
F A S C I C U L I M A T H E M A T I C I

Nr 48 2012

R. Witu la, E. Hetmaniok, D. S lota

MEAN-VALUE THEOREMS FOR ONE-SIDED

DIFFERENTIABLE FUNCTIONS
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1. Introduction

Writing our handbook [4] we have found two series of papers concern-
ing the generalizations of Classical Mean Value Theorems (CMVT) for the
one-sided differentiable functions. The first one, due to Polish mathemati-
cian L.T. Kubik [6, 7], is an effect of discussion on some problems concerning
the distribution theory. The second one was presented independently by
Serbian mathematicians J.Karamata [5] and V.Vučkovič [13].

We show that Kubik’s generalizations of CMVT are equivalent to those
proposed by Karamata and Vučkovič (cf. Propositions 1, 2, 3 in this paper).
We also note that both types of the results have some nice and effective
applications.

2. Kubik’s theorems

In papers [6, 7] the following theorems were proved (in the paper symbols
f ′− and f ′+ denote the respective one-sided derivatives of the considered
function f).

Theorem 1 (Generalization of the Rolle Theorem). If f : [a, b] → R is
both-sided differentiable and f(a) = f(b), then there exists c ∈ (a, b) such
that

(1) f ′+(c) · f ′−(c) 6 0.
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Remark 1. If f is differentiable then (1) gives that [f ′(c)]2 6 0, whence
f ′(c) = 0. Thus, Theorem 1 implies the Rolle theorem.

Remark 2. Theorem 1 can be improved as follows:
If f : [a, b] → R is both-sided differentiable in (a, b) and right-continuous

at a, left-continuous at b and f(a) = f(b), then there exists c ∈ (a, b) such
that (1) holds.

Proof of this modified version runs analogically as the proof of Theo-
rem 1 [6, 7].

Similar modification as proposed above can be done in Theorems 2 and 3.

Theorem 2 (Generalization of the Lagrange Theorem). If f : [a, b]→ R
is both-sided differentiable, then there exists c ∈ (a, b) such that

(2)

(
f(b)− f(a)

b− a
− f ′+(c)

)(
f(b)− f(a)

b− a
− f ′−(c)

)
6 0.

Let us also consider the geometric interpretation of formula (2). If (2)
holds then either

(3)
f(b)− f(a)

b− a
> f ′+(c),

f(b)− f(a)

b− a
6 f ′−(c),

or

(4)
f(b)− f(a)

b− a
6 f ′+(c),

f(b)− f(a)

b− a
> f ′−(c).

Formula (3) informs that the secant line led by points (a, f(a)) and (b, f(b))
is more (or the same) steep as the right-sided tangent line at the point c and
less (or the same) steep as the left-sided tangent line at c. Similarly, formula
(4) says that the secant line is less (or the same) steep as the right-sided
tangent line at the point c and more (or the same) steep as the left-sided
tangent line in c.

Let us notice that if f is differentiable then formula (2) takes the form

f(b)− f(a)

b− a
= f ′(c),

which gives the Lagrange Theorem.
From the generalized Lagrange Theorem we obtain the following obvious

Remark 3. Any function f : [a, b] → R having bounded derivatives f+
and f− is Lipschitzian.

This remark extends the classical fact concerning differentiable functions.
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Theorem 3 (Generalization of the Cauchy Theorem). If f, h : [a, b]→ R
are both-sided differentiable and h(a) 6= h(b), then there exists c ∈ (a, b) such
that

(5)

(
f(b)− f(a)

h(b)− h(a)
h′+(c)− f ′+(c)

)(
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c)

)
6 0.

Remark 4. If the functions f and h are differentiable and if
h′(x) 6= 0 for x ∈ [a, b], then formula (5) takes the form

f(b)− f(a)

h(b)− h(a)
=
f ′(c)

h′(c)
,

which formulates the classical Cauchy Theorem.

Kubik [6] gives an interesting application of Theorem 3 in the probability
theory.

3. Generalizations according to Karamata and Vučkovič

The following two generalizations of the Rolle and Lagrange Theorems,
respectively, have been presented by J.Karamata in paper [5].

Theorem 4. If f : [a, b] → R is both-sided differentiable in (a, b),
right-continuous at a, left-continuous at b and f(a) = f(b) = 0, then there
exist c ∈ (a, b); p, q > 0, p+ q = 1 such that

pf ′+(c) + qf ′−(c) = 0.

Theorem 5. If f : [a, b] → R is both-sided differentiable in (a, b),
right-continuous at a, left-continuous at b, then there exist c ∈ (a, b); p, q > 0,
p+ q = 1 such that

f(b)− f(a)

b− a
= pf ′+(c) + qf ′−(c).

Vučkovič [13] has proved the following generalization of the Cauchy Mean
Value Theorem.

Theorem 6. If f, h : [a, b] → R are both-sided differentiable, then there
exist c ∈ (a, b); p, q > 0, p+ q = 1 such that

(6)
[
pf ′+(c) + qf ′−(c)

](
h(b)− h(a)

)
=

[
ph′+(c) + qh′−(c)

](
f(b)− f(a)

)
.

Remark 5. In this theorem the inequalities p, q > 0 cannot be replaced
by p, q > 0.
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To show it let us consider the following example.
Let a = −1, b = 1 and

f(x) =

{
x2 − 1, dla x > 0,
−x− 1, dla x < 0.

Then ξ = 0 and f ′+(0) = 0, f ′−(0) = −1, from where q = 0 (Theorems 4 and
5). If we take g(x) = x, x ∈ [−1, 1], then also in Theorem 6 we have q = 0
(see [12]).

We show now that Theorem 1 and Theorem 4 are equivalent. More
precisely, we prove the following

Proposition 1. Suppose that f : [a, b] → R is both-sided differentiable.
Then the following two conditions are equivalent:

(KU1) there exists c ∈ (a, b) such that f ′+(c)f ′−(c) 6 0;
(KA4) there exist c ∈ (a, b); p, q > 0, p+ q = 1 such that

p f ′+(c) + q f ′−(c) = 0.

Proof. (KU1)⇒ (KA4)
Let c ∈ (a, b) be such that

f ′+(c)f ′−(c) 6 0.

If f ′+(c) = 0 then it is enough to take p = 1, q = 0. If f ′−(c) = 0 then we
put p = 0, q = 1. Finally, for f ′+(c)f ′−(c) < 0 we can take

p =
f ′−(c)

f ′−(c)− f ′+(c)
and q =

f ′+(c)

f ′+(c)− f ′−(c)
.

(KA4)⇒ (KU1)
If for c ∈ (a, b) and p, q > 0 we have p+ q > 0 and p f ′+(c) + q f ′−(c) = 0,

then it is obvious that f ′+(c) f ′−(c) 6 0.
Indeed, then in case of f ′+(c)f ′−(c) 6= 0 we have pq 6= 0, that is

pf ′+(c)f ′−(c) = −q(f ′−(c))2 < 0,

i.e.

f ′+(c)f ′−(c) < 0,

which ends the proof. �

Now we show that Theorem 2 and Theorem 5 are equivalent. More
precisely we prove the following
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Proposition 2. Suppose that f : [a, b] → R is both-sided differentiable.
Then the following two conditions are equivalent:

(KU2) there exists c ∈ (a, b) such that

(f(b)− f(a)

b− a
− f ′+(c)

)(f(b)− f(a)

b− a
− f ′−(c)

)
6 0;

(KA5) there exist c ∈ (a, b); p, q > 0, p+ q = 1 such that

f(b)− f(a)

b− a
= p f ′+(c) + q f ′−(c).

Proof. (KU2)⇒ (KA5)
Let c ∈ (a, b) be such that (2) holds. If

f(b)− f(a)

b− a
= f ′+(c),

then we take p = 1 and q = 0. If

f(b)− f(a)

b− a
= f ′−(c),

then we put p = 0 and q = 1. Finally, if inequality (2) is strict then we take

p =

f(b)−f(a)
b−a − f ′−(c)

f ′+(c)− f ′−(c)
and q =

f(b)−f(a)
b−a − f ′+(c)

f ′−(c)− f ′+(c)
.

(KA5)⇒ (KU2)
If c ∈ (a, b), p, q > 0, p+ q = 1 and

f(b)− f(a)

b− a
= pf ′+(c) + qf ′−(c),

then, how can be easily checked, the following equality holds(
f(b)− f(a)

b− a
− f ′+(c)

)(
f(b)− f(a)

b− a
− f ′−(c)

)
= −qp

(
f ′−(c)− f ′+(c)

)2
.

In case when the above product is different than zero, the right side of this
equality implies that the product is negative, which implies (KU2). �

At last we show that Theorems 3, 5 and Theorem 6 are equivalent. More
precisely, we prove the following
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Proposition 3. Assume that f, h : [a, b] → R are both-sided differen-
tiable. Then the following two conditions are equivalent:

(KU3 +KA5) there exist c0 ∈ (a, b); p0, q0 > 0, p0 + q0 = 1 such that

f(b)− f(a)

b− a
= p0 f

′
+(c0) + q0 f

′
−(c0).

Moreover, if h(a) 6= h(b), then there exists c ∈ (a, b) such that(
f(b)− f(a)

h(b)− h(a)
h′+(c)− f ′+(c)

)(
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c)

)
6 0;

(V 6) there exist c ∈ (a, b); p, q > 0, p+ q = 1 such that[
pf ′+(c) + qf ′−(c)

](
h(b)− h(a)

)
=

[
ph′+(c) + qh′−(c)

](
f(b)− f(a)

)
.

Proof. (V 6)⇒ (KU3 +KA5)
Let c ∈ (a, b), p, q > 0, p + q = 1 be such that equality (6) holds. If

h(a) 6= h(b), then from (6) we receive

p

(
f(b)− f(a)

h(b)− h(a)
h′+(c)− f ′+(c)

)
= −q

(
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c)

)
,

from where we get

p

(
f(b)− f(a)

h(b)− h(a)
h′+(c)− f ′+(c)

)(
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c)

)
(7)

= −q
(
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c)

)2

.

If the product(
f(b)− f(a)

h(b)− h(a)
h′+(c)− f ′+(c)

)(
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c)

)
6= 0,

then, in view of the condition p + q = 1, also the condition pq 6= 0 holds.
From this, because of (7), inequality (5) results.

Furthermore, by taking h(x) := x, x ∈ [a, b], in formula (6) we obtain the
equality

f(b)− f(a)

b− a
= pf ′+(c) + qf ′−(c),

which ends the proof.
(KU3 +KA5)⇒ (V 6)
Let c ∈ (a, b) be such that inequality (5) holds. Suppose h(b) 6= h(a). If

f(b)− f(a)

h(b)− h(a)
h′+(c) = f ′+(c),
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then we take p = 1, q = 0. If

f(b)− f(a)

h(b)− h(a)
h′−(c) = f ′−(c),

then we put p = 0, q = 1. Finally, if inequality (5) is strict we can take

p =
s

s− t
and q =

t

t− s
,

where

s :=
f(b)− f(a)

h(b)− h(a)
h′−(c)− f ′−(c),

t :=
f(b)− f(a)

h(b)− h(a)
h′+(c)− f ′+(c).

The case when h(b) = h(a) still left. Then, by assumption (KA5) for the
function h we get that there exist c0 ∈ (a, b) and p0, q0 > 0, p0 + q0 = 1 such
that

p0h
′
+(c0) + q0h

′
−(c0) = 0.

Substituting those values for c, p, q, respectively, we obtain equality (6). �

Remark 6. It follows from Theorem 5, there exists c ∈ (a, b) such that

min
{
f ′−(c), f ′+(c)

}
6
f(b)− f(a)

b− a
6 max

{
f ′−(c), f ′+(c)

}
.

In note [9], the following theorem has been proved, which is, in an inter-
esting way, connected with the above inequality.

Theorem 7. Let us assume that f : [a, b]→ R is a continuous function
and it possess the right derivative f ′+(x) at every point x ∈ (a, b). Then,
there exist p, q ∈ (a, b) such that

(8) f ′+(q) 6
f(b)− f(a)

b− a
6 f ′+(p).

Remark 7. Theorem 7 remains true also in the case of replacing the
right derivative of function f with the left derivative of this function.

Remark 8. Theorem 7 has been applied in [10] for characterization of
the convex functions defined in the open intervals. In particular, it has been
proved that if f : (a, b) → R is a convex function then for every x ∈ (a, b)
we have (see also Remark 10 below):

f ′−(x) 6 f ′+(x).
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It seems that, in particular case, after eliminating an affine functions from
the consideration, Theorem 7 can be significantly strengthen. The following
theorem holds.

Theorem 8. If f : [a, b]→ R is a continuous function, differentiable in
(a, b) and, additionally, it is not an affine function in [a, b] then there exist
p, q ∈ (a, b) such that

f ′(p) <
f(b)− f(a)

b− a
< f ′(q).

Proof. Since f is not an affine function, so there exists c ∈ (a, b) such
that

(9)
f(c)− f(a)

c− a
6= f(b)− f(c)

b− c
.

Of course, the Lagrange Mean Value Theorem implies that there exist p ∈
(a, c) and q ∈ (c, b) such that

f(c)− f(a)

c− a
= f ′(p) and

f(b)− f(c)

b− c
= f ′(q).

Taking (9) into account we have f ′(p) 6= f ′(q). Without violating the gener-
ality of our consideration let us assume that f ′(p) < f ′(q).
Let λ := c−a

b−a . Thus we get

f(b)− f(a)

b− a
= λ

f(c)− f(a)

c− a
+ (1− λ)

f(b)− f(c)

b− c
=

= λf ′(p) + (1− λ)f ′(q) < λf ′(q) + (1− λ)f ′(q) = f ′(q)

and
f(b)− f(a)

b− a
> λf ′(p) + (1− λ)f ′(p) = f ′(p),

which ends the proof. �

Remark 9. There exists r ∈ (a, b) such that∣∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣∣ < f ′(r).

Remark 10. Let us notice that in general case of the function f : I → R,
where I is an interval, like it results from the Sierpiński-Young Theorem (see
[8]), each of the following inequalities is true in I (with the exception of at
most some countable set):

D−f(x) 6 D+f(x)
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and

D+f(x) 6 D−f(x),

where the Dini derivatives from the function f appear. Dini derivatives are
defined as follows

D+f(x0) := lim sup
x→x+

0

f(x)− f(x0)

x− x0
, D+f(x0) := lim inf

x→x+
0

f(x)− f(x0)

x− x0
,

D−f(x0) := lim sup
x→x−

0

f(x)− f(x0)

x− x0
, D−f(x0) := lim inf

x→x−
0

f(x)− f(x0)

x− x0
.

D. B. Goodner in paper [2] has generalized Theorems 4-6 for the case of
Dini derivatives.

Remark 11. D.H. Trahan in [11] has received the results similar to
Kubik’s Theorems (Theorems 1, 2, 3), but for the Flett’s type Mean Value
Theorem and only for derivatives.

Whereas, D.B. Goodner in paper [3] has obtained the Karamata’s version
of the Flett’s Theorem for the one-sided derivatives.
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