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OSCILLATION PROPERTIES OF A CLASS

OF NONLINEAR DIFFERENTIAL EQUATIONS

OF NEUTRAL TYPE

Oscillatory and asymptotic behaviour of the solutions of a
class of nonlinear first order neutral delay differential equa-
tions with positive and negative coefficients of the form

(E1)
d

dt
[y(t) + p(t)y(t− τ)] + f1(t)G1(y(t− σ1))

− f2(t)G2(y(t− σ2)) = g(t)

and

(E2)
d

dt
[y(t) + p(t)y(t− τ)] + f1(t)G1(y(t− σ1))

− f2(t)G2(y(t− σ2)) = 0

are studied under various ranges of p(t). Sufficient condi-
tions are obtained for the existence of positive bounded so-
lution of (E1).
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1. Introduction

Consider the following nonlinear delay differential equation

d

dt
[y(t) + p(t)y(t− τ)] + f1(t)G1(y(t− σ1))(1)

−f2(t)G2(y(t− σ2)) = g(t)

where Gi ∈ C(R,R) with xGi(x) > 0, x 6= 0 for i = 1, 2, Gi is nondecreasing,
p, g ∈ C([0,∞), R), fi ∈ C([0,∞), [0,∞)), i = 1, 2 and τ > 0, σ1 > 0,
σ2 > 0 are constants.
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Recently, there has been an increasing interest in the study of the oscil-
latory and asymptotic behaviour of solutions of the following special form
of Eq. (1)

(2)
d

dt
[y(t)−R(t)y(t− r)] + P (t)y(t− τ1)−Q(t)y(t− σ2) = g(t)

for t ≥ 0, where P,Q,R ∈ C([t0,∞), R+), g ∈ C([t0,∞), R), r ∈ (0,∞),
τ, σ ∈ R+ and τ ≥ σ. See for example ([1], [3], [5] - [12]) and the refer-
ences cited there in. In [2], [7] - [11], authors have discussed the oscillation
properties of Eq. (2) with σ1 ≥ σ2 or σ1 ≤ σ2 and R(t) ≥ 0. The following
example

d

dt
[y(t) + e−π(1 + e−t)y(t− τ)] + e(t−6π)y3(t− 2π)(3)

− 2(t+20π)y5(t− 4π)) = g(t),

where g(t) = (2; sin t + sin 3t − cos t)e−2t − e−6t sin5 t suggests that the
above works can not be applied to (3) which has an oscillatory solution
y(t) = e−t sin t. Hence it seems that Eq. (1) may admit oscillatory solutions.

The object of this work is to study the oscillatory behaviour of solutions
of Eq. (1) under various ranges of p(t). Its associated homogeneous equation

(4)
d

dt
[y(t)+p(t)y(t−τ)]+f1(t)G1(y(t−σ1))−f2(t)G2(y(t−σ2)) = 0, t ≥ 0.

t ≥ 0 is also considered, where every solution or every bounded solution
oscillates or tends to zero as t → ∞. Unlike the work in [7], [8] and [10],
an attempt is made here to establish sufficient conditions under which every
solution/every bounded solution of Eq. (1)/Eq. (4) oscillates/oscillates or
tends to zero as t→∞. Of course, the impact of forcing term is considered.
Keeping in view of the influence of forcing functions, this work is separated
for forced and unforced equations.

By a solution of Eq. (1)/Eq. (4) we understand a function y ∈ C([−ρ,∞),
R) such that (y(t)+p(t)y(t−τ)) is once continuously differentiable and (1) or
(4) is satisfied for t ≥ 0, where ρ = max{τ, σ1, σ2} and sup{|y(t)| : t ≥ t0} >
0 for every t0 ≥ 0. A solution of Eq. (1)/Eq. (4) is said to be oscillatory if
it has arbitary large zeros; otherwise it is called nonoscillatory.

2. Oscillation properties of Eq. (1)

Sufficient conditions are obtained for oscillation of solutions of the Eq. (1).
We need the following conditions for our use in the sequel:

(H1)
∞∫
0

f1(t)dt =∞,
∞∫
0

f2(t)dt <∞;
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(H2) There exists λ > 0 such that G1(u) +G1(v) ≥ λG1(u+ v)
for u > 0, v > 0;

(H3) G1(u)G1(v) ≥ G1(uv) for u and v ∈ R;

(H4) Gi(−u) = −Gi(u), u ∈ R, i = 1, 2;

(H5) There exists F ∈ C([0,∞), R) such that F(t) changes sign with
−∞ < lim inf

t→∞
F (t) < 0 < lim sup

t→∞
F (t) <∞ and F ′(t) = g(t);

(H6) There exists F ∈ C([0,∞), R) such that F(t) changes sign with
lim inf
t→∞

F (t) = −∞, lim sup
t→∞

F (t) =∞ and F ′(t) = g(t);

(H7) F+(t) = max{F (t), 0}, and F−(t) = max{−F (t), 0};

(H8)
∞∫
T

Q(t)|G1(F
+(t− σ1)− α)|dt =∞,

∞∫
T

Q(t)|G1(F
−(t− σ1)− α)|dt =∞,

where Q(t) = min {f1(t), f1(t− τ)}, t ≥ τ ;

(H9)
∞∫
T

f1(t)|G1(F
+(t− σ1)− α)|dt =∞,

∞∫
T

f1(t)|G1(F
−(t− σ1)− α)|dt =∞,

Theorem 1. Let p(t) ≥ 0. If (H1), (H4), and (H6) hold, then (1) is
oscillatory.

Proof. Suppose for contrary that y(t) is a nonoscillatory solution of
Eq.(1). Then there exists t0 ≥ 0 such that y(t) > 0 or < 0 for t ≥ t0.
Assume that y(t) > 0 for t ≥ t0. Setting

(5) z(t) = y(t) + p(t)y(t− τ) and K(t) =

∞∫
t

f2(s)G2(y(s− σ2))ds,

Eq. (1) can be written as

d

dt
[z(t) +K(t)] + f1(t)G1(y(t− σ1)) = g(t).
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Using (H3) and for w(t) = z(t) +K(t)− F (t), further Eq. (1) yields that

(6) w′(t) + f1(t)G1(y(t− σ1)) = 0.

Consequently, w′(t) ≤ 0 for t ≥ t1 ≥ t0 + ρ. Hence we have w(t) < 0 or
> 0 for t ≥ t1. If w(t) < 0 for t ≥ t1 then z(t) + K(t) < F (t), implies
that F (t) > σ, for t ≥ t1, a contradiction. Hence w(t) > 0 for t ≥ t1, that
is, z(t) + K(t) > F (t). On the other hand, lim

t→∞
w(t) exits and K ′(t) < 0

implies that lim
t→∞

z(t) = lim
t→∞

(w(t)−K(t)) exists and hence

lim sup
t→∞

F (t) < lim sup
t→∞

(z(t) +K(t)) ≤ lim sup
t→∞

z(t) + lim sup
t→∞

K(t) <∞,

a contradiction.
Let y(t) < 0 for t ≥ t0. Setting x(t) = −y(t), Eq. (1) becomes

(7)
d

dt
[x(t) + p(t)x(t− τ)] + f1(t)G1(x(t−σ1))− f2(t)G2(x(t−σ2)) = g̃(t).

where g̃(t) = −g(t). If we set F̃ (t) = −F (t), then lim sup
t→∞

F̃ (t) = −∞ and

lim inf
t→∞

F̃ (t) = +∞ and hence F̃ ′(t) = g̃(t). Following to the above procedure

we have contradictions in this case also. Thus the proof of the theorem is
complete. �

Theorem 2. Let 0 ≤ p(t) ≤ p < +∞. If (H1)-(H5), (H7) and (H8)
hold, then (1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of Eq.(1) such that y(t) > 0
for t ≥ t0. Setting as in (5) we get (6). Hence w′(t) ≤ 0 implies that
w(t) is non-increasing for t ≥ t1 ≥ t0 + ρ. If w(t) < 0 for t ≥ t1, then
0 < z(t) +K(t) < F (t), which is a contradiction. Hence w(t) > 0 for t ≥ t1
and lim

t→∞
w(t) exists. Using (6) we obtain

w′(t) + G1(p)w
′(t− τ) + f1(t)G1(y(t− σ1))

+ G1(p)f1(t− τ) G1(y(t− σ1 − τ)) = 0.

Consequently,

w′(t) +G1(p)w
′(t− τ) + λQ(t)G1(z(t− σ1)) ≤ 0,

due to (H2) and (H3), where z(t) = y(t) + p(t)y(t − τ) ≤ y(t) + py(t −
τ) lim

t→∞
K(t) exists. Hence there exists α ∈ (0, 1) such that K(t) ≤ α for

t ≥ t∗. Ultimately, w(t) > 0 becomes z(t) + α ≥ F (t) and hence z(t) + α ≥
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max{0, F (t)}, that is, z(t) ≥ F+(t) − α, for t ≥ t2 > max{t, t∗}. Thus in
view of the last inequality, we obtain

(8) λQ(t)G1(F
+(t− σ1)− α) ≤ −{w′(t) +G1(p)w

′(t− τ)}

for t ≥ t2. Integrating (8) from t2 to ∞ we obtain,

λ

∞∫
t2

Q(t)|G1(F
+(t− σ1)− α)|dt <∞.

a contradiction to (H8).
If y(t) < 0 for t ≥ t0, then we set x(t) = −y(t) to obtain x(t) > 0

for t ≥ t0 and hence using Eq. (7), we obtain similar contradiction. This
completes the proof of the theorem. �

Theorem 3. −1 < −p ≤ p(t) ≤ 0. Assume that (H1), (H4), (H5), (H7),
(H9) and the following conditions

(H10)
∞∫
σ1

f1(t)G1

(
1
pF
−(t+ τ − σ1)

)
dt =∞,

(H11)
∞∫
σ1

f1(t)G1

(
1
pF

+(t+ τ − σ1)
)
dt =∞

hold. Then Eq. (1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1) such that y(t) > 0 for
t ≥ t0. Setting as in (5) we get (6). Hence w′(t) ≤ 0. Consequently, w(t) is
non-increasing for t ≥ t1 ≥ t0 +ρ. Since K(t) ≤ α, 0 < α < 1, then w(t) > 0
implies that z(t) + K(t) > F (t), that is, y(t) + K(t) ≥ z(t) + K(t) > F (t)
and hence y(t) > F+(t) − α for t ≥ t1. Integrating Eq. (6) from t2 to ∞,
we get.

∞∫
t2

f1(t)|G1(F
+(t− σ1)− α)|dt <∞, for t2 > t1

because lim
t→∞

w(t) exists. Following to Theorem 2 and using (H7) we have a

contradiction to (H9). Ultimately, w(t) < 0 for t ≥ t1. Then z(t) +K(t) <
F (t) for t ≥ t1. If z(t) > 0, then F (t) > 0 for t ≥ t1, a contradiction.
Thus z(t) < 0 t ≥ t1, which implies that y(t) < y(t − τ) for t ≥ t2 ≥ t1,
that is, y(t) is bounded for t ≥ t2. Consequently, lim

t→∞
w(t) exists. Since

z(t) +K(t) < 0, then

(9) −p y(t− τ) < z(t) +K(t) < F (t) and − py(t− τ) < min{0, F (t)}
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for t ≥ t2, implies that y(t − σ1) > (1/p)F−(t + τ − σ1) for t ≥ t3 > t2.
Integrating Eq. (6) from t3 to ∞, we obtain a contradiction to (H10). �

The case y(t) < 0 for t ≥ t0 can similarly be dealt with. Hence the
theorem is proved

Theorem 4. Let −∞ < −p ≤ p(t) ≤ −1. If all the conditions of
Theorem 3 hold, then every bounded solution of (1) oscillates.

Proof. The proof of the Theorem can be followed from Theorem 3 and
hence the details are omitted. Thus the proof of the theorem is complete. �

Remark 1. In the proof of Theorems 3 and 4, we consider the equation
(7) for the case y(t) < 0, for t ≥ t0. Indeed, F̃+(t) = F−(t) and F̃−(t) =
F+(t) hold.

Theorem 5. Let −∞ < −p ≤ p(t) ≤ −1 and τ ≥ σ1. Suppose that
(H1), (H4), (H5), (H7), and (H9) and the following condtions

(H12)
G1(x1)
(x1)β

≥ G1(x2)
(x2)β

, x1 ≥ x2 > 0, β ≥ 1,

(H13)
∞∫
σ1

f1(t)
G1

(
1
p
F−(t+τ−σ1)

)
[F−(t+τ−σ1)]β

dt =∞,

(H14)
∞∫
σ1

f1(t)
G1

(
1
p
F+(t+τ−σ1)

)
[F+(t+τ−σ1)]β

dt =∞,

hold. Then every solution of (1) oscillates.

Proof. Proceeding as in the proof of the Theorem 3, we concluded that
w(t) < 0 and z(t) < 0, for t ≥ t1. Consequently, z(t) > p(t)y(t − τ)
and z(t) + K(t) > K(t) + p(t)y(t − τ) > p(t)y(t − τ) implies that w(t) >
p(t)y(t− τ)−F (t) for t ≥ t2 > t1, that is, w(t)− p(t)y(t− τ) > −F (t). Due
to (H5), w(t)− p(t)y(t− τ) > 0 and hence w(t)− p(t)y(t− τ) > F−(t),

w(t) > p(t)y(t− τ)−F (t) ≥ −py(t− τ) +F−(t) > −py(t− τ), t ≥ t2 ≥ t1.

Since w(t) is decreasing and τ ≥ σ1, then for t ≥ t3 > t2,

−w(t) ≤ −w(t+ τ − σ1) < py(t− σ1).

Hence

− d

dt

[
(−w(t))(1−β)

]
= (β − 1)

f1(t)G1(y(t− σ1))
[−w(t)]β

(10)

≥ (β − 1)p−βf1(t)y
−β(t− σ1)G1(y(t− σ1).
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Using (H12), (9) and then integrating (10) from t3 to ∞ we get

∞∫
t3+σ1

f1(t)
G1

(
1
pF

+(t+ τ − σ1)
)

[F+(t+ τ − σ1)]β
dt <∞,

a contradiction. Rest of the proof follows from Theorem 3. Thus the theorem
is proved. �

Remark 2. It seems that the solution in Theorem 4 is bounded which
makes Eq. (1) oscillatory. However, Theorem 5 holds for any solution. The
conditions (H10), (H11), (H13), and (H14) are not comparable and hence
Theorem 4 and Theorem 5 are different. We note that Theorem 5 is re-
stricted to super linear G1 but in Theorem 4, G1 could be linear, sub linear
or super linear.

Theorem 6. Let −∞ < −p1 ≤ p(t) ≤ p2 < ∞, p1 > 0. Let the
conditions (H1) - (H5), (H7), (H8), and

(H15)
∞∫
T

f1(t)|G1 (F+(t+ τ − σ1)− α) |dt =∞

∞∫
T

f1(t)|G1 (F−(t+ τ − σ1)− α) |dt =∞

hold. Then every solutions of (1) oscillates.

The proof of the Theorem can be followed from Theorem 2 and Theorem 3
and hence the details are omitted.

Example 1. Consider

d

dt
[y(t) + (1 + e−t)y(t− π/2)] + (

√
2)y(t− π/4)(11)

− (
√

2e−t)y(t− 7π/4) = 2 sin t.

Here Q(t) ≡
√

2; g(t) = 2 sin t. If we set F (t) = −2 cos t, then F ′(t) = g(t),
F+(t) = −2 cos t, 2nπ+ π/2 ≤ t ≤ 2nπ+ 3π/2, F+(t) = 0, otherwise. Also,
F−(t) = 2 cos t, 2nπ + 3π/2 ≤ t ≤ 2nπ + 5π/2, F−(t) = 0, otherwise.

F+(t− π/4) = −2 cos(t− π/4), 2nπ + π/4 + π/2 ≤ t ≤ 2nπ + π/4 + 3π/2,

= 0, otherwise.

F−(t− π/4) = 2 cos(t− π/4), 2nπ + π/4 + 3π/2 ≤ t ≤ 2nπ + π/4 + 5π/2,

= 0, otherwise.

Choose α = 1
10
√
2
. It is easy to verify that (H8) hold.



136 Arun K. Tripathy and K.V.V. Seshagiri Rao

Hence the conditions of Theorem 2 are satisfied. Indeed y(t) = sin t is an
oscillatory solution of Eq. (11).

3. Oscillation properties of Eq. (4)

This section deals with the oscillatory and asymptotic behaviour of so-
lutions of Eq. (4). Here Gi, i = 1, 2 could be linear, sub linear or super
linear.

Theorem 7. Let 0 ≤ p(t) ≤ p < +∞. Assume that (H1)-(H4) hold. If

(H16)
∞∫
τ
Q(t)dt = +∞,

where Q(t) is same as in (H8), then every solution of Eq. (4) either oscillates
or tends to zero as t→∞.

Proof. Let y(t) be a nonoscillatory solution of Eq. (4) such that y(t) > 0
for t ≥ t0. The case y(t) < 0 for t ≥ t0 is similar. Setting as in (5) equation
(4) can be written as

(12) T ′(t) + f1(t)G1(y(t− σ1)) = 0,

where T (t) = z(t) +K(t). Using (12), we get

T ′(t)+G1(p)T
′(t−τ)+f1(t)G1(y(t−σ1))+G1(p)f1(t−τ)G1(y(t−σ1−τ)) = 0,

that is,

T ′(t) +G1(p)T
′(t− τ) + λQ(t)G1(z(t− σ1)) ≤ 0

due to (H2), (H3) and z(t) ≤ y(t) + py(t − τ). From (12), it follows that
T ′(t) ≤ 0 for t ≥ t1 > t0 + ρ. Since T (t) > 0, then lim

t→∞
T (t) exists.

Consequntly, lim
t→∞

K(t) exists implies that lim
t→∞

z(t) exists. If lim
t→∞

z(t) = 0,

then ultimately lim
t→∞

y(t) = 0. Assume that lim
t→∞

z(t) = α > 0. Hence there

exists β > 0 and t∗ > 0 such that z(t) ≥ β for t ≥ t∗. Thus the last
inequality becomes

(13) T ′(t) +G1(p)T
′(t− τ) + λQ(t)G1(β) ≤ 0

for t ≥ t2 > max{t1, t∗}. Integrating (13) from t2 to ∞, we get a contradic-
tion to (H16). This completes the proof of the theorem. �

Theorem 8. Let −1 < −p ≤ p(t) ≤ 0. If (H1) and (H4) hold, then
every solution of (4) either ocillates or tends to zero as t→∞.
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Proof. Proceeding as in the proof of Theorem 7, we get (12) and hence
T ′(t) ≤ 0 for t ≥ t1 > t0 + ρ, T (t) is decreasing. If T (t) > 0, then lim

t→∞
T (t)

exists. Consequently, lim
t→∞

z(t) exists. Let z(t) > 0 for t ≥ t2 ≥ t1. We claim

that y(t) is bounded. If not, there exists a sequence of points {tn} such that
tn →∞ and y(tn)→∞ as n→∞ and

y(tn) = max{y(t) : t2 ≤ t ≤ tn}

Hence

z(tn) ≥ y(tn)− py(tn − τ) ≥ (1− p) y(tn)

implies that z(tn) → ∞ as n → ∞, a contradiction. So our claim holds. If
z(t) < 0 for t ≥ t2 ≥ t1, then y(t) < y(t − τ) implies that y(t) is bounded.
Let lim

t→∞
z(t) = 0. Then

0 = lim
t→∞

z(t) = lim sup
t→∞

[y(t) + p(t)y(t− τ)]

≥ lim sup
t→∞

[y(t)− py(t− τ)]

≥ lim sup
t→∞

[y(t)]− lim inf
t→∞

[py(t− τ)]

= (1− p) lim sup
t→∞

y(t)

implies that lim sup
t→∞

y(t) = 0. Hence lim
t→∞

y(t) = 0. Assume that lim
t→∞

z(t) =

β, 0 < |β| < ∞. If β > 0, there exists γ > 0 and t∗ > 0 such that z(t) ≥ γ
for t ≥ t∗. Consequenty, y(t) ≥ z(t) ≥ γ for t ≥ t3 > max{t2, t∗} implies
that

∞∫
t3

f1(t)dt < +∞

due to the equation (12), a contradiction. Let −∞ < β < 0. Then there
exists γ < 0 such that z(t) ≤ γ for t ≥ t∗. Since z(t) < 0, then z(t) >
p(t)y(t− τ), that is,

y(t− σ1) ≥ (−1/p)z(t+ τ − σ1) ≥ (−γ/p),

for t ≥ t3 > max{t2, t∗}. Integrating (13) from t3 to ∞, we get a contradic-
tion to (H1).

Next, we suppose that T (t) < 0, for t ≥ t2 ≥ t1. Ultimately, z(t) < 0
for t ≥ t2, that is, y(t) < y(t − τ) implis y(t) is bounded and hence z(t) is
bounded. Proceeding as above we get a contradiction to (H1).

Thus the proof of the theorem is complete. �
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Theorem 9. Let −∞ < −p ≤ p(t) ≤ −p1 < −1. If (H1), and (H4)
hold, then evry bounded solution of (4) either oscillates or tends to zero as
t→∞.

Proof. Let y(t) be a bounded nonoscillatory solution of (4) such that
y(t) > 0 for t ≥ t0. Proceeding as in Theorem 8, if z(t) > 0 for t ≥ t2 ≥ t1,
then y(t) + p(t)y(t − τ) > 0 implies that y(t) > −p(t)y(t − τ), that is
y(t) > y(t− τ) for t ≥ t2. It follows that

y(t+ nτ) > y(t2), n = 0, 1, 2, 3, · · · ,

that is, lim inf
t→∞

y(t) > 0. So there exists a constant M > 0, such that

lim inf
t→∞

y(t) > M . Consequently, integration of (12) from t2 to ∞ gives a

contradiction to (H1). The case z(t) < 0 for t ≥ t2 follows from the proof of
the Theorem 8. When lim

t→∞
z(t) = 0, we note that

0 = lim
t→∞

z(t) = lim inf
t→∞

(y(t) + p(t)y(t− τ))

≤ lim inf
t→∞

(y(t)− p1y(t− τ))

≤ lim sup
t→∞

y(t) + lim inf
t→∞

(−p1y(t− τ))

= lim sup y(t)− p1 lim sup
t→∞

y(t− τ)

= (1− p1) lim sup
t→∞

y(t)

that is, lim sup
t→∞

y(t) = 0.

Hence T (t) < 0 for t ≥ t1. Using the fact that y(t) is bounded, it follows
that z(t) < 0 and lim

t→∞
z(t) exists. Using the same reasoning as in Theorem

8, we have the necessary contradiction. The case y(t) < 0 may similarly be
dealt with. Hence the theorem is proved. �

Theorem 10. Let −∞ < −p ≤ p(t) ≤ −1. Suppose that (H1), (H4),
(H12) and the following condition

(H17) Suppose that for every sequence {ηj} ∈ (0,∞), ηj →∞ as j →∞
and for every k > 0 such that the intervals (ηj − k, ηj + k),
j = 1, 2, · · · are nonoverlapping, such that

∞∑
i=1

ηi+k∫
ηi−k

f1(t)dt =∞

hold. If τ > σ1, then (4) is oscillatory.
Let y(t) be a nonoscillatory solution of (4) such that y(t) > 0 for t ≥ t0.
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Proof. First half of the proof, that is T ′(t) ≤ 0, T (t) > 0, and z(t) > 0
for t ≥ t2 is same as in Theorem 9. Consider the next half, that is T ′(t) ≤ 0,
T (t) < 0, and z(t) < 0 for t ≥ t2. Following to (10), we get

− d

dt

[
(−z(t))(1−β)

]
= (β − 1)

f1(t)G1(y(τ − σ1))
[−z(t)]β

(14)

≥ (β − 1)p−βf1(t)y
−β(t− σ1)G1(y(t− σ1))

We consider two cases, viz: y(t) is bounded and y(t) is unbounded. If the
former holds, then lim

t→∞
w(t) and lim

t→∞
z(t) exist. Let lim

t→∞
z(t) = β, −∞ <

β < 0 and hence integrating (14) from t3 to ∞, we get a contradiction to
(H1) for t ≥ t3 > t2. Assume that the later holds. Hence there exists a
sequence {tn} in [t2,∞) such that tn → ∞ and y(tn) → ∞ as n → ∞.
So for every M > 0 there exists N > 0 such that y(tn) > M for n ≥ N .
Hence, there exists δn > 0 and (tn − δn, tn + δn) such that y(t) > M for
t ∈ (tn − δn, tn + δn), n ≥ N and lim inf

t→∞
δn = δ > 0. Let δn > δ > 0 for

n ≥ N∗. Then for N1 > max{N,N∗}, we have

∞∫
tN1
−δN1

+σ1

f1(t)(y(t− σ1))−αG1(y(t− σ1))dt

=
∞∑

i=N1

ti+δi+σ1∫
ti−δi+σ1

f1(t)(y(t− σ1))−αG1(y(t− σ1))dt

≥ G1(M)

Mα

∞∑
i=N1

ti+δi+σ1∫
ti−δi+σ1

f1(t)dt

≥ G1(M)

Mα

∞∑
i=N1

ti+σ1+δ∫
ti+σ1−δ

f1(t)dt.

due to (H12). Integrating (15) from tN1 − δN1 + σ1 to ∞, we get a contra-
diction to (H17).

This completes the proof of the theorem. �

Remark 3. Theorem 9 and 10 are different in their own rights, especially
due to G1.
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4. Existence of positive solution

Theorem 11. Let Gi; i = 1, 2 be Lipschitzian on the intervals of the
form [a, b], 0 < a < b <∞. Suppose that g(t) satisfies (H5). If

∞∫
0

fi(t)dt <∞, i = 1, 2,

then Equation (1) admits a positive bounded solution.

Proof. Let −∞ < b1 ≤ p(t) ≤ b2 < −1. It is possible to find a positive
number T such that

M1

∞∫
t=T

f1(t)dt <
−b2

2(D − b2)
, M2

∞∫
t=T

f2(t)dt <
−b2

2(D − b2)
,

where M1 = max{L1, G1(K)}, M2 = max{L2, G2(K)}, D > max{−b1, b2+
b2

1+b2
}, K = 2D−b2(D+1)

(b2−D)(b2+1) > 0, and L1, L2 are Lipschitz constants on
[
−b2
D−b2 ,K

]
.

Let F (t) be such that −1
2(D−b2) ≤ F (t) ≤ 1

2(D−b2) .

Let X = BC([t0,∞), R) be the Banach space of all bounded real valued
continuous functions x(t), t ≥ T with supremum norm defined by

‖x‖ = sup{|x(t)| : t ≥ T}.

Set

S = {x ∈ X :
−b2
D − b2

≤ x(t) ≤ K, t ≥ T}.

For y ∈ S, define

Ty(t) = Ty(T + ρ), T ≤ t ≤ T + ρ

= − y(t+ τ)

p(t+ τ)
− D(2− b2)
p(t+ τ)(D − b2)

+
1

p(t+ τ)

∞∫
s=t+τ

f1(s)G1(y(s− σ2))ds

− 1

p(t+ τ)

∞∫
s=t+τ

f2(s)G2(y(s− σ2))ds+
F (t+ τ)

p(t+ τ)
, t ≥ T + ρ.

For every y ∈ S and t ≥ T + ρ,

Ty(t) ≤ −K
b2
− D(2− b2)
b2(D − b2)

+
1

2(D − b2)
+

1

2(D − b2)

= −K(D − b2) + 2D − b2(D + 1)

b2(D − b2)
= K
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and

Ty(t) ≥ − D(2− b2)
b2(D − b2)

− 1

2(D − b2)
− 1

2(D − b2)

≥ −b2
(D − b2)

that is, Ty ∈ S. Immediately, it follows that

|Ty(t)− Tx(t)| ≤ 1

|p(t+ τ)|

[
‖y − x‖ − b2

2(D − b2)
‖y − x‖

− b2
2(D − b2)

‖y − x‖
]

≤ −1

b2
(1− b2

D − b2
)‖y − x‖.

Hence

‖Ty − Tx‖ ≤
(

1

D − b2
− 1

b2

)
‖y − x‖.

Consequently, T is a contraction and has a unique fixed point y(t) in the

interval
[
−b2
D−b2 ,K

]
. In fact, y(t) is a positive bounded solution of (1).

For the other ranges of p(t), the following informations can be noted:

(i) When 0 ≤ p(t) ≤ b1 < 1, it is possible to choose a positive number

T > 0 such that M1

∞∫
t=T

f1(t)dt <
1−b1
10 , M2

∞∫
t=T

f2(t)dt <
1−b1
20 , and

choose F (t) such that −
(
1−b1
20

)
≤ F (t) ≤

(
1−b1
10

)
and S = {x ∈ X :

1−b1
10 ≤ x(t) ≤ 1, t ≥ T}.

We define

Ty(t) = Ty(T + ρ), T ≤ t ≤ T + ρ

= − p(t)y(t− τ) +
1 + 4b1

5
+

∞∫
s=t

f1(s)G1(y(s− σ1))ds

−
∞∫

s=t

f2(s)G2(y(s− σ2))ds+ F (t), t ≥ T + ρ.

(ii) When −1 < b1 ≤ p(t) ≤ 0, we choose a positive number T so large

that M1

∞∫
t=T

f1(t)dt <
1+b1
11 , M2

∞∫
t=T

f2(t)dt <
1+b1
20 , and choose F (t)

such that −
(
1+b1
20

)
≤ F (t) ≤

(
1+b1
10

)
and S = {x ∈ X : 1+b1

10 ≤ x(t)

≤ 1, t ≥ T}.
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We define the mapping T by

Ty(t) = Ty(T + ρ), T ≤ t ≤ T + ρ

= − p(t)y(t− τ) +
1 + b1

5
+

∞∫
s=t

f1(s)G1(y(s− σ1))ds

−
∞∫

s=t

f2(s)G2(y(s− σ2))ds+ F (t), t ≥ T + ρ.

T is a contraction with a contraction constant 3−17b1
20 .

(iii) When −1 < b1 ≤ p(t) ≤ b2 < 1, be such that b1 < 0, b2 > 0 and
b2 < 1 + 5b1, it is possible to choose a positive number T large

enough such that M1

∞∫
t=T

f1(t)dt <
b1
2 + 1−b2

10 , M2

∞∫
t=T

f2(t)dt <
1−b2
20 ,

and choose F (t) such that −
(
1−b2
20

)
≤ F (t) ≤

(
b1
2 + 1−b2

10

)
and

S = {x ∈ X : 1−b2
10 ≤ x(t) ≤ 1, t ≥ T}.

We define

Ty(t) = Ty(T + ρ), T ≤ t ≤ T + ρ

= − p(t)y(t− τ) +
1 + 4b2

5
+

∞∫
s=t

f1(s)G1(y(s− σ1))ds

−
∞∫

s=t

f2(s)G2(y(s− σ2))ds+ F (t), t ≥ T + ρ.

T is a contraction with contraction constant 95b1+20
20 .

(iv) Let p(t) ≡ −1. Let 0 < b1 < 1 be such that b1 6= 1/2. Let T be

sufficiently large such that M1

∞∫
t=T

f1(t)dt <
1−2b1
20 , M2

∞∫
t=T

f2(t)dt <

1−2b1
40 , and choose F (t) suchthat −

(
1−2b1
40

)
≤ F (t) ≤

(
1−2b1
20

)
, and

S = {x ∈ X : 1−b1
20 ≤ x(t) ≤ b1, t ≥ T}.

We define

Ty(t) = Ty(T + ρ), T ≤ t ≤ T + ρ

= − y(t− τ) +
1− b1

10
+

∞∫
s=t

f1(s)G1(y(s− σ1))ds

−
∞∫

s=t

f2(s)G2(y(s− σ2))ds+ F (t), t ≥ T + ρ.
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Therefore T is a contraction with a contraction constant 43−6b1
40 .

(v) When p(t) ≡ 1 for all t. Let −1 < b1 < 0 be such that b1 6= −1/2.

We replace −b1 in the place of b1, in the earlier settings in (iv).

(vi) When 1 < b1 ≤ p(t) ≤ b2 ≤ 1
2b

2
1. Let T > 0 be sufficiently large such

thatM1

∞∫
t=T

f1(t)dt <
b1−1
8b1

+ b1−1
16b2

, M2

∞∫
t=T

f2(t)dt <
b1−1
16b2

, and choose

F (t) such that −
(
b1−1
16b1b2

)
≤ F (t) ≤

(
b1−1
8b21

+ b1−1
16b1b2

)
, and S = {x ∈

X : b1−1
8b1b2

≤ x(t) ≤ 1, t ≥ T}.

We define T : S → S by

Ty(t) = Ty(T + ρ), T ≤ t ≤ T + ρ

= − y(t+ τ)

p(t+ τ)
+

(2b21 + b1 − 1)

4b1p(t+ τ)
+

1

p(t+ τ)

∞∫
s=t+τ

f1(s)G1(y(s− σ1))ds

− 1

p(t+ τ)

∞∫
s=t+τ

f2(s)G2(y(s− σ2))ds+
F (t+ τ)

p(t+ τ)
, t ≥ T + ρ.

Therefore T is a contraction with a contraction constant 1
b1

+ b1
8b21

+ b1−1
8b1b2

. �

Several authors hve investigated the oscillation properties of (2) with and
without g(t). But study of (2)/(4) is very rare in the literature. Hence this
work may initiate for further study in this area.

5. Summary

In this work, we could succeed to provide oscillation results for the equa-
tion (1). However, the results are not satisfactory for Eq. (4). Due to the
methods adopted here, Theorems 9 and 10 are different to that of Theorems
7 and 8. It seems that more conditions are required to show that Eq. (4) is
oscillatory.

References

[1] Agarwal R.P., Saker S., Oscillation of solutions to neutral delay differen-
tial equations with positive and negative coefficients, Int. J. Diff. Equ. Appl.,
2(2001), 449-450.

[2] Chuanxi Q., Ladas G., Oscillation in differential equations with positive
and negative coefficients, Canad. Math. Bulletin., 33(1990), 442-450.

[3] Farrell K., Grove E.A., Ladas G., Neutral delay differential equations
with positive and negative coefficients, Appl. Anal., 27(1988), 181-197.



144 Arun K. Tripathy and K.V.V. Seshagiri Rao

[4] Gyori I., Ladas G., Oscillation Theory of Delay Differential Equations with
Applications, Oxford University Press, 1991.

[5] Li W., Quan H.S., Oscillation of higher order neutral differential equa-
tions with positive and negative coefficients, Ann. Differential Eqns., 11(1995),
70-76.

[6] Li W., Yan J., Oscillation of first order neutral differential equations with
positive and negative coefficients, Collect. Math., 50(1999), 199-209.

[7] Ocalan O., Oscillation of forced neutral differential equations with positive
and negative coefficients, Compu. Math. Appl., 54(2007), 1411-1421.

[8] Ocalan O., Oscillation of neutral differential equation with positive and
negative coefficients, J. Math. Anal. Appl., 331(2007), 644-654.

[9] Parhi N., Chand S., On forced first order neutral differential equations with
positive and negative coefficients, Math. Slovaca, 50(2000), 81-94.

[10] Shen J.H., Debnath L., Oscillations of solutions of neutral differential equa-
tions of solutions of neutral differential equaions with positive and negative
coefficients, Appl. Math. Lett., 14(2001), 775-781.

[11] Yu J.S., Wang Z., Neutral differential equations with positive and negative
coefficients, Acta Math. Sinica, 34(1991), 517-523.

[12] Zhang X., Yan J., Oscillation criteria for first order neutral differential
equations with positive and negative coefficients, J. Math. Anal. Appl., (in
print).

Arun Kumar Tripathy
Department of Mathematics

Sambalpur University
Sambalpur-768019, India

e-mail: arun tripathy70@rediffmail.com

K.V.V. Seshagiri Rao
Department of Mathematics

Kakatiya Institute of Technology and Science
Warangal-506015, India

e-mail: kadambari vvsrao@yahoo.com

Received on 19.07.2010 and, in revised form, on 04.07.2011.


