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Key words: common fixed point, partial-compatibility, weak
compatibility, ordered set, partial metric space.

AMS Mathematics Subject Classification: 54H25, 47H10, 54E50.

1. Introduction and preliminaries

The Banach contraction principle [16], which is the most famous metrical
fixed point theorem, plays a very important role in nonlinear analysis. Ba-
sically, it asserts that, if (X, d) is a complete metric space and T : X → X
is a contraction, i.e., there exists a constant c ∈ [0, 1) such that

d(Tx, Ty) ≤ cd(x, y), for all x, y ∈ X,

then T has a unique fixed point u ∈ X, i.e., Tu = u. The Banach contraction
principle has been generalized in several directions, see for example [19] and
[38] for recent surveys. The existence of fixed points in partially ordered
metric spaces was investigated in 2004 by Ran and Reurings [34], and then
by Nieto and López [28]. Further results in this direction were proved, e.g., in
[3, 17, 32]. Results on weakly contractive mappings in such spaces, together
with applications to differential equations, were obtained by Harjani and
Sadarangani in [23], for other results, we can refer to ([1, 7, 8, 20, 24, 26,
27, 28, 29]).

For instance, Abbas, Nazir and Radenović [1] proved a common fixed
point for four maps in partially ordered metric spaces. In this paper we
extend their result to the class of partially ordered partial metric spaces.

The concept of a partial metric space was introduced by Matthews [25]
in 1994. After that, fixed point results in partial metric spaces have been
studied, see for example [2, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 18, 25, 30, 35,
36, 37, 40, 41, 42, 43].
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Throughout this paper, the letters R+ and N will denote the set of all
non-negative real numbers and the set of all non-negative integer numbers,
respectively. First, we start by recalling some known definitions and prop-
erties of partial metric spaces.

Definition 1 ([25]). A partial metric on a nonempty set X is a function
p : X ×X → [0,+∞) such that for all x, y, z ∈ X:

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and

p is a partial metric on X.

It is clear that, if p(x, y) = 0, then from (p1) and (p2), x = y. But if
x = y, p(x, y) may not be 0. A basic example of a partial metric space is
the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+.

Each partial metric p on X generates a T0 topology τp on X which has as
a base the family of open p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) =
{y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given
by

(1) ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

is a metric on X.
Let {xn} be a sequence in X. Then

(i) {xn} converges to a point x ∈ X if and only if p(x, x) = lim
n→+∞

p(x, xn),

(ii) {xn} is called a Cauchy sequence if there exists (and is finite)
lim

n,m→+∞
p(xn, xm).

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X
converges, with respect to τp, to a point x ∈ X, such that p(x, x) =

lim
n,m→+∞

p(xn, xm).

Lemma 1. Let (X, p) be a partial metric space.
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy

sequence in the metric space (X, ps).
(b) A partial metric space (X, p) is complete if and only if the metric

space (X, ps) is complete. Furthermore, lim
n→+∞

ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).
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Definition 2 ([5]). Let (X, p) be a partial metric space, F : X → X be a
given mapping. We say that F is continuous at x0 ∈ X, if for every ε > 0,
there exists η > 0 such that F (Bp(x0, η)) ⊆ Bp(Fx0, ε).

It is easy to chech that:

Lemma 2. Let (X, p) be a partial metric space, F : X → X be a given
mapping. Suppose that F is continuous at x0 ∈ X. Then, for all sequence
{xn} in X such that xn → x0, we have Fxn → Fx0.

On the other hand, Abbas et al. [1] introduced the following definitions.

Definition 3 ([1]). Let (X,≤) be a partially ordered set and f and g
be two self maps on X. An ordered pair (f, g) is said to be partially weakly
increasing if fx ≤ gfx for all x ∈ X.

Definition 4 ([1]). Let (X,≤) be a partially ordered set. A mapping f
is a called weak annihilator of g if fgx ≤ x for all x ∈ X.

Definition 5 ([1]). Let (X,≤) be a partially ordered set. A mapping f
is a called dominating if x ≤ fx for all x ∈ X.

Also, some examples illustrating above definitions are given in [1].
In the sequel, let ψ and ϕ be as follows (as in [21]):

(i) ψ : [0,+∞) → [0,+∞) is a continuous non-decreasing function with
ψ(t) = 0 if and only if t = 0,

(ii) ϕ : [0,+∞)→ [0,+∞) is a lower semi-continuous function with ϕ(t) = 0
if and only if t = 0.
Such ψ and ϕ are called control functions.

Definition 6. Let X be a non-empty set, N is a natural number such
that N ≥ 2 and T1, T2, · · · , TN : X → X are given self-mappings on X. If
w = T1x = T2x = · · · = TNx for some x ∈ X, then x is called a coincidence
point of T1, T2, · · · , TN−1 and TN . If w = x, then x is called a common fixed
point of T1, T2, · · · , TN−1 and TN .

A subset W of a partially ordered set X is said to be well ordered if every
two elements of W are comparable. The main theorem given in [1] is

Theorem 1 ([1]). Let (X,≤, d) be a partially ordered complete metric
space. Let f , g, S and T be self maps on X, (T, f) and (S, g) be partially
weakly increasing with fX ⊆ TX and gX ⊆ SX, dominating maps f and
g are weak annihilators of T and S, respectively. Suppose that there ex-
ists control functions ψ and ϕ such that for every two comparable elements
x, y ∈ X,

(2) ψ(d(fx, gy)) ≤ ψ(θ(x, y))− ϕ(θ(x, y)),
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is satisfied where

θ(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),
d(Sx, gy) + d(fx, Ty)

2
}.

If for a non-decreasing sequence {xn} with xn ≤ yn for all n and yn → u
implies that xn ≤ u and either

(a) {f, S} are compatible, f or S is continuous and {g, T} are weakly
compatible or

(b) {g, T} are compatible, g or T is continuous and {f, S} are weakly
compatible,

then f , g, S and T have a common fixed point. Moreover, the set of common
fixed points of f , g, S and T is well ordered if and only if f , g, S and T
have one and only one common fixed point.

The aim of this paper is to extend Theorem 1 to ordered partial metric
spaces. For this, we recall the following definition of partial-compatibility
introduced by Samet et al. [40].

Definition 7 ([40]). Let (X, p) be a partial metric space and f, g :
X → X are mappings of X into itself. We say that the pair {f, g} is
partial-compatible if the following conditions hold:

(b1) p(x, x) = 0 implies that p(gx, gx) = 0,
(b2) lim

n→+∞
p(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such

that fxn → t and gxn → t for some t ∈ X.

Note that Definition 7 extends and generalizes the notion of compatibility
introduced by Jungck [22].

2. Main results

Our first result is the following.

Theorem 2. Let (X,≤, p) be a partially ordered complete partial metric
space. Let f , g, S and T be self maps on X, (T, f) and (S, g) be partially
weakly increasing with fX ⊆ TX and gX ⊆ SX, dominating maps f and
g are weak annihilators of T and S, respectively. Suppose that there ex-
ist control functions ψ and ϕ such that for every two comparable elements
x, y ∈ X,

(3) ψ(p(fx, gy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

is satisfied where

M(x, y) = max{p(Sx, Ty), p(fx, Sx), p(gy, Ty),
p(Sx, gy) + p(fx, Ty)

2
}.
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If for a non-decreasing sequence {xn} with xn ≤ yn for all n and yn → u
implies that xn ≤ u and either

(a) {f, S} are partial-compatible, f or S is continuous and {g, T} are
weakly compatible or

(b) {g, T} are partial-compatible, g or T is continuous and {f, S} are
weakly compatible,

then f , g, S and T have a common fixed point. Moreover, the set of common
fixed points of f , g, S and T is well ordered if and only if f , g, S and T
have one and only one common fixed point.

Proof. Let x0 be an arbitrary point in X. Since fX ⊆ TX, there exists
x1 ∈ X such that Tx1 = fx0. Also, since gX ⊆ SX, there exists x2 ∈ X
such that Sx2 = gx1. Continuing this process, we can construct sequences
{xn} and {yn} in X defined by

(4) y2n−1 = Tx2n−1 = fx2n−2, y2n = Sx2n = gx2n−1 ∀ n ∈ N∗.

By given assumptions

x2n−2 ≤ fx2n−2 = Tx2n−1 ≤ fTx2n−1 ≤ x2n−1,

and

x2n−1 ≤ gx2n−1 = Sx2n ≤ Sgx2n ≤ x2n.

Thus, for all n ∈ N, we have xn ≤ xn+1.
Suppose for some n, p(y2n, y2n+1) = 0, then y2n = y2n+1. We have

M(x2n, x2n+1) = max{p(Sx2n, Tx2n+1), p(fx2n, Sx2n), p(gx2n+1, Tx2n+1),

p(Sx2n, gx2n+1) + p(fx2n, Tx2n+1)

2
}

= max{p(y2n, y2n+1), p(y2n+1, y2n), p(y2n+2, y2n+1),

p(y2n, y2n+2) + p(y2n+1, y2n+1)

2
}

= max{0, 0, p(y2n+2, y2n+1),
p(y2n, y2n+2) + p(y2n+1, y2n+1)

2
}

= p(y2n+1, y2n+2),

because p(y2n, y2n+2) + p(y2n+1, y2n+1) ≤ p(y2n, y2n+1) + p(y2n+1, y2n+2) =
p(y2n+1, y2n+2). Since x2n and x2n+1 are comparable, then by (3), we get

ψ(d(y2n+1, y2n+2)) = ψ(p(fx2n, gx2n+1))

≤ ψ(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1))

= ψ(p(y2n+1, y2n+2))− ϕ(p(y2n+1, y2n+2)),
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which implies that ϕ(p(y2n+1, y2n+2)) = 0. By the fact that ϕ(t) = 0 if and
only if t = 0, so p(y2n+1, y2n+2) = 0, that is, y2n+1 = y2n+2. Following the
similar arguments, we obtain y2n+2 = y2n+3 and so on. Thus {yn} becomes
a constant sequence and y2n is the common fixed point of f , g, S and T .

From now on, assume that p(yn, yn+1) > 0 for all n ∈ N. By (3), we have

ψ(p(y2n+1, y2n+2)) = ψ(p(fx2n, gx2n+1))

≤ ψ(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1))

≤ ψ(M(x2n, x2n+1)).

Therefore, since ψ is non-decreasing, we have

(5) p(y2n+1, y2n+2) ≤M(x2n, x2n+1),

where

M(x2n, x2n+1) = max{p(Sx2n, Tx2n+1), p(fx2n, Sx2n), p(gx2n+1, Tx2n+1),

p(Sx2n, gx2n+1) + p(fx2n, Tx2n+1)

2
}

= max{p(y2n, y2n+1), p(y2n+1, y2n), p(y2n+2, y2n+1),

p(y2n, y2n+2) + p(y2n+1, y2n+1)

2
}

= max{p(y2n, y2n+1), p(y2n+2, y2n+1)},

since

p(y2n, y2n+2) + p(y2n+1, y2n+1) ≤ p(y2n, y2n+1) + p(y2n+1, y2n+2).

If for some n, max{p(y2n, y2n+1), p(y2n+2, y2n+1)} = p(y2n+2, y2n+1), then
by (5),

M(x2n, x2n+1) = p(y2n+1, y2n+2),

and ψ(p(y2n+1, y2n+2)) ≤ ψ(p(y2n+1, y2n+2)) − ϕ(p(y2n+1, y2n+2)), so ϕ(p
(y2n+1, y2n+2)) = 0, that is a contradiction with respect to p(y2n+1, y2n+2)
> 0. Thus,

p(y2n+1, y2n+2) ≤M(x2n, x2n+1) = p(y2n, y2n+1) for each n ∈ N.

By the same way, we may find

p(y2n+2, y2n+3) ≤M(x2n+1, x2n+2) = p(y2n+1, y2n+2) for each n ∈ N.

The two above inequalities yield that

(6) p(yn+1, yn+2) ≤M(xn, xn+1) = p(yn, yn+1) for each n ∈ N.
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Thus, the sequence {p(yn, yn+1)} is non-increasing and so there exists δ ≥ 0
such that

lim
n→+∞

p(yn, yn+1) = δ.

By (6), we have
lim

n→+∞
M(xn, xn+1) = δ,

Suppose that δ > 0. Since

ψ(p(y2n+1, y2n+2)) ≤ ψ(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1)),

so taking lim sup
n→+∞

in above inequality

lim sup
n→+∞

ψ(p(y2n+1, y2n+2)) ≤ lim sup
n→+∞

ψ(M(x2n, x2n+1))

− lim inf
n→+∞

ϕ(M(x2n, x2n+1)).

By continuity of ψ and lower semi-continuity of ϕ, we get ψ(δ) ≤ ψ(δ)−ϕ(δ),
so ϕ(δ) = 0, i.e, δ = 0, a contradiction. We conclude that

(7) lim
n→+∞

p(yn, yn+1) = lim
n→+∞

M(xn, xn+1) = 0.

By definition of ps, we have ps(x, y) ≤ 2p(x, y) for each x, y ∈ X, so (7)
gives us

(8) lim
n→+∞

ps(yn, yn+1) = 0.

We shall show that {yn} is a Cauchy sequence in the partial metric space
(X, p). From Lemma 1, we need to prove that {yn} is a Cauchy sequence
in the metric space (X, ps). For this, it is sufficient to prove that {y2n} is
a Cauchy in (X, ps). Suppose to the contrary. Then, there is a ε > 0 such
that for an integer k there exist integers 2m(k) > 2n(k) > k such that

(9) ps(y2n(k), y2m(k)) > ε.

For every integer k, let m(k) be the least positive integer exceeding n(k)
satisfying (9) and such that

(10) ps(y2n(k), y2m(k)−2) ≤ ε.

Now, using (9), (10) and the triangular inequality

ε < ps(y2n(k), y2m(k)) ≤ ps(y2n(k), y2m(k)−2) + ps(y2m(k)−2, y2m(k)−1)

+ ps(y2m(k)−1, y2m(k))

≤ ε+ ps(y2m(k)−2, y2m(k)−1) + ps(y2m(k)−1, y2m(k)).
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Then by (8) it follows that

(11) lim
k→+∞

ps(y2n(k), y2m(k)) = ε.

Also, by the triangle inequality, we have

|ps(y2n(k), y2m(k)−1)− ps(y2n(k), y2m(k))| ≤ ps(y2m(k)−1, y2m(k)).

From (8)-(11) we get

(12) lim
k→+∞

ps(y2n(k), y2m(k)−1) = ε.

Similarly, we have

(13) lim
k→+∞

ps(y2n(k)+1, y2m(k)) = ε.

On the other hand, by definition of ps,

ps(y2n(k), y2m(k)) = 2p(y2n(k), y2m(k))− p(y2n(k), y2n(k))− p(y2m(k), y2m(k)),

ps(y2n(k), y2m(k)−1) = 2p(y2n(k), x2m(k)−1)− p(y2n(k), y2n(k))
− p(y2m(k)−1, y2m(k)−1),

hence letting k → +∞, by (11), (12), the condition (p3) in Definition 1 and
from (7), we have

(14) lim
k→+∞

p(y2n(k), y2m(k)) =
ε

2
.

(15) lim
k→+∞

p(y2n(k), y2m(k)−1) =
ε

2
.

Similarly, from (13), we have

(16) lim
k→+∞

p(y2n(k)+1, y2m(k)) =
ε

2
.

We have

M(x2n(k), x2m(k)−1) = max{p(Sx2n(k), Tx2m(k)−1), p(fx2n(k), Sx2n(k)),

p(gx2m(k)−1, Tx2m(k)−1),

p(Sx2n(k), gx2m(k)−1) + p(fx2n(k), Tx2n(k))

2
}

= max{p(y2n(k), y2m(k)−1), p(y2n(k)+1, y2n(k)),

p(y2m(k), y2m(k)−1),

p(y2n(k), y2m(k)) + p(y2n(k)+1, y2n(k))

2
},
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thus, from (7), (14) and (15), we get

lim
k→+∞

M(x2n(k), x2m(k)−1) = max{ε
2
, 0, 0,

ε

4
} =

ε

2
.

From (3), we have

ψ(p(y2n(k)+1, y2m(k))) = ψ(p(fx2n(k), gx2m(k)−1))

≤ ψ(M(x2n(k), x2m(k)−1))− ϕ(M(x2n(k), x2m(k)−1)).

Letting k → +∞ and referring to (16), we obtain ψ( ε2) ≤ ψ( ε2) − ϕ( ε2),
ψ( ε2) = 0, it is a contradiction as ε > 0. Thus we proved that {yn} is a
Cauchy sequence in the metric space (X, ps).

Since (X, p) is complete, then from Lemma 1, (X, ps) is a complete metric
space. Therefore, the sequence {yn} converges to some z ∈ X, that is,

lim
n→+∞

ps(yn, z) = 0. Again, from Lemma 1,

p(z, z) = lim
n→+∞

p(yn, z) = lim
n→+∞

p(yn, yn).

On the other hand, thanks to (7) and the condition (p2) from Definition 1

lim
n→+∞

p(yn, yn) = 0,

so it follows that

(17) p(z, z) = lim
n→+∞

p(yn, z) = lim
n→+∞

p(yn, yn) = 0.

This implies that

(18) lim
n→+∞

p(y2n, z) = lim
n→+∞

p(y2n+1, z) = 0.

Thus, from (4) and (17) we have

(19) lim
n→+∞

p(fx2n, z) = lim
n→+∞

p(Tx2n+1, z) = p(z, z) = 0

and

(20) lim
n→+∞

p(gx2n−1, z) = lim
n→+∞

p(Sx2n, z) = p(z, z) = 0.

Assume that (a) holds. Using the partial-compatibility of the pair {f, S},
(19) and (20), we get

(21) lim
n→+∞

p(fSx2n, Sfx2n) = 0,
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and since p(z, z) = 0, then again the partial-compatibility of the pair {f, S}
gives that

p(Sz, Sz) = 0.

Assume that S is continuous, then since {yn} converges to z in (X, p), hence

(22) lim
n→+∞

p(Sy2n, Sz) = p(Sz, Sz) = 0.

By triangular inequality (still holds for partial metric spaces)

p(fSx2n+2, Sy2n+2) ≤ p(fSx2n+2, Sfx2n+2) + p(Sfx2n+2, Sz)

+ p(Sz, Sy2n+2)

= p(fSx2n+2, Sfx2n+2) + p(Sy2n+3, Sz)

+ p(Sz, Sy2n+2).

Letting n→ +∞ and having in mind (21) and (22)

(23) lim
n→+∞

p(fSx2n, Sy2n+2) = 0.

Moreover, using triangular inequality, (17) and (22), it is clear that

(24) lim
n→+∞

p(Sy2n+2, y2n+2) = lim
n→+∞

p(Sy2n+2, y2n+1) = p(Sz, z).

On the other hand, since

p(fSx2n+2, y2n+1) ≤ p(fSx2n+2, Sfx2n+2) + p(Sfx2n+2, Sz)

+ p(Sz, z) + p(z, y2n+2)

= p(fSx2n+2, Sfx2n+2) + p(Sy2n+3, Sz)

+ p(Sz, z) + p(z, y2n+2),

and

p(Sz, z) ≤ p(Sz, Sy2n+3) + p(Sfx2n+2, fSx2n+2)

+ p(fSx2n+2, y2n+1) + p(y2n+1, z),

then, letting n→ +∞ and from (17), (21) and (22)

(25) lim
n→+∞

p(fSx2n+2, y2n+1) = p(Sz, z).

Now, we have

M(Sx2n+2, x2n+1) = max{p(SSx2n+2, Tx2n+1), p(fSx2n+2, SSx2n+2),

p(gx2n+1, Tx2n+1),

p(SSx2n+2, gx2n+1) + p(fSx2n+2, Tx2n+1)

2
}

= max{p(Sy2n+2, y2n+1), p(fSx2n+2, Sy2n+2),

p(y2n+2, y2n+1),

p(Sy2n+2, y2n+2) + p(fSx2n+2, y2n+1)

2
}.
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By (7), (23)-(25), we get

(26) lim
n→+∞

M(Sx2n+2, x2n+1) = p(Sz, z).

Also, x2n+1 ≤ gx2n+1 = Sx2n+2. From (3), we have

ψ(p(fSx2n+2, y2n+2)) = ψ(p(fSx2n+2, gx2n+1))(27)

≤ ψ(M(Sx2n+2, x2n+1))− ϕ(M(Sx2n+2, x2n+1)),

Taking n→ +∞, we get using (25), (26), the continuity of ψ and the lower
semi-continuity of ϕ, we obtain

ψ(p(Sz, z)) ≤ ψ(p(Sz, z))− ϕ(p(Sz, z)),

that is p(Sz, z) = 0, so Sz = z.
Now, x2n+1 ≤ gx2n+1 and gx2n+1 → z as n → +∞, x2n+1 ≤ z and (3)

becomes

ψ(p(fz, y2n+2)) = ψ(p(fz, gx2n+1))(28)

≤ ψ(M(z, x2n+1))− ϕ(M(z, x2n+1)),

where

M(z, x2n+1) = max{p(Sz, Tx2n+1), p(fz, Sz), p(gx2n+1, Tx2n+1),

p(Sz, gx2n+1) + p(fz, Tx2n+1)

2
}

= max{p(z, y2n+1), p(fz, z), p(y2n+2, y2n+1),

p(z, y2n+2) + p(fz, y2n+1)

2
}

→ max{0, p(fz, z), 0, p(fz, z)
2

} = p(fz, z) as n→ +∞.

Taking n → +∞ in (28), we have ψ(p(fz, z)) ≤ ψ(p(fz, z)) − ϕ(p(fz, z)),
and so p(fz, z) = 0, then fz = z.

Since fX ⊆ TX, there exists a point w ∈ X such that fz = Tw. Suppose
that p(gw, Tw) 6= 0. Since z = fz = Tw ≤ fTw ≤ w implies z ≤ w. From
(3), we obtain

(29) ψ(p(Tw, gw)) = ψ(p(fz, gw)) ≤ ψ(M(z, w))− ϕ(M(z, w)),

where

M(z, w) = max{p(Sz, Tw), p(fz, Sz), p(gw, Tw),

p(Sz, gw) + p(fz, Tw)

2
}

= max{p(Tw, Tw), p(Tw, Tw), p(gw, Tw),
p(Tw, gw) + p(z, z)

2
}

= p(Tw, gw).
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Thus, (29) becomes ψ(p(Tw, gw)) ≤ ψ(p(Tw, gw))− ϕ(p(Tw, gw)), that is,
p(Tw, gw) = 0, so Tw = gw. Since g and T are weakly compatible, hence
gz = gfz = gTw = Tgw = Tfz = Tz. We deduce that z is a coincidence
point of g and T .

Also, since x2n ≤ fx2n and fx2n → z as n → +∞, so x2n ≤ z and then
from (3)

ψ(p(y2n+1, gz)) = ψ(p(fx2n, gz)) ≤ ψ(M(x2n, z))− ϕ(M(x2n, z)),

where

M(x2n, z) = max{p(Sx2n, T z), p(fx2n, Sx2n), p(gz, Tz),

p(Sx2n, gz) + p(fx2n, T z)

2
}

= max{p(y2n, gz), p(y2n+1, y2n), p(gz, gz),

p(y2n, gz) + p(y2n+1, gz)

2
}

→ max{p(z, gz), 0, p(gz, gz), p(z, gz) + p(z, gz)

2
}

= p(z, gz) as n→ +∞,

since p(gz, gz) ≤ p(z, gz) because of property (p3) in Definition 1. On
taking limit as n→ +∞, we have ψ(p(z, gz))−ψ(p(z, gz))−ϕ(p(z, gz)), so
p(z, gz) = 0, hence z = gz. Therefore, fz = gz = Sz = Tz = z. The proof
is similar when f is continuous.

Similarly, the result follows when (b) holds.
Now suppose that set of common fixed points of f , g, S and T is well

ordered. We claim that common fixed point of f , g, S and T is unique.
Assume on contrary that, fu = gu = Su = Tu = u and fv = gv = Sv =
Tv = v but u 6= v, so p(u, v) 6= 0. By supposition, we can replace x by u
and y by v in (3) to obtain

ψ(p(u, v)) = ψ(p(fu, gv)) ≤ ψ(M(u, v))− ϕ(M(u, v)),

where

M(u, v) = max{p(Su, Tv), p(fu, Su), p(gv, Tv),
p(Su, gv) + p(fu, Tv)

2
}

= {p(u, v), p(u, u), p(v, v),
p(u, v) + p(u, v)

2
} = p(u, v).

This yields that ψ(p(u, v)) ≤ ψ(p(u, v))− ϕ(p(u, v)), then ϕ(p(u, v)) = 0 so
p(u, v) = 0, it is contradiction. Hence u = v. Conversely, if f , g, S and T
have only one common fixed point then the set of common fixed point of
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f , g, S and T being singleton is well ordered. This completes the proof of
Theorem 2. �

Now, we state some corollaries.

Corollary 1. Let (X,≤, p) be a partially ordered complete partial metric
space. Let f , S and T be self maps on X, (T, f) and (S, f) be partially
weakly increasing with fX ⊆ TX and fX ⊆ SX, and dominating map f is
weak annihilator of T and S. Suppose that there exist control functions ψ
and ϕ such that for every two comparable elements x, y ∈ X,

ψ(p(fx, fy)) ≤ ψ(max{p(Sx, Ty), p(fx, Sx), p(fy, Ty),

p(Sx, fy) + p(fx, Ty)

2
})

− ϕ(max{p(Sx, Ty), p(fx, Sx), p(fy, Ty),

p(Sx, fy) + p(fx, Ty)

2
}),

is satisfied. If for a non-decreasing sequence {xn} with xn ≤ yn for all n
and yn → u implies that xn ≤ u and either

(a) {f, S} are compatible, f or S is continuous and {f, T} are weakly
compatible or

(b) {f, T} are compatible, f or T is continuous and {f, S} are weakly
compatible,

then f , S and T have a common fixed point. Moreover, the set of common
fixed points of f , S and T is well ordered if and only if f , S and T have one
and only one common fixed point.

Proof. It follows by taking g = f in Theorem 2. �

Corollary 2. Let (X,≤, p) be a partially ordered complete partial metric
space. Let f , g and T be self maps on X, (T, f) and (T, g) be partially
weakly increasing with fX ⊆ TX and gX ⊆ TX, and dominating maps f
and g are weak annihilators of T . Suppose that there exist control functions
ψ and ϕ such that for every two comparable elements x, y ∈ X,

ψ(p(fx, gy)) ≤ ψ(max{p(Tx, Ty), p(fx, Tx), p(gy, Ty),

p(Tx, gy) + p(fx, Ty)

2
})

− ϕ(max{p(Tx, Ty), p(fx, Tx), p(gy, Ty),

p(Tx, gy) + p(fx, Ty)

2
}),

is satisfied. If for a non-decreasing sequence {xn} with xn ≤ yn for all n
and yn → u implies that xn ≤ u and either
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(a) {f, T} are compatible, f or T is continuous and {f, T} are weakly
compatible or

(b) {g, T} are compatible, g or T is continuous and {g, T} are weakly
compatible,

then f , g and T have a common fixed point. Moreover, the set of common
fixed points of f , g and T is well ordered if and only if f , g and T have one
and only one common fixed point.

Proof. It follows by taking S = T in Theorem 2. �

Corollary 3. Let (X,≤, p) be a partially ordered complete partial metric
space. Let f and T be self maps on X, (T, f) be partially weakly increasing
with fX ⊆ TX, and dominating map f is weak annihilator of T . Suppose
that there exist control functions ψ and ϕ such that for every two comparable
elements x, y ∈ X,

ψ(p(fx, fy)) ≤ ψ(max{p(Tx, Ty), p(fx, Tx), p(fy, Ty),

p(Tx, fy) + p(fx, Ty)

2
})

− ϕ(max{p(Tx, Ty), p(fx, Tx), p(fy, Ty),

p(Tx, fy) + p(fx, Ty)

2
}),

is satisfied. If for a non-decreasing sequence {xn} with xn ≤ yn for all n and
yn → u implies that xn ≤ u. Assume that {f, T} are compatible, f or T is
continuous and {f, T} are weakly compatible, then f and T have a common
fixed point. Moreover, the set of common fixed points of f and T is well
ordered if and only if f and T have one and only one common fixed point.

Proof. It follows by taking g = f in Corollary 2. �
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