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Abstract. In this paper some asymptotic behaviors of the Pex-
iderized additive mappings can be proved for functions on com-
mutative semigroup to a complex normed linear space under some
suitable conditions. As a consequence of our result, we give some
generalizations of Skof theorem and S.-M. Joung theorem. Fur-
thermore, in this note we present a affirmative answer to problem
18, in the thirty-first ISFE.
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1. Introduction

The starting point of the stability theory of functional equations was the
problem formulated by S. M. Ulam in 1940 (see [33]), during a conference
at Wisconsin University:

Let (G, .) be a group (B, ., d) be a metric group. Does for every ε > 0,
there exists a δ > 0 such that if a function f : G→ B satisfies the inequality

d(f(xy), f(x)f(y)) ≤ δ, x, y ∈ G,

there exists a homomorphism g : G→ B such that

d(f(x), g(x)) ≤ ε, x ∈ G?

In 1941, Hyers [12] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G is a linear
normed space and B is a Banach space. This is the reason for which today
this type of stability is called Hyers-Ulam stability of functional equation.
In 1950, Aoki [4] generalized Hyers’ theorem for approximately additive
functions. In 1978, Th. M. Rassias [28] generalized the theorem of Hyers
by considering the stability problem with unbounded Cauchy differences.
Taking this fact into account, the additive functional equation f(x + y) =
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f(x)+f(y) is said to have the Hyers-Ulam-Rassias stability on (X,Y ). This
terminology is also applied to the case of other functional equations. For
more detailed definitions of such terminology one can refer to [9] and [14].
Thereafter, the stability problem of functional equations has been extended
in various directions and studied by several mathematicians [2, 3, 5, 6, 11,
25, 21, 30, 19, 23, 26, 29, 23].

The Hyers-Ulam stability of mappings is in development and several au-
thors have remarked interesting applications of this theory to various math-
ematical problems. In fact the Hyers-Ulam stability has been mainly used
to study problems concerning approximate isometries or quasi-isometries,
the stability of Lorentz and conformal mappings, the stability of stationary
points, the stability of convex mappings, or of homogeneous mappings, etc
[15, 16, 7, 22, 32, 17].

Several authors have used asymptotic conditions in stating approxima-
tions to Cauchy’s functional equation

f(x+ y) = f(x) + f(y).

P. D. T. A. Elliott [8] showed that if the real function f belongs to the class
Lp(0, z) for every z ≥ 0, where p ≥ 1, and satisfies the asymptotic condition

lim
z→∞

∫ z
0

∫ z
0 |f(x+ y)− f(x)− f(y)|pdxdy

z
= 0,

then there is a constant c such that f(x) = cx almost everywhere on R+.
One of the theorems of J. R. Alexander, C. E. Blair and L. A. Rubel [1]
states that if f ∈ L1(0, b) for all b > 0, and if for almost all x > 0

lim
u→∞

∫ y
0 [f(x+ y)− f(x)− f(y)]dy

u
= 0,

then for some real number c, f(x) = cx for almost all x ≥ 0.
F. Skof [31] proved the following theorem and applied the result to the

study of an asymptotic behavior of additive functions.

Theorem 1. Let E1 and E2 be a normed space and a Banach space,
respectively. Given a > 0, suppose a function f : E1 → E satisfies the
inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for some δ > 0 and for all x, y ∈ E1 with ‖x‖+ ‖y‖ > a. Then there exists
a unique additive function A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 9δ

for all x ∈ E1.
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Using this theorem, F. Skof [31] has studied an interesting asymptotic
behavior of additive functions as we see in the following theorem.

Theorem 2. Let E1 and E2 be a normed space and a Banach space,
respectively. Suppose z is a fixed point of E1. For a function f : E1 → E2

the following two conditions are equivalent:

(a) ‖f(x+ y)− f(x)− f(y)‖ → 0 as ‖x‖+ ‖y‖ → ∞;

(b) f(x+ y)− f(x)− f(y) = 0

for all x, y ∈ E1.

S.-M. Joung [20], proved that the Hyers-Ulam stability for Jensen’s equa-
tion on a restricted domain and the result applied to the study of an interest-
ing asymptotic behavior of the additive mappings-more precisely, he proved
that a mapping f : E1 → E2 satisfying f(0) = 0 is additive if and only if

(a) ‖2f(x+y2 )− f(x)− f(y)‖ → 0 as ‖x‖+ ‖y‖ → ∞.

As a consequence of our result in this paper, we give a simple proofs
of Skof theorem (2) and S.-M. Joung theorem and show that Skof and S.
M.-Joung theorem is true when E2 be a complex normed linear space. Also
we present some generalization of Skof and S.-M. Joung theorem. Further-
more, some asymptotic behaviors of Pexiderized additive mapping can be
proved for functions on commutative semigroup to a complex normed linear
space.

During the thirty-first International Symposium on Functional Equations
(ISFE), Th. M. Rassias [27] introduced the term mixed stability of the func-
tion f : E → R (or C), where E is a Banach space, with respect to two
operations ‘addition’ and ‘multiplication’ among any two elements of the
set {x, y, f(x), f(y)}. Then the following question arises. Let (S, ·) be an
arbitrary semigroup or group and let a mapping f : S → R (the set of reals)
be such that the set {f(x · y)− f(x)− f(y) | x, y ∈ S} is bounded. Is it true
that there is a mapping T : S → R that satisfies

T (x · y)− T (x)− T (y) = 0

for all x, y ∈ S and that the set {T (x)− f(x) | x ∈ S} is bounded?
G. L. Forti in [10] gave a negative answer to this problem (see also [13]). In

this paper we give a affirmative answer to this problem under some suitable
conditions.

2. Main results

Throughout this section, assume that (S,+) is an arbitrary commutative
semigroup, E1 and E2 be two complex normed space, R is real field, N is all
positive integers and ψ : S2 → [0,∞) is a function.



8 M. Alimohammady and A. Sadeghi

2.1. Asymptotic behavior of additive mapping

The following Theorem is a affirmative answer to problem 18, in the
thirty-first ISFE.

Theorem 3. Let f : S → E2 be a function such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ψ(x, y)(1)

for all x, y ∈ S. Assume that
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;

• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ S. Then f is an additive function.

Proof. Let x0 be any fixed element of S. From (1), its easy to show that
the following inequality

‖f(x+ nx0)− nf(x0)− f(x)‖ ≤
n−1∑
i=0

ψ(x+ ix0, x0)

for each fixed x ∈ S and n ∈ N. Now bye assumption limn→∞
1
n

∑n−1
i=0 ψ(x+

ix0, x0) = 0, so

f(x0) = lim
n→∞

f(x+ nx0)

n

for any fixed x ∈ S. Let x0, y0 be any two fixed element of S, then from (1),
we obtain

‖f(x+ y + n(x0 + y0))− f(x+ nx0)− f(y + ny0)‖ ≤ ψ(x+ nx0, y + ny0)

for any fixed x, y ∈ S. Now since limn→∞
1
nψ(x+ nx0, y + y0) = 0, thus

f(x0 + y0) = f(x0) + f(y0),

which says that f is an additive mapping. �

Corollary 1. Let f : E1 → E2 be a function such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖x‖p + ‖y‖q(2)

for all x, y ∈ E1 and for some reals p < 0 and q < 1. Then f is an additive
mapping.

Proof. Set ψ(x, y) := ‖x‖p+‖y‖q for all x, y ∈ E1. Its easy to show that
the followings relations
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;
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• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ E1. Now Theorem 3 implies that f is an additive
mapping. �

Corollary 2. Let f : W → V be a function such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖y‖q

‖x‖p + θ
(3)

for all x, y ∈ E1 and for some reals p > 0 and q < 1. Then f is an additive
mapping.

Proof. Set ψ(x, y) := ‖y‖q
‖x‖p+θ for all x, y ∈ E1. Its easy to show that the

followings relations
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;

• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ E1. Now Theorem 3 implies that f is an additive
mapping. �

In the following, by using Theorem 3, we give a simple proof of Skof
Theorem 2 and also we show that Skof Theorem is true when E2 be a
complex normed space.

Theorem 4. For a function f : E1 → E2 the following two conditions
are equivalent:

(a) ‖f(x+ y)− f(x)− f(y)‖ → 0 as ‖x‖+ ‖y‖ → ∞;

(b) f(x+ y)− f(x)− f(y) = 0

for all x, y ∈ E1.

Proof. Set ψ(x, y) := ‖f(x+ y)− f(x)− f(y)‖ for all x, y ∈ E1. Now let
x0, y0 ∈ E1 be two arbirary fixed elements. Since ‖x+nx0‖+‖y+ny0‖ → ∞
for each fixed x, y ∈ E1, so

lim
n→∞

ψ(x+ nx0, y + ny0) = 0,

for each fixed x, y ∈ E1, hence its easy to show that the following relations
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;

• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for each fixed x, y ∈ E1. Now by Theorem (3) implies that f is an additive
mapping. The proof is complete. �

Let S be set all function ρ : E2
1 → [0,∞) such that

(a) ρ(x+ nx0, y + ny0)→∞ as n→∞
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for any fixed x0, y0, x, y ∈ E1, where ‖x0‖ 6= 0 or ‖y0‖ 6= 0. Not that the
functions ρ1, ρ2, ρ3 ∈ S, in which ρ1(x, y) := ‖x‖+ ‖y‖, ρ2(x, y) := ‖x+ y‖
and ρ3(x, y) := max{‖x‖, ‖y‖} for all x, y ∈ E1. We now apply Theorem 3
to a generalization of Skof theorem.

Corollary 3. For a function f : E1 → E2 the following two conditions
are equivalent:

(a) ‖f(x+ y)− f(x)− f(y)‖ → 0 as ρ(x, y)→∞;
(b) f(x+ y)− f(x)− f(y) = 0

for all x, y ∈ E1, in which ρ ∈ S.

Proof. Set ψ(x, y) := ‖f(x + y) − f(x) − f(y)‖ for all x, y ∈ E1. Now
let x0, y0 ∈ E1 be two arbirary fixed elements. Since ρ ∈ S, so

(a) ρ(x+ nx0, y + ny0)→∞ as n→∞
for any fixed x0, y0, x, y ∈ E1, where ‖x0‖ 6= 0 or ‖y0‖ 6= 0. Thus

lim
n→∞

ψ(x+ nx0, y + ny0) = 0,

for each fixed x0, y0, x, y ∈ E1, where ‖x0‖ 6= 0 or ‖y0‖ 6= 0. Hence, its easy
to show that the following relations
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;

• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ E1. Now by Theorem 3 implies that f is an
additive mapping. The proof is complete. �

2.2. Asymptotic behavior of Pexiderized additive mapping

Theorem 5. Let S be with identity e and f, g, h : S → V be three
functions such that g(e) = h(e) = 0 and

‖f(x+ y)− g(x)− h(y)‖ ≤ ψ(x, y)(4)

for all x, y ∈ S. Assume that
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;

• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ S. Then f , g and h are additive function and
f(x+ y)− g(x)− h(y) = 0 for all x, y ∈ S.

Proof. Set ψ̃(x, y) := ψ(x, y) + ψ(x, e) + ψ(e, y) and ψ̂(x, y) := ψ(x +
y, e)+ψ(x, e)+ψ(e, y) for all x, y ∈ S. From inequality (4) and assumptions,
we obtain the following inequalities

‖f(x+ y)− f(x)− f(y)‖ ≤ ψ(x, y) + ‖f(x)− g(x)‖+ ‖f(y)− h(y)‖
≤ ψ(x, y) + ψ(x, e) + ψ(e, y) = ψ̃(x, y)
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and

‖g(x+ y)− g(x)− g(y)‖ ≤ ψ(x+ y, e) + ‖f(x+ y)− g(x)− g(y)‖
≤ ψ(x+ y, e) + ‖f(x+ y)− f(x)− f(y)‖

+ ‖f(x)− g(x)‖+ ‖f(y)− g(y)‖
≤ ψ(x+ y, e) + ψ(x, y) + 2ψ(x, e) + 2ψ(e, y)

= ψ̃(x, y) + ψ̂(x, y)

and also

‖h(x+ y)− h(x)− h(y)‖ ≤ ψ(x+ y, e) + ‖f(x+ y)− h(x)− h(y)‖
≤ ψ(x+ y, e) + ‖f(x+ y)− f(x)− f(y)‖

+ ‖f(x)− h(x)‖+ ‖h(y)− h(y)‖
≤ ψ(x+ y, e) + ψ(x, y) + 2ψ(x, e) + 2ψ(e, y)

= ψ̃(x, y) + ψ̂(x, y)

for all x, y ∈ S. With assumptions its easy to show that
• lim
n→∞

1
n

∑n−1
i=0 φ(x+ ix0, x0) = 0;

• lim
n→∞

1
nφ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ S, in which the function φ is ψ̃ or ψ̃ + ψ̂ . Now
by Theorem 3 f, g and h is additive mapping and also
• f(x0) = lim

n→∞
f(x+nx0)

n

• g(x0) = lim
n→∞

g(x+nx0)
n

• h(x0) = lim
n→∞

h(x+nx0)
n

for each fixed x0, x ∈ S. Let x0, y0 be any two fixed element of S, then from
(4), we obtain

‖f(x+ y + n(x0 + y0))− g(x+ nx0)− h(y + ny0)‖ ≤ ψ(x+ nx0, y + ny0)

for any fixed x, y ∈ S. Now since limn→∞
1
nψ(x+ nx0, y + y0) = 0, thus

f(x0 + y0) = g(x0) + h(y0),

which says that f(x + y) − g(x) − h(y) = 0 for all x, y ∈ S. The proof is
complete. �

In the following, by using Theorem 5, we give a generalization of Skof
theorem for Pexiderized additive mapping.

Theorem 6. Assume that f, g, h : E1 → E2 are three functions such
that g(0) = h(0) = 0, then the following two conditions are equivalent:
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(a) ‖f(x+ y)− g(x)− h(y)‖ → 0 as ρ(x, y)→∞;

(b) f(x+ y)− g(x)− h(y) = 0

for all x, y ∈ E1, in which ρ ∈ S.

Proof. Set ψ(x, y) := ‖f(x+ y)− g(x)−h(y)‖ for all x, y ∈ E1. Now let
x0, y0 ∈ E1 be two arbirary fixed elements. Since ρ ∈ S, so

(a) ρ(x+ nx0, y + ny0)→∞ as n→∞
for any fixed x0, y0, x, y ∈ E1, where ‖x0‖ 6= 0 or ‖y0‖ 6= 0. Thus

lim
n→∞

ψ(x+ nx0, y + ny0) = 0,

for each fixed x0, y0, x, y ∈ E1, where ‖x0‖ 6= 0 or ‖y0‖ 6= 0. Hence, its easy
to show that the following relations
• lim
n→∞

1
n

∑n−1
i=0 ψ(x+ ix0, x0) = 0;

• lim
n→∞

1
nψ(x+ nx0, y + ny0) = 0

for any fixed x0, y0, x, y ∈ E1. Now by Theorem 5 implies that f(x + y) −
g(x)− h(y) = 0 for all x, y ∈ S. The proof is complete. �

In the following, by using Theorem 7, we give a simple proof of S.-M.
Joung theorem (see [20]) and also we show that Skof theorem is true when
E2 be a complex normed space.

Theorem 7. Assume that J : E1 → E2 is a function such that J(0) = 0,
then the following two conditions are equivalent:

(a) ‖2J(x+y2 )− J(x)− J(y)→ 0 as ‖x‖+ ‖y‖ → ∞;

(b) 2J(x+y2 )− J(x)− J(y) = 0

for all x, y ∈ E1.

Proof. Sets f(x) := 2J(x2 ) and g(x) := J(x) for all x ∈ E1. Now apply
Theorem 7. �

References

[1] Alexander R., Blair C.-E., Rubel L.-A., Approximate version of
Cauchy’s functional equation, Illinois J. Math., 39(1995), 278-287.

[2] Alimohammady M., Sadeghi A., On the superstability of the Pexider type
of exponential equation in Banach algebra, Int. J. Nonlinear Anal. Appl.,
(2011)(in press).

[3] Alimohammady M., Sadeghi A., Some new results on the superstablity of
the Cauchy equation on semigroup, Results Math., (2012)(in press).

[4] Aoki T., On the stability of the linear transformation in Banach spaces, J.
Math. Soc. Japan, 2(1950), 64–66.



On the asymptotic behavior of pexiderized . . . 13

[5] Baker J.A., A general functional equation and its stability, Proc. Amer.
Math. Soc., 133(2005), 1657-1664.

[6] Baker J.A., The stability of the cosine equation, Proc. Amer. Math. Soc.,
80(1980), 411-416.

[7] Czerwik S., On the stability of the homogeneous mapping, G. R. Math. Rep.
Acad. Sci. Canada XIV, 6(1992), 268-272.

[8] Elliott P.-D.-T.-A., Cauchy’s functional equation in the mean, Advances
in Math., 51(1984), 253-257.

[9] Forti G.-L., Hyers-Ulam stability of functional equations in several variables,
Aeq. Math., 50(1995), 143-190.

[10] Forti G.-L., Remark 11 in: Report of the 22nd Internat. Symposium on
Functional Equations, Aequationes Math., 29(1980), (1985), 90-91.
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