F A S C I C U L I M A T H E M A T I C I

M. Alimohammady and A. Sadeghi

ON THE ASYMPTOTIC BEHAVIOR OF PEXIDERIZED ADDITIVE MAPPING ON SEMIGROUPS

Abstract

In this paper some asymptotic behaviors of the Pexiderized additive mappings can be proved for functions on commutative semigroup to a complex normed linear space under some suitable conditions. As a consequence of our result, we give some generalizations of Skof theorem and S.-M. Joung theorem. Furthermore, in this note we present a affirmative answer to problem 18, in the thirty-first ISFE. Key words: asymptotic behavior, stability, additive mappings, Pexiderized additive mapping.

AMS Mathematics Subject Classification: 39B72, 47H15.

1. Introduction

The starting point of the stability theory of functional equations was the problem formulated by S. M. Ulam in 1940 (see [33]), during a conference at Wisconsin University:

Let $(G,$.$) be a group (B, ., d)$ be a metric group. Does for every $\varepsilon>0$, there exists a $\delta>0$ such that if a function $f: G \rightarrow B$ satisfies the inequality

$$
d(f(x y), f(x) f(y)) \leq \delta, \quad x, y \in G
$$

there exists a homomorphism $g: G \rightarrow B$ such that

$$
d(f(x), g(x)) \leq \varepsilon, \quad x \in G ?
$$

In 1941, Hyers [12] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G is a linear normed space and B is a Banach space. This is the reason for which today this type of stability is called Hyers-Ulam stability of functional equation. In 1950, Aoki [4] generalized Hyers' theorem for approximately additive functions. In 1978, Th. M. Rassias [28] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. Taking this fact into account, the additive functional equation $f(x+y)=$
$f(x)+f(y)$ is said to have the Hyers-Ulam-Rassias stability on (X, Y). This terminology is also applied to the case of other functional equations. For more detailed definitions of such terminology one can refer to [9] and [14]. Thereafter, the stability problem of functional equations has been extended in various directions and studied by several mathematicians $[2,3,5,6,11$, $25,21,30,19,23,26,29,23]$.

The Hyers-Ulam stability of mappings is in development and several authors have remarked interesting applications of this theory to various mathematical problems. In fact the Hyers-Ulam stability has been mainly used to study problems concerning approximate isometries or quasi-isometries, the stability of Lorentz and conformal mappings, the stability of stationary points, the stability of convex mappings, or of homogeneous mappings, etc $[15,16,7,22,32,17]$.

Several authors have used asymptotic conditions in stating approximations to Cauchy's functional equation

$$
f(x+y)=f(x)+f(y)
$$

P. D. T. A. Elliott [8] showed that if the real function f belongs to the class $L^{p}(0, z)$ for every $z \geq 0$, where $p \geq 1$, and satisfies the asymptotic condition

$$
\lim _{z \rightarrow \infty} \frac{\int_{0}^{z} \int_{0}^{z}|f(x+y)-f(x)-f(y)|^{p} d x d y}{z}=0
$$

then there is a constant c such that $f(x)=c x$ almost everywhere on \mathbb{R}^{+}. One of the theorems of J. R. Alexander, C. E. Blair and L. A. Rubel [1] states that if $f \in L^{1}(0, b)$ for all $b>0$, and if for almost all $x>0$

$$
\lim _{u \rightarrow \infty} \frac{\int_{0}^{y}[f(x+y)-f(x)-f(y)] d y}{u}=0
$$

then for some real number $c, f(x)=c x$ for almost all $x \geq 0$.
F. Skof [31] proved the following theorem and applied the result to the study of an asymptotic behavior of additive functions.

Theorem 1. Let E_{1} and E_{2} be a normed space and a Banach space, respectively. Given $a>0$, suppose a function $f: E_{1} \rightarrow E$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for some $\delta>0$ and for all $x, y \in E_{1}$ with $\|x\|+\|y\|>a$. Then there exists a unique additive function $A: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-A(x)\| \leq 9 \delta
$$

for all $x \in E_{1}$.

Using this theorem, F. Skof [31] has studied an interesting asymptotic behavior of additive functions as we see in the following theorem.

Theorem 2. Let E_{1} and E_{2} be a normed space and a Banach space, respectively. Suppose z is a fixed point of E_{1}. For a function $f: E_{1} \rightarrow E_{2}$ the following two conditions are equivalent:
(a) $\|f(x+y)-f(x)-f(y)\| \rightarrow 0$ as $\|x\|+\|y\| \rightarrow \infty$;
(b) $f(x+y)-f(x)-f(y)=0$
for all $x, y \in E_{1}$.
S.-M. Joung [20], proved that the Hyers-Ulam stability for Jensen's equation on a restricted domain and the result applied to the study of an interesting asymptotic behavior of the additive mappings-more precisely, he proved that a mapping $f: E_{1} \rightarrow E_{2}$ satisfying $f(0)=0$ is additive if and only if (a) $\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \rightarrow 0$ as $\|x\|+\|y\| \rightarrow \infty$.

As a consequence of our result in this paper, we give a simple proofs of Skof theorem (2) and S.-M. Joung theorem and show that Skof and S. M.-Joung theorem is true when E_{2} be a complex normed linear space. Also we present some generalization of Skof and S.-M. Joung theorem. Furthermore, some asymptotic behaviors of Pexiderized additive mapping can be proved for functions on commutative semigroup to a complex normed linear space.

During the thirty-first International Symposium on Functional Equations (ISFE), Th. M. Rassias [27] introduced the term mixed stability of the function $f: E \rightarrow \mathbb{R}$ (or \mathbb{C}), where E is a Banach space, with respect to two operations 'addition' and 'multiplication' among any two elements of the set $\{x, y, f(x), f(y)\}$. Then the following question arises. Let (S, \cdot) be an arbitrary semigroup or group and let a mapping $f: S \rightarrow R$ (the set of reals) be such that the set $\{f(x \cdot y)-f(x)-f(y) \mid x, y \in S\}$ is bounded. Is it true that there is a mapping $T: S \rightarrow R$ that satisfies

$$
T(x \cdot y)-T(x)-T(y)=0
$$

for all $x, y \in S$ and that the set $\{T(x)-f(x) \mid x \in S\}$ is bounded?
G. L. Forti in [10] gave a negative answer to this problem (see also [13]). In this paper we give a affirmative answer to this problem under some suitable conditions.

2. Main results

Throughout this section, assume that $(S,+)$ is an arbitrary commutative semigroup, E_{1} and E_{2} be two complex normed space, \mathbb{R} is real field, \mathbb{N} is all positive integers and $\psi: S^{2} \rightarrow[0, \infty)$ is a function.

2.1. Asymptotic behavior of additive mapping

The following Theorem is a affirmative answer to problem 18, in the thirty-first ISFE.

Theorem 3. Let $f: S \rightarrow E_{2}$ be a function such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \psi(x, y) \tag{1}
\end{equation*}
$$

for all $x, y \in S$. Assume that

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in S$. Then f is an additive function.
Proof. Let x_{0} be any fixed element of S. From (1), its easy to show that the following inequality

$$
\left\|f\left(x+n x_{0}\right)-n f\left(x_{0}\right)-f(x)\right\| \leq \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)
$$

for each fixed $x \in S$ and $n \in \mathbb{N}$. Now bye assumption $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi(x+$ $\left.i x_{0}, x_{0}\right)=0$, so

$$
f\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(x+n x_{0}\right)}{n}
$$

for any fixed $x \in S$. Let x_{0}, y_{0} be any two fixed element of S, then from (1), we obtain

$$
\left\|f\left(x+y+n\left(x_{0}+y_{0}\right)\right)-f\left(x+n x_{0}\right)-f\left(y+n y_{0}\right)\right\| \leq \psi\left(x+n x_{0}, y+n y_{0}\right)
$$

for any fixed $x, y \in S$. Now since $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+y_{0}\right)=0$, thus

$$
f\left(x_{0}+y_{0}\right)=f\left(x_{0}\right)+f\left(y_{0}\right)
$$

which says that f is an additive mapping.
Corollary 1. Let $f: E_{1} \rightarrow E_{2}$ be a function such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq\|x\|^{p}+\|y\|^{q} \tag{2}
\end{equation*}
$$

for all $x, y \in E_{1}$ and for some reals $p<0$ and $q<1$. Then f is an additive mapping.

Proof. Set $\psi(x, y):=\|x\|^{p}+\|y\|^{q}$ for all $x, y \in E_{1}$. Its easy to show that the followings relations

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$. Now Theorem 3 implies that f is an additive mapping.

Corollary 2. Let $f: W \rightarrow V$ be a function such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \frac{\|y\|^{q}}{\|x\|^{p}+\theta} \tag{3}
\end{equation*}
$$

for all $x, y \in E_{1}$ and for some reals $p>0$ and $q<1$. Then f is an additive mapping.

Proof. Set $\psi(x, y):=\frac{\|y\|^{q}}{\|x\|^{p}+\theta}$ for all $x, y \in E_{1}$. Its easy to show that the followings relations

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$. Now Theorem 3 implies that f is an additive mapping.

In the following, by using Theorem 3, we give a simple proof of Skof Theorem 2 and also we show that Skof Theorem is true when E_{2} be a complex normed space.

Theorem 4. For a function $f: E_{1} \rightarrow E_{2}$ the following two conditions are equivalent:
(a) $\|f(x+y)-f(x)-f(y)\| \rightarrow 0$ as $\|x\|+\|y\| \rightarrow \infty$;
(b) $f(x+y)-f(x)-f(y)=0$
for all $x, y \in E_{1}$.
Proof. Set $\psi(x, y):=\|f(x+y)-f(x)-f(y)\|$ for all $x, y \in E_{1}$. Now let $x_{0}, y_{0} \in E_{1}$ be two arbirary fixed elements. Since $\left\|x+n x_{0}\right\|+\left\|y+n y_{0}\right\| \rightarrow \infty$ for each fixed $x, y \in E_{1}$, so

$$
\lim _{n \rightarrow \infty} \psi\left(x+n x_{0}, y+n y_{0}\right)=0
$$

for each fixed $x, y \in E_{1}$, hence its easy to show that the following relations

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for each fixed $x, y \in E_{1}$. Now by Theorem (3) implies that f is an additive mapping. The proof is complete.

Let \mathfrak{S} be set all function $\rho: E_{1}^{2} \rightarrow[0, \infty)$ such that
(a) $\rho\left(x+n x_{0}, y+n y_{0}\right) \rightarrow \infty$ as $n \rightarrow \infty$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$, where $\left\|x_{0}\right\| \neq 0$ or $\left\|y_{0}\right\| \neq 0$. Not that the functions $\rho_{1}, \rho_{2}, \rho_{3} \in \mathfrak{S}$, in which $\rho_{1}(x, y):=\|x\|+\|y\|, \rho_{2}(x, y):=\|x+y\|$ and $\rho_{3}(x, y):=\max \{\|x\|,\|y\|\}$ for all $x, y \in E_{1}$. We now apply Theorem 3 to a generalization of Skof theorem.

Corollary 3. For a function $f: E_{1} \rightarrow E_{2}$ the following two conditions are equivalent:
(a) $\|f(x+y)-f(x)-f(y)\| \rightarrow 0$ as $\rho(x, y) \rightarrow \infty$;
(b) $f(x+y)-f(x)-f(y)=0$
for all $x, y \in E_{1}$, in which $\rho \in \mathfrak{S}$.
Proof. Set $\psi(x, y):=\|f(x+y)-f(x)-f(y)\|$ for all $x, y \in E_{1}$. Now let $x_{0}, y_{0} \in E_{1}$ be two arbirary fixed elements. Since $\rho \in \mathfrak{S}$, so
(a) $\rho\left(x+n x_{0}, y+n y_{0}\right) \rightarrow \infty$ as $n \rightarrow \infty$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$, where $\left\|x_{0}\right\| \neq 0$ or $\left\|y_{0}\right\| \neq 0$. Thus

$$
\lim _{n \rightarrow \infty} \psi\left(x+n x_{0}, y+n y_{0}\right)=0
$$

for each fixed $x_{0}, y_{0}, x, y \in E_{1}$, where $\left\|x_{0}\right\| \neq 0$ or $\left\|y_{0}\right\| \neq 0$. Hence, its easy to show that the following relations

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$. Now by Theorem 3 implies that f is an additive mapping. The proof is complete.

2.2. Asymptotic behavior of Pexiderized additive mapping

Theorem 5. Let S be with identity e and $f, g, h: S \rightarrow V$ be three functions such that $g(e)=h(e)=0$ and

$$
\begin{equation*}
\|f(x+y)-g(x)-h(y)\| \leq \psi(x, y) \tag{4}
\end{equation*}
$$

for all $x, y \in S$. Assume that

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in S$. Then f, g and h are additive function and $f(x+y)-g(x)-h(y)=0$ for all $x, y \in S$.

Proof. Set $\widetilde{\psi}(x, y):=\psi(x, y)+\psi(x, e)+\psi(e, y)$ and $\widehat{\psi}(x, y):=\psi(x+$ $y, e)+\psi(x, e)+\psi(e, y)$ for all $x, y \in S$. From inequality (4) and assumptions, we obtain the following inequalities

$$
\begin{aligned}
\|f(x+y)-f(x)-f(y)\| & \leq \psi(x, y)+\|f(x)-g(x)\|+\|f(y)-h(y)\| \\
& \leq \psi(x, y)+\psi(x, e)+\psi(e, y)=\widetilde{\psi}(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
\|g(x+y)-g(x)-g(y)\| \leq & \psi(x+y, e)+\|f(x+y)-g(x)-g(y)\| \\
\leq & \psi(x+y, e)+\|f(x+y)-f(x)-f(y)\| \\
& +\|f(x)-g(x)\|+\|f(y)-g(y)\| \\
\leq & \psi(x+y, e)+\psi(x, y)+2 \psi(x, e)+2 \psi(e, y) \\
= & \widetilde{\psi}(x, y)+\widehat{\psi}(x, y)
\end{aligned}
$$

and also

$$
\begin{aligned}
\|h(x+y)-h(x)-h(y)\| \leq & \psi(x+y, e)+\|f(x+y)-h(x)-h(y)\| \\
\leq & \psi(x+y, e)+\|f(x+y)-f(x)-f(y)\| \\
& +\|f(x)-h(x)\|+\|h(y)-h(y)\| \\
\leq & \psi(x+y, e)+\psi(x, y)+2 \psi(x, e)+2 \psi(e, y) \\
= & \widetilde{\psi}(x, y)+\widehat{\psi}(x, y)
\end{aligned}
$$

for all $x, y \in S$. With assumptions its easy to show that

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \phi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \phi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in S$, in which the function ϕ is $\widetilde{\psi}$ or $\widetilde{\psi}+\widehat{\psi}$. Now by Theorem $3 f, g$ and h is additive mapping and also
- $f\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(x+n x_{0}\right)}{n}$
- $g\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{g\left(x+n x_{0}\right)}{n}$
- $h\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{h\left(x+n x_{0}\right)}{n}$
for each fixed $x_{0}, x \in S$. Let x_{0}, y_{0} be any two fixed element of S, then from (4), we obtain

$$
\left\|f\left(x+y+n\left(x_{0}+y_{0}\right)\right)-g\left(x+n x_{0}\right)-h\left(y+n y_{0}\right)\right\| \leq \psi\left(x+n x_{0}, y+n y_{0}\right)
$$

for any fixed $x, y \in S$. Now since $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+y_{0}\right)=0$, thus

$$
f\left(x_{0}+y_{0}\right)=g\left(x_{0}\right)+h\left(y_{0}\right)
$$

which says that $f(x+y)-g(x)-h(y)=0$ for all $x, y \in S$. The proof is complete.

In the following, by using Theorem 5, we give a generalization of Skof theorem for Pexiderized additive mapping.

Theorem 6. Assume that $f, g, h: E_{1} \rightarrow E_{2}$ are three functions such that $g(0)=h(0)=0$, then the following two conditions are equivalent:
(a) $\|f(x+y)-g(x)-h(y)\| \rightarrow 0$ as $\rho(x, y) \rightarrow \infty$;
(b) $f(x+y)-g(x)-h(y)=0$
for all $x, y \in E_{1}$, in which $\rho \in \mathfrak{S}$.
Proof. Set $\psi(x, y):=\|f(x+y)-g(x)-h(y)\|$ for all $x, y \in E_{1}$. Now let $x_{0}, y_{0} \in E_{1}$ be two arbirary fixed elements. Since $\rho \in \mathfrak{S}$, so
(a) $\rho\left(x+n x_{0}, y+n y_{0}\right) \rightarrow \infty$ as $n \rightarrow \infty$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$, where $\left\|x_{0}\right\| \neq 0$ or $\left\|y_{0}\right\| \neq 0$. Thus

$$
\lim _{n \rightarrow \infty} \psi\left(x+n x_{0}, y+n y_{0}\right)=0
$$

for each fixed $x_{0}, y_{0}, x, y \in E_{1}$, where $\left\|x_{0}\right\| \neq 0$ or $\left\|y_{0}\right\| \neq 0$. Hence, its easy to show that the following relations

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \psi\left(x+i x_{0}, x_{0}\right)=0 ;$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \psi\left(x+n x_{0}, y+n y_{0}\right)=0$
for any fixed $x_{0}, y_{0}, x, y \in E_{1}$. Now by Theorem 5 implies that $f(x+y)-$ $g(x)-h(y)=0$ for all $x, y \in S$. The proof is complete.

In the following, by using Theorem 7, we give a simple proof of S.-M. Joung theorem (see [20]) and also we show that Skof theorem is true when E_{2} be a complex normed space.

Theorem 7. Assume that $J: E_{1} \rightarrow E_{2}$ is a function such that $J(0)=0$, then the following two conditions are equivalent:
(a) $\| 2 J\left(\frac{x+y}{2}\right)-J(x)-J(y) \rightarrow 0$ as $\|x\|+\|y\| \rightarrow \infty$;
(b) $2 J\left(\frac{x+y}{2}\right)-J(x)-J(y)=0$
for all $x, y \in E_{1}$.
Proof. Sets $f(x):=2 J\left(\frac{x}{2}\right)$ and $g(x):=J(x)$ for all $x \in E_{1}$. Now apply Theorem 7.

References

[1] Alexander R., Blair C.-E., Rubel L.-A., Approximate version of Cauchy's functional equation, Illinois J. Math., 39(1995), 278-287.
[2] Alimohammady M., Sadeghi A., On the superstability of the Pexider type of exponential equation in Banach algebra, Int. J. Nonlinear Anal. Appl., (2011)(in press).
[3] Alimohammady M., Sadeghi A., Some new results on the superstablity of the Cauchy equation on semigroup, Results Math., (2012)(in press).
[4] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[5] Baker J.A., A general functional equation and its stability, Proc. Amer. Math. Soc., 133(2005), 1657-1664.
[6] Baker J.A., The stability of the cosine equation, Proc. Amer. Math. Soc., 80(1980), 411-416.
[7] Czerwik S., On the stability of the homogeneous mapping, G. R. Math. Rep. Acad. Sci. Canada XIV, 6(1992), 268-272.
[8] Elliott P.-D.-T.-A., Cauchy's functional equation in the mean, Advances in Math., 51(1984), 253-257.
[9] Forti G.-L., Hyers-Ulam stability of functional equations in several variables, Aeq. Math., 50(1995), 143-190.
[10] Forti G.-L., Remark 11 in : Report of the 22nd Internat. Symposium on Functional Equations, Aequationes Math., 29(1980), (1985), 90-91.
[11] Ger R., ${ }_{\text {S }}^{\text {emrl P P., The stability of the exponential equation, Proc. Amer. }}$ Math. Soc., 124(1996), 779-787.
[12] Hyers D.-H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.
[13] Hyers D.-H., Isac G., Rassias Th.-M., On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126(2)(1998), 425-430.
[14] Hyers D.-H., Rassias Th.-M., Approximate homomorphisms, Aeq. Math., 44(1992), 125-153.
[15] Hyers D.-H., The stability of homomorphisms and related topics, in Global Analysis-Analysis on manifolds (ed. Th. M Rassias), Teubner-Texte zur Math., Leipzig, 57(1983), 140-153.
[16] Hyers D.-H., Ulam S.-M., Approximately convex functions, Proc. Amer. Math. Soc., 3(1952), 821-828.
[17] Hyers D.-H., Isac G., Rassias Th.-M., Stability of Functional Equations in Several Variables, Birkhauser, Boston,Basel, Berlin (1998).
[18] Isac G.-Th.-M., Rassias Th.-M., Stability of Ψ-additive mappings: Applications to nonlinear analysis, Internat. J. Math. \& Math. Sci., 19(2)(1996), 219-228.
[19] Jarosz K., Almost multiplicative functionals, Studia Math., 124(1997), 3758.
[20] Joung S.M., Hyers-Ulam-Rassias stability of Jensen's equation and its aplications, Proc. Amer. Math. Soc., 126(1998), 3137-3143.
[21] Kannappan Pl., Functional Equations and Inequalities with Applications, Springer, New York, 2009.
[22] Nikodem K., Approximately quasiconvex functions, C. R. Math. Rep. Acad. Sci. Canada, 10(1988), 291-294.
[23] Johnson B.-E., Approximately multiplicative functionals, J. London Math. Soc., 34(2)(1986), 489-510.
[24] Jung S.-M., Superstability of homogeneous functional equation, Kyungpook Math. J., 38(1998), 251-257.
[25] Jung S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[26] Rassias Th.-M., On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62(2000), 23-130.
[27] Rassias Th.-M., Problem 18, In: Report on the 31st ISFE, Aequationes Math., 47(1994), 312-13.
[28] Rassias Th.-M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[29] Rassias Th.-M., The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378.
[30] Rassias Th.-M., Brzdek J., (eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012.
[31] Skof F., Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
[32] Tabor J., Tabor J., Homogenity is superstable, Publ. Math. Debrecen, 45 (1994), 123-130.
[33] Ulam S.M., Problems in Modern Mathematics, Science Editions, Wiley, New York, 1960.

> M. Alimohammady
> DEpartment of Mathematics
> University of Mazandaran
> Babolsar, Iran
> e-mail: m.alimohammady@gmail.com

A. Sadeghi

Department of Mathematics
University of Mazandaran
Babolsar, Iran
e-mail: sadeghi.ali68@gmail.com
Received on 17.10.2011 and, in revised form, on 09.03.2012.

