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Abstract. In this paper, we introduce the new definitions of
T -metric space and give some properties of it. Also, we prove
a common fixed point theorem for for four mappings under the
condition of weakly compatible in complete T -metric spaces. A
lot of fixed point theorems on ordinary metric space are special
case of our main result, since every ordinary metric space is also
T -metric space.
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1. Introduction

It is well known that the Banach contraction principle is a fundamental
result in fixed point theory. After this classical result, many authors have
extended, generalized and improved this theorem in different ways (See for
details, [1], [4], [5], [6]). Also recently, fixed and common fixed point results
in different types of spaces have been developed. For example, ultra metric
spaces [14], fuzzy metric spaces [9] and uniform spaces [13]. In this paper
we introduce the new definitions of T -metric space and give some properties
of it. After then, we prove a common fixed point theorem for four mappings
under the condition of weakly compatible in complete T -metric spaces. We
begin this paper by giving the definition of ultra metric space.

Definition 1 ([14]). Let (X, d) be a metric space. If the metric d satisfies
strong triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)} ∀x, y, z ∈ X

then d is called an ultra metric on X and the pair (X, d) is called an ultra
metric space. An ultra metric space (X, d) is said to be spherically complete
if every shrinking collection of balls in X has a nonempty intersection.

Rao and Kishore [11] proved the following:
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Theorem 1. Let (X, d) be a spherically complete ultra metric space. If
f and F are self maps on X satisfying F (X) ⊆ f(X),

d(Fx, Fy) < max{d(fx, fy), d(fx, Fx), d(fy, Fy)} ∀x, y ∈ X, x 6= y

then there exists z ∈ X such that fz = Fz. Further if f and F are co-
incidentally commuting at z then z is the unique common fixed point of f
and F .

In the following, we introduce a new binary operation which is a probable
modification of the definition of ordinary metric. In Section 2, we give the
definition of T -metric and some properties of it. In Section 3, we prove a
common fixed point theorem for four weakly compatible maps in complete
T -metric spaces satisfying a new contractive type condition.

2. T -metric spaces

In what follows, N is the set of all natural numbers and R+ is the set of
all nonnegative real numbers.

Let � : R+ × R+ → R+ be a binary operation satisfying the following
conditions:

(i) � is associative and commutative,
(ii) � is continuous,

(iii) a � 0 = a for all a ∈ R+,
(iv) a � b ≤ c � d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ R+.
Five typical examples of � are:
a �1 b = max{a, b}, a �2 b =

√
a2 + b2, a �3 b = a+ b, a �4 b = ab+ a+ b

and a �5 b = (
√
a+
√
b)2 for each a, b ∈ R+. It is easy to see that:

a �1 b ≤ a �2 b ≤ a �3 b ≤ min{a �4 b, a �5 b}.

Lemma 1. Let f : R+ → R+ be a continuous, onto and increasing map.
If defined a � b = f−1(f(a) + f(b)) for every a, b ∈ R+, then � is a binary
operation.

Proof. It is easy to see that � is an increasing in both items, commu-
tative, associative and continuous satisfying a � 0 = f−1(f(a) + f(0)) =
f−1(f(a)) = a for all a ∈ [0,∞). �

Example 1. If function f : R+ −→ R+ defined by f(x) = ex − 1, then
it is easy to see that f is a continuous, onto and increasing function. Also,
for every a, b ∈ R+ we have a � b = ln(ea + eb − 1) is a binary operation.
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Lemma 2. Let � be a binary operation on R+ satisfying the conditions
(i)-(iv).

(a) If r, r′ ≥ 0, then max{r, r′} ≤ r � r′.
(b) If 0 < δ < r, then there exist a 0 < δ′ < r such that δ′ � δ < r.
(c) For every ε > 0 there exist a δ > 0 such that δ � δ < ε.

Proof. (a) Since r′ ≥ 0 by properties (iii) and (iv) of binary operation �
we have r � r′ ≥ r � 0 = r. Similarly we have r � r′ ≥ r′.

(b) Let 0 < δ < r. Suppose for every δ′ > 0 we have δ′ � δ ≥ r. In
particular if take δ′ = 1

n then we have 1
n � δ ≥ r. Thus, this implies that

0 � δ ≥ r as n → ∞, which is a contradiction. Hence by part (i) of this
lemma we get δ′ ≤ δ′ � δ < r.

(c) Let ε > 0. Suppose for every δ > 0, we have δ � δ ≥ ε. For δ = 1
n we

have 1
n �

1
n ≥ ε, hence as n→∞ we get 0 ≥ ε, which is a contradiction. �

Now we introduce the new concept of T -metric.

Definition 2. Let X be a nonempty set. A T -metric on X is a function
T : X2 → R that satisfies the following conditions: for each x, y, z ∈ X

(a) T (x, y) ≥ 0 andT (x, y) = 0 if and only if x = y,
(b) T (x, y) = T (y, x),
(c) T (x, y) ≤ T (x, z) � T (y, z).

The 3-tuple (X,T, �) is called a T -metric space.

Example 2. (i) Every ordinary metric d is a T -metric with a�b = a+b.
(ii) Every ultra metric d is a T -metric with a � b = max{a, b}.

(iii) Let X = R and T (x, y) =
√
|x− y| for every x, y ∈ R. If we take

a � b =
√
a2 + b2, then we have

T (x, y) =
√
|x− y|

≤
√
|x− z|+ |z − y|

=

√√
|x− z|2 +

√
|z − y|2

= T (x, z) � T (z, y).

Therefore the function T is a T -metric on X.
(iv) Let X = R and T (x, y) = (x − y)2 for every x, y ∈ R. If we take

a � b = (
√
a+
√
b)2, then we have

T (x, y) = (x− y)2 = |x− y|2

≤ (|x− z|+ |z − y|)2

= (
√
|x− z|2 +

√
|z − y|2)2

= T (x, z) � T (z, y).

Therefore the function T is a T -metric on X.
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Remark 1. For fixed 0 ≤ α ≤ π
4 if there exist β, γ such that

0 ≤ α ≤ β + γ <
π

2
,

then tanα ≤ tanβ + tan γ + tanβ tan γ.

Example 3. Let X = [0, 1] and T (x, y) = tan(π4 |x− y|) for every x, y ∈
X. If we take a � b = a+ b+ ab, then by Remark 1 we have

T (x, y) = tan(
π

4
|x− y|)

≤ tan(
π

4
|x− z|) + tan(

π

4
|z − y|) + tan(

π

4
|x− z|) tan(

π

4
|z − y|)

= T (x, z) � T (z, y).

Therefore the function T is a T -metric on X.

Let (X,T, �) be a T -metric space. For r > 0 define

BT (x, r) = {y ∈ X : T (x, y) < r}.

Definition 3. Let (X,T, �) be a T -metric space r > 0 and A ⊂ X.
(a) The set BT (x, r) = {y ∈ X : T (x, y) < r} is called an open ball

centered at x and radius r.
(b) If for every x ∈ A there exists r > 0 such that BT (x, r) ⊂ A, then

the subset A is called open subset of X.
(c) The subset A of X is said to be T -bounded if there exists r > 0 such

that T (x, y) < r for all x, y ∈ A.
(d) A sequence {xn} in X converges to x if T (xn, x)→ 0 as n→∞ and

write limn→∞ xn = x. That is for each ε > 0 there exists n0 ∈ N
such that T (xn, x) < ε for all n ≥ n0, then {xn} converges to x.

(e) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0,
there exists n0 ∈ N such that T (xn, xm) < ε for all n,m ≥ n0.

(f) The T -metric space (X,T, �) is said to be complete if every Cauchy
sequence is convergent.

Let τ be the set of all open subset of X, then τ is a topology on X
(induced by the T -metric T ).

Lemma 3. Let (X,T, �) be a T -metric space. If r > 0 , then the open
ball BT (x, r) with center x ∈ X and radius r is an open set.

Proof. Let y ∈ BT (x, r), hence T (x, y) < r. If we set T (x, y) = δ then
by Lemma 2 there exists δ′ > 0 such that δ′ � δ < r. Now, we prove that
BT (y, δ′) ⊆ BT (x, r). Let z ∈ BT (y, δ′), then by triangular inequality we
have

T (x, z) ≤ T (x, y) � T (y, z) < δ � δ′ < r.
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Hence BT (y, δ′) ⊆ BT (x, r). That is BT (x, r) is an open set. �

Lemma 4. Let (X,T, �) be a T -metric space. If sequence {xn} in X
converges to x, then x is unique.

Proof. Let xn → y. For every ε > 0 by Lemma 2 we can choose a δ > 0
such that δ � δ < ε. Now, since {xn} converges to x and y, for this δ there
exists n1 ∈ N such that T (xn, x) < δ for all n ≥ n1 and there exists n2 ∈ N
such that T (xn, y) < δ for all n ≥ n2. If set n0 = max{n1, n2}, then for all
n ≥ n0 by triangular inequality we have

T (x, y) ≤ T (x, xn) � T (xn, y) < δ � δ < ε.

Hence T (x, y) = 0 and so x = y. �

Lemma 5. Let (X,T, �) be a T -metric space. Then every convergent
sequence {xn} in X is a Cauchy sequence.

Proof. For every ε > 0 by Lemma 2 we can choose a δ > 0 such that
δ � δ < ε. Since xn → x there exists n0 ∈ N such that T (xn, x) < δ for all
n ≥ n0. Thus for all n,m ≥ n0 by triangular inequality we have

T (xn, xm) ≤ T (xn, x) � T (x, xm) < δ � δ < ε.

Hence sequence {xn} is a Cauchy sequence. �

Definition 4. Let (X,T, �) be a T -metric space. T is said to be contin-
uous, if

lim
n→∞

T (xn, yn) = T (x, y),

whenever
lim
n→∞

T (xn, x) = lim
n→∞

T (yn, y) = 0.

Lemma 6. Let (X,T, �) be a T -metric space. Then T is a continuous
function.

Proof. Let limn→∞ T (xn, x) = limn→∞ T (yn, y) = 0, then by triangular
inequality we have

T (xn, yn) ≤ T (xn, x) � T (x, y) � T (y, yn).

Hence we have
lim
n→∞

supT (xn, yn) ≤ T (x, y).

Similarly, we have

T (x, y) ≤ T (x, xn) � T (xn, yn) � T (yn, y)
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and so
T (x, y) ≤ lim

n→∞
inf T (xn, yn).

Therefore we have
lim
n→∞

T (xn, yn) = T (x, y).

�

3. Fixed point result

In this section we give some fixed point results on T -metric spaces. In
these results we use an implicit relation for contractive condition. Implicit
relation technique on metric space have been used in many articles (See [2],
[3], [7], [10], [12]).

Definition 5. Let R+ be the set of all non-negative real numbers and
let H be the set of all continuous functions H : (R+)5 → R satisfying the
following conditions:
H1 : H(t1, · · · , t5) is non-decreasing in t1 and non-increasing in t2, · · · , t5.
H2 : there exists h ∈ (0, 1) such that

H(u, v, v, u, v � u) ≤ 0 or H(u, v, u, v, v � u) ≤ 0

implies u ≤ hv.
H3 : H(u, 0, 0, u, u) > 0, H(u, 0, u, 0, u) > 0 and H(u, u, 0, 0, u � u) > 0,

for all u > 0.

Now, we give some examples.

Example 4. Let a � b = a + b for all a, b ∈ [0,∞) and H(t1, · · · , t5) =
t1 − αmax{t2, t3, t4} − βt5, where α, β ≥ 0 and α+ 2β < 1.
H1 : Obvious.
H2 : Let u > 0 and

H(u, v, v, u, v � u) = H(u, v, v, u, v + u)

= u− αmax{u, v} − β(v + u) ≤ 0.

Thus u ≤ max{(α + β)u + βv, (α + β)v + βu}. Now if u ≥ v, then u ≤
(α+β)u+βv ≤ (α+2β)u, a contradiction. Thus u < v and u ≤ (α+β)v+βu
and so u ≤ α+β

1−β v. Similarly, let u > 0 and

H(u, v, u, v, v � u) = H(u, v, u, v, v + u)

= u− αmax{u, v} − β(v + u) ≤ 0,

then we have u ≤ α+β
1−β v. If u = 0, then u ≤ α+β

1−β v. Thus H2 is satisfying

with h = α+β
1−β < 1.
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H3 : H(u, 0, 0, u, u) = H(u, 0, u, 0, u) = u(1− α− β) > 0 and

H(u, u, 0, 0, u � u) = H(u, u, 0, 0, u+ u) = u(1− α− 2β) > 0,

for all u > 0. Therefore H ∈ H.

Example 5. Let a�b = (
√
a+
√
b)2 for all a, b ∈ [0,∞) andH(t1, · · · , t5) =

t1 −mmax{t2, t3, t4, 14 t5}, where 0 ≤ m < 1.
H1 : Obvious.
H2 : Let u > 0 and

H(u, v, v, u, v � u) = H(u, v, v, u,
1

4
(
√
v +
√
u)2)

= u−mmax{u, v, 1

4
(
√
v +
√
u)2} ≤ 0.

Thus u ≤ mmax{u, v}. Now if u ≥ v, then u ≤ mu, a contradiction. Thus
u < v and u ≤ mv. Similarly, let u > 0 and

H(u, v, u, v, v � u) = H(u, v, u, v,
1

4
(
√
v +
√
u)2) = u−mmax{u, v} ≤ 0,

then we have u ≤ mv. If u = 0, then u ≤ mv. Thus H2 is satisfying with
h = m < 1.
H3 : H(u, 0, 0, u, u) = H(u, 0, u, 0, u) = H(u, u, 0, 0, u�u) = u(1−m) > 0,

for all u > 0. Therefore H ∈ H.

Lemma 7. Let (X,T, �) be T -metric space with a � b ≤ (
√
a +
√
b)2. If

for all n ∈ N
T (xn+1, xn) ≤ kT (xn, xn−1)

for 0 < k < 1, then the sequence {xn} is a Cauchy sequence.

Proof. For all n ∈ N, we have

T (xn+1, xn) ≤ kT (xn, xn−1) ≤ · · · ≤ knT (x1, x0).

Thus for m > n we have

T (xn, xm) ≤ T (xn, xn+1) � T (xn+1, xn+2) � · · · � T (xm−1, xm)

≤ (
√
T (xn, xn+1) +

√
T (xn+1, xn+2) + · · ·+

√
T (xm−1, xm))2

≤ (k
n
2

√
T (x1, x0) + k

n+1
2

√
T (x1, x0) + · · ·+ k

m−1
2

√
T (x1, x0))

2

≤ (

m−1∑
j=n

k
j
2 )2T (x1, x0) = (

k
n
2 − k

m
2

1−
√
k

)2T (x1, x0)

≤ (
k

n
2

1−
√
k

)2T (x1, x0).
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Hence the sequence {xn} is a Cauchy sequence. �

In 1998, Jungck and Rhoades [8] introduced the following concept of weak
compatibility.

Definition 6. Let f and F be mappings from a T -metric space (X,T, �)
into itself. Then the pair (F, f) is said to be weak compatible if f and F
commute at their coincidence points, that is, fx = Fx implies that fFx =
Ffx.

Theorem 2. Let (X,T, �) be a complete T -metric space where a � b ≤
(
√
a +
√
b)2. Let F,G, f and g be four self-mappings of X satisfying the

following conditions:
(i) F (X) ⊆ g(X), G(X) ⊆ f(X) and f(X) or g(X) is a closed subset

of X ,
(ii) the pairs (F, f) and (G, g) are weakly compatible,
(iii) there exists H ∈ H such that

H(T (Fx,Gy), T (fx, gy), T (fx, Fx), T (gy,Gy),

T (fx,Gy) � T (gy, Fx)) ≤ 0

for all x, y in X,
Then there exists a unique p ∈ X such that p = fp = gp = Fp = Gp.

Proof. Let x0 be an arbitrary point in X. By (i), we choose a point x1
in X such that y0 = gx1 = Fx0. For this point x1 there exists a point x2 in
X such that y1 = fx2 = Gx1, and so on. Continuing in this manner we can
define a sequence {xn} as follows

y2n = gx2n+1 = Fx2n, y2n+1 = fx2n+2 = Gx2n+1,

for n = 0, 1, 2, · · · . We prove that {yn} is a Cauchy sequence. From (iii),
we have

H (T (Fx2n, Gx2n+1), T (fx2n, gx2n+1), T (fx2n, Fx2n),

T (gx2n+1, Gx2n+1), T (fx2n, Gx2n+1) � T (gx2n+1, Fx2n)) ≤ 0.

Thus we get

H (T (y2n, y2n+1), T (y2n−1, y2n), T (y2n−1, y2n), T (y2n, y2n+1),

T (y2n−1, y2n+1) � T (y2n, y2n)) ≤ 0.

Using H1 we get

H (T (y2n, y2n+1), T (y2n−1, y2n), T (y2n−1, y2n), T (y2n, y2n+1),

T (y2n−1, y2n) � T (y2n, y2n+1)) ≤ 0.
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That is
H(u, v, v, u, v � u) ≤ 0,

where u = T (y2n, y2n+1) and v = T (y2n−1, y2n). Hence, from H2,, there
exists h ∈ (0, 1) such that

T (y2n, y2n+1) ≤ hT (y2n−1, y2n).

Similarly, from (iii), we have

H (T (Fx2n+2, Gx2n+1), T (fx2n+2, gx2n+1), T (fx2n+2, Fx2n+2),

T (gx2n+1, Gx2n+1), T (fx2n+2, Gx2n+1) � T (gx2n+1, Fx2n+2)) ≤ 0.

Thus we have

H (T (y2n+2, y2n+1), T (y2n+1, y2n), T (y2n+1, y2n+2), T (y2n, y2n+1),

T (y2n+1, y2n+1) � T (y2n, y2n+2)) ≤ 0.

Using H1 we have

H (T (y2n+2, y2n+1), T (y2n+1, y2n), T (y2n+1, y2n+2), T (y2n, y2n+1),

T (y2n, y2n+1) � T (y2n+1, y2n+2)) ≤ 0.

That is
H(u, v, u, v, v � u) ≤ 0,

where u = T (y2n+2, y2n+1) and v = T (y2n+1, y2n). Hence, from H2, we have

T (y2n+2, y2n+1) ≤ hT (y2n+1, y2n).

Therefore, we obtain

T (yn, yn+1) ≤ hT (yn−1, yn)

for all n = 0, 1, · · · . Hence by Lemma 2 the sequence {yn} is Cauchy in X.
By completeness X there exist p ∈ X such that

lim
n→∞

yn = lim
n→∞

y2n = lim
n→∞

gx2n+1 = lim
n→∞

Fx2n = p,

and
lim
n→∞

yn = lim
n→∞

y2n+1 = lim
n→∞

fx2n+2 = lim
n→∞

Gx2n+1 = p.

Suppose that g(X) is closed, then for some v ∈ X we have p = gv ∈ g(X).
Putting x = x2n, y = v in (iii), we get

H (T (Fx2n, Gv), T (fx2n, gv), T (fx2n, Fx2n), T (gv,Gv),

T (fx2n, Gv) � T (gv, Fx2n)) ≤ 0.
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Thus, we have

H (T (y2n, Gv), T (y2n−1, gv), T (y2n−1, y2n), T (gv,Gv),

T (y2n−1, Gv) � T (gv, y2n)) ≤ 0.

On making n→∞, we have

H(T (p,Gv), T (p, gv), T (p, p), T (p,Gv), T (p,Gv) � T (p, p)) ≤ 0.

Thus we get,

H(T (p,Gv), 0, 0, T (p,Gv), T (p,Gv)) ≤ 0.

That is, H(u, 0, 0, u, u) ≤ 0, hence from H3, we get u = T (p,Gv) = 0. Hence
Gv = p = gv. From weak compatibility of (G, g), we have Ggv = gGv, hence
Gp = gp. Putting x = x2n, y = p in (iii), we get

H (T (Fx2n, Gp), T (fx2n, gp), T (fx2n, Fx2n), T (gp,Gp),

T (fx2n, Gp) � T (gp, Fx2n)) ≤ 0.

Thus, we have

H (T (y2n, gp), T (y2n−1, gp), T (y2n−1, y2n), T (gp, gp),

T (y2n−1, gp) � T (gp, y2n)) ≤ 0.

On making n→∞, we get

H(T (p, gp), T (p, gp), T (p, p), T (gp, gp), T (p, gp) � T (gp, p)) ≤ 0.

That is, H(u, u, 0, 0, u � u) ≤ 0, hence from H3, we have u = T (p, gp) = 0.
Hence gp = p. Therefore, Gp = p. Since Gp ∈ f(X), then there exists
w ∈ X such that fw = Gp = gp = p. Now putting x = w, y = p in (iii), we
get

H (T (Fw,Gp), T (fw, gp), T (fw, Fw), T (gp,Gp),

T (fw,Gp) � T (gp, Fw)) ≤ 0.

and so we have

H(T (Fw, p), 0, T (p, Fw), 0, T (p, Fw)) ≤ 0.

That is, H(u, 0, u, 0, u) ≤ 0, hence from H3, we have u = T (Fw, p) = 0.
Hence Fw = p = Gp = fw = gp. Since Fw = fw and the pair (F, f) is
weakly compatible, then we obtain Fp = Ffw = fFw = fp. Therefore, we
obtain Fp = Gp = fp = gp = p.
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The proof is similar when f(X) is assumed to be closed subset of X.
To see the p is unique, suppose that q = gq = fq = Fq = Gq, then from

(iii) we have

H(T (Fp,Gq), T (fp, gq), T (fp, Fp), T (gq,Gq), T (fp,Gq) � T (gq, Fp)) ≤ 0,

therefore H(T (p, q), T (p, q), 0, 0, T (p, q) � T (p, q) ≤ 0, that is T (p, q) = 0. It
follows that p = q. �

Corollary 1. Let F , G be self-mappings of a complete T -metric space
(X,T, �) where a � b ≤ (

√
a+
√
b)2, such that satisfying:

(iv) H(T (Fx,Gy), T (x, y), T (x, Fx), T (y,Gy), T (x,Gy)�T (y, Fx)) ≤ 0

for every x, y in X, where H ∈ H. Then there exists a unique p ∈ X such
that p = Fp = Gp.

Proof. Follows from Theorem 2 with f = g = I dentity mapping. �

Corollary 2. Let F , G, f and g be four self-mappings of a complete
T -metric space (X,T, �) where a � b ≤ (

√
a+
√
b)2, satisfying:

(i) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X,

(ii) The pair (F, f) and (G, g) are weakly compatible,

(iii) T (Fx,Gy) ≤ mmax{T (fx, gy), T (fx, Fx), T (gy,Gy)}
× 1

4(T (fx,Gy) � T (gy, Fx))
for every x, y in X, where 0 ≤ m < 1. Suppose that one of g(X) or f(X) is
a closed subset of X, then there exists a unique p ∈ X such that p = fp =
gp = Fp = Gp.

Proof. Follows from Theorem 2 with

H(t1, t2, t3, t4, t5) = t1 −mmax{t2, t3, t4,
1

4
t5}.

�

If we combine Theorem 2 with Example 4 we have the following corollary.

Corollary 3. Let F,G, f and g be four self-mappings of a complete
T -metric space (X,T, �) where a � b = a+ b, satisfying:

(i) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X,

(ii) The pair (F, f) and (G, g) are weakly compatible,

(iii) T (Fx,Gy) ≤ αmax{T (fx, gy), T (fx, Fx), T (gy,Gy)}
+ β(T (fx,Gy) + T (gy, Fx))

for every x, y in X, where α, β ≥ 0 and α + 2β < 1. Suppose that one of
g(X) or f(X) is a closed subset of X, then there exists a unique p ∈ X such
that p = fp = gp = Fp = Gp.
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Example 6. Let X = [0, 1], T (x, y) =
√
|x− y| and a � b = (

√
a+
√
b)2,

then (X,T, �) is a complete T -metric space. Define F,G, f, g : X → X as
follows:

Fx =
1

2
, Gx =


1

2
, x ∈ [0,

1

2
]

3

7
, x ∈ (

1

2
, 1]

,

fx =


1

2
, x ∈ [0,

1

2
]

x+ 1

4
, x ∈ (

1

2
, 1]

, gx =


1− x , x ∈ [0,

1

2
]

0 , x ∈ (
1

2
, 1]

.

It is clear that F (X) = {1

2
} ⊆ g(X) = {0} ∪ [

1

2
, 1], G(X) = {3

7
,
1

2
} ⊆

f(X) = (
3

8
,
1

2
] and g(X) is closed subset of X. Now we consider the following

cases:

Case 1. If x ∈ [0,
1

2
] and y ∈ [0,

1

2
], then

T (Fx,Gy) = 0 ≤
√

4

21
T (fx, gy).

Case 2. If x ∈ [0,
1

2
] and y ∈ (

1

2
, 1], then

T (Fx,Gy) =

√∣∣∣∣12 − 3

7

∣∣∣∣ =

√
1

14
≤
√

4

21

√
1

2
=

√
4

21
T (fx, gy).

Case 3. If x ∈ (
1

2
, 1] and y ∈ [0,

1

2
], then

T (Fx,Gy) = 0 ≤
√

4

21
T (fx, gy).

Case 4. If x ∈ (
1

2
, 1] and y ∈ (

1

2
, 1], then

T (Fx,Gy) =

√∣∣∣∣12 − 3

7

∣∣∣∣ =

√
1

14
=

√
4

21

√
3

8

≤
√

4

21

√∣∣∣∣x+ 1

4

∣∣∣∣ ≤
√

4

21
T (fx, gy).
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Therefore, we obtain

T (Fx,Gy) ≤
√

4

21
T (fx, gy)

≤
√

4

21
max

{
T (fx, gy), T (fx, Fx), T (gy,Gy),

1

4
(T (fx,Gy) � T (gy, Fx))

}
for all x, y ∈ X. That is, the condition (iii) of Theorem 2 is satisfied with

H(t1, · · · , t5) = t1 −
√

4

21
max{t2, t3, t4,

1

4
t5}.

Also, the coincidence points of F and f are 1
2 and 1, and it is clear that F

and f are commuting at 1
2 and 1. Similarly, the only coincidence point of G

and g is 1
2 , and G and g are commuting at 1

2 . Thus F and f as well as G
and g are weakly compatible. Consequently all conditions of Theorem 2 are
satisfied and so these mappings have a unique common fixed point on X.

Remark 2. We can obtain several fixed point results on ordinary metric
spaces as a special case of Theorem 2.
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