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ABSTRACT. In this paper some asymptotic behaviors of the Pex-
iderized additive mappings can be proved for functions on com-
mutative semigroup to a complex normed linear space under some
suitable conditions. As a consequence of our result, we give some
generalizations of Skof theorem and S.-M. Joung theorem. Fur-
thermore, in this note we present a affirmative answer to problem
18, in the thirty-first ISFE.
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1. Introduction

The starting point of the stability theory of functional equations was the
problem formulated by S. M. Ulam in 1940 (see [33]), during a conference
at Wisconsin University:

Let (G,.) be a group (B,.,d) be a metric group. Does for every e > 0,
there exists a 0 > 0 such that if a function f : G — B satisfies the inequality

d(f(zy), f(z)f(y) <6, z,y €G,

there exists a homomorphism g : G — B such that
d(f(z),g(x)) <e, zeG?

In 1941, Hyers [12] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G is a linear
normed space and B is a Banach space. This is the reason for which today
this type of stability is called Hyers-Ulam stability of functional equation.
In 1950, Aoki [4] generalized Hyers’ theorem for approximately additive
functions. In 1978, Th. M. Rassias [28] generalized the theorem of Hyers
by considering the stability problem with unbounded Cauchy differences.
Taking this fact into account, the additive functional equation f(z + y) =
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f(x)+ f(y) is said to have the Hyers-Ulam-Rassias stability on (X,Y"). This
terminology is also applied to the case of other functional equations. For
more detailed definitions of such terminology one can refer to [9] and [14].
Thereafter, the stability problem of functional equations has been extended
in various directions and studied by several mathematicians [2, 3, 5, 6, 11,
25, 21, 30, 19, 23, 26, 29, 23].

The Hyers-Ulam stability of mappings is in development and several au-
thors have remarked interesting applications of this theory to various math-
ematical problems. In fact the Hyers-Ulam stability has been mainly used
to study problems concerning approximate isometries or quasi-isometries,
the stability of Lorentz and conformal mappings, the stability of stationary
points, the stability of convex mappings, or of homogeneous mappings, etc
[15, 16, 7, 22, 32, 17].

Several authors have used asymptotic conditions in stating approxima-
tions to Cauchy’s functional equation

flz+y) = f(x)+ fy).

P.D. T. A. Elliott [8] showed that if the real function f belongs to the class
LP(0, z) for every z > 0, where p > 1, and satisfies the asymptotic condition

oy Jo Jo [f@+y) = f@) = f@)Pdady

2Z—+00 z

Y

then there is a constant ¢ such that f(x) = cz almost everywhere on RT.
One of the theorems of J. R. Alexander, C. E. Blair and L. A. Rubel [1]
states that if f € L'(0,b) for all b > 0, and if for almost all > 0

Jolf (@ +y) — f(z) — f(y)ldy

lim - 07
U—00 u

then for some real number ¢, f(x) = cx for almost all > 0.
F. Skof [31] proved the following theorem and applied the result to the
study of an asymptotic behavior of additive functions.

Theorem 1. Let E; and Eo be a normed space and a Banach space,
respectively. Given a > 0, suppose a function f : E1 — E satisfies the
mnequality

[f(x+y) = fl@) = fy)ll <0

for some § > 0 and for all x,y € Ey with ||z|| + ||y|| > a. Then there exists
a unique additive function A : B4 — FEs such that

1f(x) = A(z)[| <96

for allx € Ey.
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Using this theorem, F. Skof [31] has studied an interesting asymptotic
behavior of additive functions as we see in the following theorem.

Theorem 2. Let E| and Eo be a normed space and a Banach space,
respectively. Suppose z is a fized point of E1. For a function f: E1 — Fo
the following two conditions are equivalent:

(@) [If(z+y) = f(@) = f@I = 0 as |[z| + [y] = oo
(0) flz+y)— fx)— fly) =0
for all x,y € Fy.

S.-M. Joung [20], proved that the Hyers-Ulam stability for Jensen’s equa-
tion on a restricted domain and the result applied to the study of an interest-
ing asymptotic behavior of the additive mappings-more precisely, he proved
that a mapping f : E1 — Es satisfying f(0) = 0 is additive if and only if

(@) 12f(55Y) = f(z) = f@)ll = 0 as [|z[| + [ly]| — oo

As a consequence of our result in this paper, we give a simple proofs
of Skof theorem (2) and S.-M. Joung theorem and show that Skof and S.
M.-Joung theorem is true when Fy be a complex normed linear space. Also
we present some generalization of Skof and S.-M. Joung theorem. Further-
more, some asymptotic behaviors of Pexiderized additive mapping can be
proved for functions on commutative semigroup to a complex normed linear
space.

During the thirty-first International Symposium on Functional Equations
(ISFE), Th. M. Rassias [27] introduced the term mized stability of the func-
tion f : E — R (or C), where E is a Banach space, with respect to two
operations ‘addition’ and ‘multiplication’ among any two elements of the
set {z,y, f(z), f(y)}. Then the following question arises. Let (S,-) be an
arbitrary semigroup or group and let a mapping f : S — R (the set of reals)
be such that the set {f(x-y) — f(x) — f(y) | x,y € S} is bounded. Is it true
that there is a mapping T : S — R that satisfies

T(x-y)—T(x)—T(y) =0

for all z,y € S and that the set {T'(z) — f(z) | € S} is bounded?

G. L. Forti in [10] gave a negative answer to this problem (see also [13]). In
this paper we give a affirmative answer to this problem under some suitable
conditions.

2. Main results

Throughout this section, assume that (.5, +) is an arbitrary commutative
semigroup, F and Fs be two complex normed space, R is real field, N is all
positive integers and v : S? — [0, 00) is a function.
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2.1. Asymptotic behavior of additive mapping

The following Theorem is a affirmative answer to problem 18, in the
thirty-first ISFE.

Theorem 3. Let f: S — Fy be a function such that

(1) Iz +y) = flz) = FWIl < ¥(2,y)

for all x,y € S. Assume that
* lim o S0 (@ + iwo, o) = 0;
e lim %@b(x + nxo,y +nyp) =0
n—oo
for any fized xo,y0,x,y € S. Then f is an additive function.
Proof. Let g be any fixed element of S. From (1), its easy to show that
the following inequality

n—1
1f (@ + nao) = nf(wo) — f(w)]| <Y (@ +ixo, o)
1=0

for each fixed x € S and n € N. Now bye assumption lim,, s % Z?:_ol (x4
ixo,xo) = 0, SO
flao) = Jim L 000)

n—00 n

for any fixed x € S. Let g, yo be any two fixed element of S, then from (1),
we obtain

1f(z +y +n(zo+yo)) — f(z +nxo) — f(y +nyo)|l < Y(z + nzo,y + nyo)

for any fixed z,y € S. Now since lim,, %w(:v + nxo,y + yo) = 0, thus

f(wo +yo) = f(wo) + f(yo),

which says that f is an additive mapping. |
Corollary 1. Let f : By — E5 be a function such that

(2) 1f (@ +y) = f(@) = fI < ()P + [lyl1?

for all x,y € E1 and for some reals p < 0 and ¢ < 1. Then f is an additive
mapping.
Proof. Set ¢(z,y) := [|z||P +||y||? for all z,y € E;. Its easy to show that

the followings relations
o lim ;3705 v(x +ixo, x0) = 0;
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e lim %w(l' + nxo,y +nyp) =0
n—oo
for any fixed xg, Yo, z,y € E1. Now Theorem 3 implies that f is an additive
mapping. |

Corollary 2. Let f: W — V be a function such that

yll”

(3) 1f(z+y) — flx) = f)Il < ”IHP—|—9

for all x,y € E1 and for some reals p > 0 and g < 1. Then f is an additive
mapping.

Proof. Set ¢(z,y) := H:ﬂﬁgie for all z,y € E;. Its easy to show that the
followings relations

° nlLIl;lo % Z?;ol W(x +izg, x0) = 0;

e lim %w(x + nxo,y +nyp) =0

n—oo
for any fixed g, yo,x,y € E1. Now Theorem 3 implies that f is an additive
mapping. |

In the following, by using Theorem 3, we give a simple proof of Skof
Theorem 2 and also we show that Skof Theorem is true when F5 be a
complex normed space.

Theorem 4. For a function f : E1 — FEs the following two conditions
are equivalent:

(@) If(z+y)— f(z) = fWI =0 as [lz]| + [ly]| = oo
) flx+y)— fl@)— fly)=0
forall x,y € E;.
Proof. Set (z,y) i= || f(z+y) — f(z) — f(y)]| for all 2, € Ey. Now let

x0,yo € E1 be two arbirary fixed elements. Since ||z +nzol||+ ||y +nyo|| — oo
for each fixed x,y € F1, so

lim ’1/1(1' + nro,y + nyO) = 07

n—oo

for each fixed x,y € E1, hence its easy to show that the following relations
[ ] nh—golo % Z?:_Ol w(ac + ’ixo, xo) = 0;
e lim %w(l’ + nxo,y +nyp) =0
n—oo
for each fixed x,y € F;. Now by Theorem (3) implies that f is an additive
mapping. The proof is complete. |
Let & be set all function p : E? — [0, 00) such that
(a) p(z+ nxo,y + nyp) — 00 as n — oo
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for any fixed xg,y0,x,y € F1, where ||zg]| # 0 or |lyo]| # 0. Not that the
functions p1, p2, p3 € 6, in which p1(z,y) := [[z(| + lyl, p2(z,y) = [l + y||
and p3(z,y) := max{||z|, ||y||} for all z,y € E;. We now apply Theorem 3
to a generalization of Skof theorem.

Corollary 3. For a function f : E1 — Eo the following two conditions
are equivalent:

(a) [[f(x+y)— fz) = fW) =0 as p(z,y) — oo

) fla+y)—fl@)— fly) =0
for all x,y € Ey, in which p € 6.

Proof. Set ¢(z,y) == ||f(z +vy) — f(z) — f(y)| for all z,y € E;. Now
let xg,yg € F1 be two arbirary fixed elements. Since p € G, so
(a) p(x+ nxo,y + nyog) — 00 as n — 0o
for any fixed xo, yo,z,y € E1, where ||zo] # 0 or ||yo|| # 0. Thus

lim ¥(x + nxo,y + nyo) =0,

n—o0

for each fixed zo,yo, x,y € E1, where ||zg|| # 0 or ||lyo|| # 0. Hence, its easy
to show that the following relations

° nh—golo % Z?:_[)l ¢<$ + i.’BQ,IL‘()) = 0;

e lim %w(:c—i-m:o,y—i—nyo) =0

n—oo
for any fixed xg,y0,x,y € Ei1. Now by Theorem 3 implies that f is an
additive mapping. The proof is complete. |

2.2. Asymptotic behavior of Pexiderized additive mapping

Theorem 5. Let S be with identity e and f,g,h : S — V be three
functions such that g(e) = h(e) =0 and

(4) 1f(x+y) —g(z) — h(y)|l < ¢(z,y)

for all x,y € S. Assume that

[ ] le %Zzn:_ol 1/1(1‘ + ixo,xo) = 0,’

. le %w(x + nzo,y + nyo) =0
for any fixed xo,yo,x,y € S. Then f, g and h are additive function and
flx+y)—g(x)—h(y) =0 for all x,y € S.

Proof. Set (x,y) := d(x,y) + ¥(z,¢) +Y(e,y) and d(z,y) == (z +
y,e)+(z,e)+1(e,y) for all z,y € S. From inequality (4) and assumptions,
we obtain the following inequalities

1f(@+y) = f@) = fWI < @ y) +[1f(x) —g@) +[1/(y) —h)l

< ¢(33a y) + ¢(I, 6) + T/’(‘%?J) = ¢(5Ua y)
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and

V(@ +y.e) +flz+y) —g(x) -9l

V(@ +y,e)+|flz+y) - fl2) = fy)l
+[1f(z) = g@)[ + | f(y) — 9(¥)ll

< Yz +y,e) +Y(x,y) + 2¢(z, e) + 2¢(e, y)

= (z,y) + 9 (z,y)

lg(x +y) —g(z) —g(y)ll <
<

and also

[h(z +y) = h(z) = h()Il < P(z+y,e)+[f(@+y)—h(x) = Ay
< Y@ +y.e)+If(@+y) - flx) - fW)ll
+ £ (z) = h(@)| + |A(y) — h(y)]]
< Y@ ty,e) +o(z,y) +2¢(z,e) + 2¢(e, y)
= J(a,y) + d(xy)
for all x,y € S. With assumptions its easy to show that
° nh_>rr010 % Z?;Ol o(x + ixg, xo) = 0;
o lim So(z +nzo,y +nyo) =0
for any fixed xg,yo,z,y € S, in which the function ¢ is @Z or 1;4— {Z)\ . Now

by Theorem 3 f, g and h is additive mapping and also
o f(zp) = lim {&tnro)

n—o0

o g(z0) = nh_?gO W

o h(zp) = lim W

n—o0
for each fixed xg,x € S. Let xg, yo be any two fixed element of S, then from
(4), we obtain

|f(z+y+n(zo+yo)) — g(x + nxo) — h(y + nyo)|| < ¥(z+ nxo,y + nyo)

for any fixed =,y € S. Now since lim,,_,o %w(x + nxo,y + yo) = 0, thus

f(zo +yo) = g(xo) + (o),

which says that f(x +vy) — g(x) — h(y) = 0 for all z,y € S. The proof is
complete. |

In the following, by using Theorem 5, we give a generalization of Skof
theorem for Pexiderized additive mapping.

Theorem 6. Assume that f,g,h : E1 — FE5 are three functions such
that g(0) = h(0) = 0, then the following two conditions are equivalent:
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(a) [[f(z+y) —g(x) —h(y)| =0 as p(z,y) = oo
(0) f(z+y)—g(z) —h(y) =0
for all x,y € Eq, in which p € 6.
Proof. Set ¢(z,y) := | f(x+y) —g(x) — h(y)| for all ,y € E;. Now let
Zo, Yo € F1 be two arbirary fixed elements. Since p € 6, so
(a) p(x+ nxo,y + nyg) — 00 as n — 0o
for any fixed xo, yo,z,y € E1, where ||zo] # 0 or ||yo|| # 0. Thus

lim IIZ)(I' + nxg,y + nyO) = 07

n—o0

for each fixed xo,yo, x,y € E1, where ||zg|| # 0 or ||lyo|| # 0. Hence, its easy
to show that the following relations

° n]g{.lo % Z?:_Ol 'Lﬂ(l‘ + i.’Bo,xo) = 0;

e lim %w(:c—i-nxo,y—i—nyo) =0

n—oo
for any fixed xg,yo,x,y € E1. Now by Theorem 5 implies that f(z + y) —
g(z) — h(y) =0 for all z,y € S. The proof is complete. |

In the following, by using Theorem 7, we give a simple proof of S.-M.
Joung theorem (see [20]) and also we show that Skof theorem is true when
FE5 be a complex normed space.

Theorem 7. Assume that J : Ey — Es is a function such that J(0) =0,
then the following two conditions are equivalent:

(@) 112J(%2) = J(x) = J(y) = 0 as [|z] + [yl = oo;
(b) 2J(5Y) = J(x) = J(y) =0
for all x,y € Fy.

Proof. Sets f(z) := 2J(5) and g(x) := J(x) for all z € E;. Now apply
Theorem 7. L
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