)<\delta \diamond \delta^{\prime}<r
$$

Hence $B_{T}\left(y, \delta^{\prime}\right) \subseteq B_{T}(x, r)$. That is $B_{T}(x, r)$ is an open set.
Lemma 4. Let $(X, T, \diamond)$ be a $T$-metric space. If sequence $\left\{x_{n}\right\}$ in $X$ converges to $x$, then $x$ is unique.

Proof. Let $x_{n} \rightarrow y$. For every $\epsilon>0$ by Lemma 2 we can choose a $\delta>0$ such that $\delta \diamond \delta<\epsilon$. Now, since $\left\{x_{n}\right\}$ converges to $x$ and $y$, for this $\delta$ there exists $n_{1} \in \mathbb{N}$ such that $T\left(x_{n}, x\right)<\delta$ for all $n \geq n_{1}$ and there exists $n_{2} \in \mathbb{N}$ such that $T\left(x_{n}, y\right)<\delta$ for all $n \geq n_{2}$. If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for all $n \geq n_{0}$ by triangular inequality we have

$$
T(x, y) \leq T\left(x, x_{n}\right) \diamond T\left(x_{n}, y\right)<\delta \diamond \delta<\epsilon
$$

Hence $T(x, y)=0$ and so $x=y$.
Lemma 5. Let $(X, T, \diamond)$ be a T-metric space. Then every convergent sequence $\left\{x_{n}\right\}$ in $X$ is a Cauchy sequence.

Proof. For every $\epsilon>0$ by Lemma 2 we can choose a $\delta>0$ such that $\delta \diamond \delta<\epsilon$. Since $x_{n} \rightarrow x$ there exists $n_{0} \in \mathbb{N}$ such that $T\left(x_{n}, x\right)<\delta$ for all $n \geq n_{0}$. Thus for all $n, m \geq n_{0}$ by triangular inequality we have

$$
T\left(x_{n}, x_{m}\right) \leq T\left(x_{n}, x\right) \diamond T\left(x, x_{m}\right)<\delta \diamond \delta<\epsilon
$$

Hence sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.
Definition 4. Let $(X, T, \diamond)$ be a $T$-metric space. $T$ is said to be continuous, if

$$
\lim _{n \rightarrow \infty} T\left(x_{n}, y_{n}\right)=T(x, y)
$$

whenever

$$
\lim _{n \rightarrow \infty} T\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} T\left(y_{n}, y\right)=0
$$

Lemma 6. Let $(X, T, \diamond)$ be a T-metric space. Then $T$ is a continuous function.

Proof. Let $\lim _{n \rightarrow \infty} T\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} T\left(y_{n}, y\right)=0$, then by triangular inequality we have

$$
T\left(x_{n}, y_{n}\right) \leq T\left(x_{n}, x\right) \diamond T(x, y) \diamond T\left(y, y_{n}\right)
$$

Hence we have

$$
\lim _{n \rightarrow \infty} \sup T\left(x_{n}, y_{n}\right) \leq T(x, y)
$$

Similarly, we have

$$
T(x, y) \leq T\left(x, x_{n}\right) \diamond T\left(x_{n}, y_{n}\right) \diamond T\left(y_{n}, y\right)
$$

and so

$$
T(x, y) \leq \lim _{n \rightarrow \infty} \inf T\left(x_{n}, y_{n}\right)
$$

Therefore we have

$$
\lim _{n \rightarrow \infty} T\left(x_{n}, y_{n}\right)=T(x, y)
$$

## 3. Fixed point result

In this section we give some fixed point results on $T$-metric spaces. In these results we use an implicit relation for contractive condition. Implicit relation technique on metric space have been used in many articles (See [2], [3], [7], [10], [12]).

Definition 5. Let $\mathbb{R}^{+}$be the set of all non-negative real numbers and let $\mathcal{H}$ be the set of all continuous functions $H:\left(\mathbb{R}^{+}\right)^{5} \rightarrow \mathbb{R}$ satisfying the following conditions:
$H_{1}: H\left(t_{1}, \cdots, t_{5}\right)$ is non-decreasing in $t_{1}$ and non-increasing in $t_{2}, \cdots, t_{5}$.
$H_{2}$ : there exists $h \in(0,1)$ such that

$$
H(u, v, v, u, v \diamond u) \leq 0 \quad \text { or } \quad H(u, v, u, v, v \diamond u) \leq 0
$$

implies $u \leq h v$.
$H_{3}: H(u, 0,0, u, u)>0, H(u, 0, u, 0, u)>0$ and $H(u, u, 0,0, u \diamond u)>0$, for all $u>0$.

Now, we give some examples.
Example 4. Let $a \diamond b=a+b$ for all $a, b \in[0, \infty)$ and $H\left(t_{1}, \cdots, t_{5}\right)=$ $t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-\beta t_{5}$, where $\alpha, \beta \geq 0$ and $\alpha+2 \beta<1$.
$H_{1}$ : Obvious.
$H_{2}$ : Let $u>0$ and

$$
\begin{aligned}
H(u, v, v, u, v \diamond u) & =H(u, v, v, u, v+u) \\
& =u-\alpha \max \{u, v\}-\beta(v+u) \leq 0
\end{aligned}
$$

Thus $u \leq \max \{(\alpha+\beta) u+\beta v,(\alpha+\beta) v+\beta u\}$. Now if $u \geq v$, then $u \leq$ $(\alpha+\beta) u+\beta v \leq(\alpha+2 \beta) u$, a contradiction. Thus $u<v$ and $u \leq(\alpha+\beta) v+\beta u$ and so $u \leq \frac{\alpha+\beta}{1-\beta} v$. Similarly, let $u>0$ and

$$
\begin{aligned}
H(u, v, u, v, v \diamond u) & =H(u, v, u, v, v+u) \\
& =u-\alpha \max \{u, v\}-\beta(v+u) \leq 0
\end{aligned}
$$

then we have $u \leq \frac{\alpha+\beta}{1-\beta} v$. If $u=0$, then $u \leq \frac{\alpha+\beta}{1-\beta} v$. Thus $H_{2}$ is satisfying with $h=\frac{\alpha+\beta}{1-\beta}<1$.
$H_{3}: H(u, 0,0, u, u)=H(u, 0, u, 0, u)=u(1-\alpha-\beta)>0$ and

$$
H(u, u, 0,0, u \diamond u)=H(u, u, 0,0, u+u)=u(1-\alpha-2 \beta)>0
$$

for all $u>0$. Therefore $H \in \mathcal{H}$.
Example 5. Let $a \diamond b=(\sqrt{a}+\sqrt{b})^{2}$ for all $a, b \in[0, \infty)$ and $H\left(t_{1}, \cdots, t_{5}\right)=$ $t_{1}-m \max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{4} t_{5}\right\}$, where $0 \leq m<1$.
$H_{1}$ : Obvious.
$H_{2}$ : Let $u>0$ and

$$
\begin{aligned}
H(u, v, v, u, v \diamond u) & =H\left(u, v, v, u, \frac{1}{4}(\sqrt{v}+\sqrt{u})^{2}\right) \\
& =u-m \max \left\{u, v, \frac{1}{4}(\sqrt{v}+\sqrt{u})^{2}\right\} \leq 0 .
\end{aligned}
$$

Thus $u \leq m \max \{u, v\}$. Now if $u \geq v$, then $u \leq m u$, a contradiction. Thus $u<v$ and $u \leq m v$. Similarly, let $u>0$ and

$$
H(u, v, u, v, v \diamond u)=H\left(u, v, u, v, \frac{1}{4}(\sqrt{v}+\sqrt{u})^{2}\right)=u-m \max \{u, v\} \leq 0
$$

then we have $u \leq m v$. If $u=0$, then $u \leq m v$. Thus $H_{2}$ is satisfying with $h=m<1$.

$$
H_{3}: H(u, 0,0, u, u)=H(u, 0, u, 0, u)=H(u, u, 0,0, u \diamond u)=u(1-m)>0
$$ for all $u>0$. Therefore $H \in \mathcal{H}$.

Lemma 7. Let $(X, T, \diamond)$ be $T$-metric space with $a \diamond b \leq(\sqrt{a}+\sqrt{b})^{2}$. If for all $n \in \mathbb{N}$

$$
T\left(x_{n+1}, x_{n}\right) \leq k T\left(x_{n}, x_{n-1}\right)
$$

for $0<k<1$, then the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.
Proof. For all $n \in \mathbb{N}$, we have

$$
T\left(x_{n+1}, x_{n}\right) \leq k T\left(x_{n}, x_{n-1}\right) \leq \cdots \leq k^{n} T\left(x_{1}, x_{0}\right)
$$

Thus for $m>n$ we have

$$
\begin{aligned}
T\left(x_{n}, x_{m}\right) & \leq T\left(x_{n}, x_{n+1}\right) \diamond T\left(x_{n+1}, x_{n+2}\right) \diamond \cdots \diamond T\left(x_{m-1}, x_{m}\right) \\
& \leq\left(\sqrt{T\left(x_{n}, x_{n+1}\right)}+\sqrt{T\left(x_{n+1}, x_{n+2}\right)}+\cdots+\sqrt{T\left(x_{m-1}, x_{m}\right)}\right)^{2} \\
& \leq\left(k^{\frac{n}{2}} \sqrt{T\left(x_{1}, x_{0}\right)}+k^{\frac{n+1}{2}} \sqrt{T\left(x_{1}, x_{0}\right)}+\cdots+k^{\frac{m-1}{2}} \sqrt{T\left(x_{1}, x_{0}\right)}\right)^{2} \\
& \leq\left(\sum_{j=n}^{m-1} k^{\frac{j}{2}}\right)^{2} T\left(x_{1}, x_{0}\right)=\left(\frac{k^{\frac{n}{2}}-k^{\frac{m}{2}}}{1-\sqrt{k}}\right)^{2} T\left(x_{1}, x_{0}\right) \\
& \leq\left(\frac{k^{\frac{n}{2}}}{1-\sqrt{k}}\right)^{2} T\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Hence the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.
In 1998, Jungck and Rhoades [8] introduced the following concept of weak compatibility.

Definition 6. Let $f$ and $F$ be mappings from a $T$-metric space $(X, T, \diamond)$ into itself. Then the pair $(F, f)$ is said to be weak compatible if $f$ and $F$ commute at their coincidence points, that is, $f x=F x$ implies that $f F x=$ Ffx.

Theorem 2. Let $(X, T, \diamond)$ be a complete $T$-metric space where $a \diamond b \leq$ $(\sqrt{a}+\sqrt{b})^{2}$. Let $F, G, f$ and $g$ be four self-mappings of $X$ satisfying the following conditions:
(i) $F(X) \subseteq g(X), G(X) \subseteq f(X)$ and $f(X)$ or $g(X)$ is a closed subset of $X$,
(ii) the pairs $(F, f)$ and $(G, g)$ are weakly compatible,
(iii) there exists $H \in \mathcal{H}$ such that

$$
\begin{aligned}
H(T(F x, G y), T(f x, g y), & T(f x, F x), T(g y, G y) \\
& T(f x, G y) \diamond T(g y, F x)) \leq 0
\end{aligned}
$$

for all $x, y$ in $X$,
Then there exists a unique $p \in X$ such that $p=f p=g p=F p=G p$.
Proof. Let $x_{0}$ be an arbitrary point in $X$. By $(i)$, we choose a point $x_{1}$ in $X$ such that $y_{0}=g x_{1}=F x_{0}$. For this point $x_{1}$ there exists a point $x_{2}$ in $X$ such that $y_{1}=f x_{2}=G x_{1}$, and so on. Continuing in this manner we can define a sequence $\left\{x_{n}\right\}$ as follows

$$
y_{2 n}=g x_{2 n+1}=F x_{2 n}, \quad y_{2 n+1}=f x_{2 n+2}=G x_{2 n+1}
$$

for $n=0,1,2, \cdots$. We prove that $\left\{y_{n}\right\}$ is a Cauchy sequence. From (iii), we have

$$
\begin{aligned}
& H\left(T\left(F x_{2 n}, G x_{2 n+1}\right), T\left(f x_{2 n}, g x_{2 n+1}\right), T\left(f x_{2 n}, F x_{2 n}\right)\right. \\
& \left.\quad T\left(g x_{2 n+1}, G x_{2 n+1}\right), T\left(f x_{2 n}, G x_{2 n+1}\right) \diamond T\left(g x_{2 n+1}, F x_{2 n}\right)\right) \leq 0 .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
H\left(T\left(y_{2 n}, y_{2 n+1}\right), T\left(y_{2 n-1}, y_{2 n}\right)\right. & T\left(y_{2 n-1}, y_{2 n}\right), T\left(y_{2 n}, y_{2 n+1}\right) \\
& \left.T\left(y_{2 n-1}, y_{2 n+1}\right) \diamond T\left(y_{2 n}, y_{2 n}\right)\right) \leq 0 .
\end{aligned}
$$

Using $H_{1}$ we get

$$
\begin{aligned}
H\left(T\left(y_{2 n}, y_{2 n+1}\right), T\left(y_{2 n-1}, y_{2 n}\right),\right. & T\left(y_{2 n-1}, y_{2 n}\right), T\left(y_{2 n}, y_{2 n+1}\right) \\
& \left.T\left(y_{2 n-1}, y_{2 n}\right) \diamond T\left(y_{2 n}, y_{2 n+1}\right)\right) \leq 0
\end{aligned}
$$

That is

$$
H(u, v, v, u, v \diamond u) \leq 0
$$

where $u=T\left(y_{2 n}, y_{2 n+1}\right)$ and $v=T\left(y_{2 n-1}, y_{2 n}\right)$. Hence, from $H_{2}$, there exists $h \in(0,1)$ such that

$$
T\left(y_{2 n}, y_{2 n+1}\right) \leq h T\left(y_{2 n-1}, y_{2 n}\right)
$$

Similarly, from (iii), we have

$$
\begin{aligned}
& H\left(T\left(F x_{2 n+2}, G x_{2 n+1}\right), T\left(f x_{2 n+2}, g x_{2 n+1}\right), T\left(f x_{2 n+2}, F x_{2 n+2}\right)\right. \\
& \left.\quad T\left(g x_{2 n+1}, G x_{2 n+1}\right), T\left(f x_{2 n+2}, G x_{2 n+1}\right) \diamond T\left(g x_{2 n+1}, F x_{2 n+2}\right)\right) \leq 0 .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
H\left(T\left(y_{2 n+2}, y_{2 n+1}\right), T\left(y_{2 n+1}, y_{2 n}\right),\right. & T\left(y_{2 n+1}, y_{2 n+2}\right), T\left(y_{2 n}, y_{2 n+1}\right) \\
& \left.T\left(y_{2 n+1}, y_{2 n+1}\right) \diamond T\left(y_{2 n}, y_{2 n+2}\right)\right) \leq 0
\end{aligned}
$$

Using $H_{1}$ we have

$$
\begin{aligned}
H\left(T\left(y_{2 n+2}, y_{2 n+1}\right), T\left(y_{2 n+1}, y_{2 n}\right),\right. & T\left(y_{2 n+1}, y_{2 n+2}\right), T\left(y_{2 n}, y_{2 n+1}\right) \\
& \left.T\left(y_{2 n}, y_{2 n+1}\right) \diamond T\left(y_{2 n+1}, y_{2 n+2}\right)\right) \leq 0
\end{aligned}
$$

That is

$$
H(u, v, u, v, v \diamond u) \leq 0
$$

where $u=T\left(y_{2 n+2}, y_{2 n+1}\right)$ and $v=T\left(y_{2 n+1}, y_{2 n}\right)$. Hence, from $H_{2}$, we have

$$
T\left(y_{2 n+2}, y_{2 n+1}\right) \leq h T\left(y_{2 n+1}, y_{2 n}\right)
$$

Therefore, we obtain

$$
T\left(y_{n}, y_{n+1}\right) \leq h T\left(y_{n-1}, y_{n}\right)
$$

for all $n=0,1, \cdots$. Hence by Lemma 2 the sequence $\left\{y_{n}\right\}$ is Cauchy in $X$. By completeness $X$ there exist $p \in X$ such that

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} y_{2 n}=\lim _{n \rightarrow \infty} g x_{2 n+1}=\lim _{n \rightarrow \infty} F x_{2 n}=p
$$

and

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} f x_{2 n+2}=\lim _{n \rightarrow \infty} G x_{2 n+1}=p .
$$

Suppose that $g(X)$ is closed, then for some $v \in X$ we have $p=g v \in g(X)$. Putting $x=x_{2 n}, y=v$ in (iii), we get

$$
\begin{aligned}
H\left(T\left(F x_{2 n}, G v\right), T\left(f x_{2 n}, g v\right),\right. & T\left(f x_{2 n}, F x_{2 n}\right), T(g v, G v) \\
& \left.T\left(f x_{2 n}, G v\right) \diamond T\left(g v, F x_{2 n}\right)\right) \leq 0 .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
H\left(T\left(y_{2 n}, G v\right), T\left(y_{2 n-1}, g v\right),\right. & T\left(y_{2 n-1}, y_{2 n}\right), T(g v, G v) \\
& \left.T\left(y_{2 n-1}, G v\right) \diamond T\left(g v, y_{2 n}\right)\right) \leq 0
\end{aligned}
$$

On making $n \rightarrow \infty$, we have

$$
H(T(p, G v), T(p, g v), T(p, p), T(p, G v), T(p, G v) \diamond T(p, p)) \leq 0
$$

Thus we get,

$$
H(T(p, G v), 0,0, T(p, G v), T(p, G v)) \leq 0
$$

That is, $H(u, 0,0, u, u) \leq 0$, hence from $H_{3}$, we get $u=T(p, G v)=0$. Hence $G v=p=g v$. From weak compatibility of $(G, g)$, we have $G g v=g G v$, hence $G p=g p$. Putting $x=x_{2 n}, y=p$ in (iii), we get

$$
\begin{aligned}
H\left(T\left(F x_{2 n}, G p\right), T\left(f x_{2 n}, g p\right),\right. & T\left(f x_{2 n}, F x_{2 n}\right), T(g p, G p) \\
& \left.T\left(f x_{2 n}, G p\right) \diamond T\left(g p, F x_{2 n}\right)\right) \leq 0
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
H\left(T\left(y_{2 n}, g p\right), T\left(y_{2 n-1}, g p\right)\right. & T\left(y_{2 n-1}, y_{2 n}\right), T(g p, g p) \\
& \left.T\left(y_{2 n-1}, g p\right) \diamond T\left(g p, y_{2 n}\right)\right) \leq 0 .
\end{aligned}
$$

On making $n \rightarrow \infty$, we get

$$
H(T(p, g p), T(p, g p), T(p, p), T(g p, g p), T(p, g p) \diamond T(g p, p)) \leq 0
$$

That is, $H(u, u, 0,0, u \diamond u) \leq 0$, hence from $H_{3}$, we have $u=T(p, g p)=0$. Hence $g p=p$. Therefore, $G p=p$. Since $G p \in f(X)$, then there exists $w \in X$ such that $f w=G p=g p=p$. Now putting $x=w, y=p$ in $(i i i)$, we get

$$
\begin{aligned}
H(T(F w, G p), T(f w, g p), & T(f w, F w), T(g p, G p) \\
& T(f w, G p) \diamond T(g p, F w)) \leq 0
\end{aligned}
$$

and so we have

$$
H(T(F w, p), 0, T(p, F w), 0, T(p, F w)) \leq 0
$$

That is, $H(u, 0, u, 0, u) \leq 0$, hence from $H_{3}$, we have $u=T(F w, p)=0$. Hence $F w=p=G p=f w=g p$. Since $F w=f w$ and the pair $(F, f)$ is weakly compatible, then we obtain $F p=F f w=f F w=f p$. Therefore, we obtain $F p=G p=f p=g p=p$.

The proof is similar when $f(X)$ is assumed to be closed subset of $X$.
To see the $p$ is unique, suppose that $q=g q=f q=F q=G q$, then from (iii) we have

$$
H(T(F p, G q), T(f p, g q), T(f p, F p), T(g q, G q), T(f p, G q) \diamond T(g q, F p)) \leq 0
$$

therefore $H(T(p, q), T(p, q), 0,0, T(p, q) \diamond T(p, q) \leq 0$, that is $T(p, q)=0$. It follows that $p=q$.

Corollary 1. Let $F, G$ be self-mappings of a complete T-metric space $(X, T, \diamond)$ where $a \diamond b \leq(\sqrt{a}+\sqrt{b})^{2}$, such that satisfying:
(iv) $\quad H(T(F x, G y), T(x, y), T(x, F x), T(y, G y), T(x, G y) \diamond T(y, F x)) \leq 0$ for every $x, y$ in $X$, where $H \in \mathcal{H}$. Then there exists a unique $p \in X$ such that $p=F p=G p$.

Proof. Follows from Theorem 2 with $f=g=I$ dentity mapping.
Corollary 2. Let $F, G, f$ and $g$ be four self-mappings of a complete $T$-metric space $(X, T, \diamond)$ where $a \diamond b \leq(\sqrt{a}+\sqrt{b})^{2}$, satisfying:
(i) $F x \subseteq g(X), G x \subseteq f(X)$ for every $x \in X$,
(ii) The pair $(F, f)$ and $(G, g)$ are weakly compatible,
(iii) $T(F x, G y) \leq m \max \{T(f x, g y), T(f x, F x), T(g y, G y)\}$

$$
\times \frac{1}{4}(T(f x, G y) \diamond T(g y, F x))
$$

for every $x, y$ in $X$, where $0 \leq m<1$. Suppose that one of $g(X)$ or $f(X)$ is a closed subset of $X$, then there exists a unique $p \in X$ such that $p=f p=$ $g p=F p=G p$.

Proof. Follows from Theorem 2 with

$$
H\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{1}-m \max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{4} t_{5}\right\}
$$

If we combine Theorem 2 with Example 4 we have the following corollary.
Corollary 3. Let $F, G, f$ and $g$ be four self-mappings of a complete $T$-metric space $(X, T, \diamond)$ where $a \diamond b=a+b$, satisfying:
(i) $F x \subseteq g(X), G x \subseteq f(X)$ for every $x \in X$,
(ii) The pair $(F, f)$ and $(G, g)$ are weakly compatible,
(iii) $T(F x, G y) \leq \alpha \max \{T(f x, g y), T(f x, F x), T(g y, G y)\}$

$$
+\beta(T(f x, G y)+T(g y, F x))
$$

for every $x, y$ in $X$, where $\alpha, \beta \geq 0$ and $\alpha+2 \beta<1$. Suppose that one of $g(X)$ or $f(X)$ is a closed subset of $X$, then there exists a unique $p \in X$ such that $p=f p=g p=F p=G p$.

Example 6. Let $X=[0,1], T(x, y)=\sqrt{|x-y|}$ and $a \diamond b=(\sqrt{a}+\sqrt{b})^{2}$, then $(X, T, \diamond)$ is a complete $T$-metric space. Define $F, G, f, g: X \rightarrow X$ as follows:

$$
\begin{aligned}
& F x=\frac{1}{2}, \\
& f x=\left\{\begin{array}{ll}
\frac{1}{2}, & x \in\left[0, \frac{1}{2}\right] \\
\frac{3}{7}, & x \in\left(\frac{1}{2}, 1\right]
\end{array}, \quad g x=\left\{\begin{array}{ll}
\frac{1}{2}, & x \in\left[0, \frac{1}{2}\right] \\
\frac{x+1}{4}, & x \in\left(\frac{1}{2}, 1\right]
\end{array}, x, \quad x \in\left[0, \frac{1}{2}\right]\right.\right. \\
& 0, \\
& x \in\left(\frac{1}{2}, 1\right]
\end{aligned} .
$$

It is clear that $F(X)=\left\{\frac{1}{2}\right\} \subseteq g(X)=\{0\} \cup\left[\frac{1}{2}, 1\right], G(X)=\left\{\frac{3}{7}, \frac{1}{2}\right\} \subseteq$ $f(X)=\left(\frac{3}{8}, \frac{1}{2}\right]$ and $g(X)$ is closed subset of $X$. Now we consider the following cases:

Case 1. If $x \in\left[0, \frac{1}{2}\right]$ and $y \in\left[0, \frac{1}{2}\right]$, then

$$
T(F x, G y)=0 \leq \sqrt{\frac{4}{21}} T(f x, g y)
$$

Case 2. If $x \in\left[0, \frac{1}{2}\right]$ and $y \in\left(\frac{1}{2}, 1\right]$, then

$$
T(F x, G y)=\sqrt{\left|\frac{1}{2}-\frac{3}{7}\right|}=\sqrt{\frac{1}{14}} \leq \sqrt{\frac{4}{21}} \sqrt{\frac{1}{2}}=\sqrt{\frac{4}{21}} T(f x, g y)
$$

Case 3. If $x \in\left(\frac{1}{2}, 1\right]$ and $y \in\left[0, \frac{1}{2}\right]$, then

$$
T(F x, G y)=0 \leq \sqrt{\frac{4}{21}} T(f x, g y)
$$

Case 4. If $x \in\left(\frac{1}{2}, 1\right]$ and $y \in\left(\frac{1}{2}, 1\right]$, then

$$
\begin{aligned}
T(F x, G y) & =\sqrt{\left|\frac{1}{2}-\frac{3}{7}\right|}=\sqrt{\frac{1}{14}}=\sqrt{\frac{4}{21}} \sqrt{\frac{3}{8}} \\
& \leq \sqrt{\frac{4}{21}} \sqrt{\left|\frac{x+1}{4}\right|} \leq \sqrt{\frac{4}{21}} T(f x, g y)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& T(F x, G y) \leq \sqrt{\frac{4}{21}} T(f x, g y) \\
& \leq \sqrt{\frac{4}{21}} \max \{T(f x, g y), T(f x, F x), T(g y, G y) \\
&\left.\frac{1}{4}(T(f x, G y) \diamond T(g y, F x))\right\}
\end{aligned}
$$

for all $x, y \in X$. That is, the condition (iii) of Theorem 2 is satisfied with

$$
H\left(t_{1}, \cdots, t_{5}\right)=t_{1}-\sqrt{\frac{4}{21}} \max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{4} t_{5}\right\}
$$

Also, the coincidence points of $F$ and $f$ are $\frac{1}{2}$ and 1 , and it is clear that $F$ and $f$ are commuting at $\frac{1}{2}$ and 1 . Similarly, the only coincidence point of $G$ and $g$ is $\frac{1}{2}$, and $G$ and $g$ are commuting at $\frac{1}{2}$. Thus $F$ and $f$ as well as $G$ and $g$ are weakly compatible. Consequently all conditions of Theorem 2 are satisfied and so these mappings have a unique common fixed point on $X$.

Remark 2. We can obtain several fixed point results on ordinary metric spaces as a special case of Theorem 2.

Acknowledgement. The authors are grateful to the referees for their valuable comments in modifying the first version of this paper.

## References

[1] Agarwal R.P., O’Regan D., Sahu D.R., Theory for Lipschitzian-Type Mappings with Applications, Fixed Point, Springer, 2009.
[2] Aliouche A., Popa V., Common fixed point theorems for occasionally weakly compatible mappings via implicit relations, Filomat, 22(2)(2008), 99-107.
[3] Altun I., Turkoglu D., Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math., 13(4)(2009), 1291-1304.
[4] Berinde V., Iterative Approximation of Fixed Points, Springer, 2007.
[5] Ciric Lu.B., Fixed Point Theory, Contraction Mapping Principle, Faculty of Mechanical Enginearing, Beograd, 2003.
[6] Granas A., Dugundji J., Fixed Point Theory, Springer, 2010.
[7] Imdad M., Kumar S., Khan M.S., Remarks on some fixed point theorems satisfying implicit relation, Rad. Math., 11(2002), 135-143.
[8] Jungck G., Rhoades B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.
[9] Minet D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3)(2004), 431-439.
[10] Popa V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32(1)(1999), 157-163.
[11] Rao K.P.R., Kishore G.N.V., Common fixed point theorems in ultra metric spaces, Punjab University Journal of Mathematics, 40(2008), 31-35.
[12] Sedghi S., Altun I., Shobe N., A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces, Appl. Anal. Discrete Math., 2(2)(2008), 189-196.
[13] Turkoglu D., Fixed point theorems on uniform spaces, Indian J. Pure Appl. Math., 34(3)(2003), 453-459.
[14] Roovij A.C.M.V., Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

Shaban Sedghi<br>Department of Mathematics<br>Islamic Azad University<br>Qaemshahr Branch, Qaemshahr, P.O.Box 163, Iran<br>e-mail: sedghi_gh@yahoo.com<br>Ishak Altun<br>Department of Mathematics<br>Faculty of Science and Arts<br>Kirikkale University<br>71450 Yahsihan, Kirikkale, Turkey<br>e-mail: ishakaltun@yahoo.com<br>> Nabi Shobe > Department of Mathematics > Islamic Azad University > Science and Research Branch > 14778 93855 Tehran, Iran > e-mail: nabi_shobe@yahoo.com

Received on 04.06.2011 and, in revised form, on 22.07.2011.

