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1. Introduction

Let X be a normed space, Cbe a nonempty subset of X and let T : C → C
be a given mapping. Then T is said to be asymptotically [4] if there exists a
sequence {kn}, kn ≥ 1 with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖

for all x, y ∈ C and each n ≥ 1. The weaker definition [9] requires that

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0

for each x, y ∈ C and that TN be continuous for some N ≥ 1.
Bruck et al.[1] gave a definition which is somewhere between these two.

T is called asymptotically nonexpansive mapping in the intermediate sense
[1] provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0

T is said to be uniformly L−Lipschitzian if there exist a constant L > 0
such that
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‖Tnx− Tny‖ ≤ L‖x− y‖

for all x, y ∈ C and all n ≥ 1.
It is clear that every nonexpansive mapping is asymptotically nonexpan-

sive and every asymptotically nonexpansive mapping is asymptotically in the
intermediate sense. It is known [16] that if Cis a nonempty closed bounded
subset of a uniformly convex Banach space and T : C → C is asymptotically
nonexpansive in the intermediate sense that F (T ) 6= ϕ.

Example 1 ([8]). Let X = R, C = [−1π ,
1
π ] and |k| < 1. For each x ∈ C

define

T (x) =

{
kx sin 1

x if x 6= 0,
0 if x = 0.

Then T is asymptotically nonexpansive mapping in the intermediate
sense, but is not a Lipschitzian mapping but Tnx → 0 uniformly so that it
is not asymptotically nonexpansive mapping.

Iterative methods for asymptotically nonexpansive mappings in Banach
spaces including Mann and Ishikawa iteration process have been further
studied by various authors to solve the nonlinear operator equations as well
as variational inequalities in Hilbert spaces and Banach spaces. Noor [14,15]
introduced three step iterative methods and study the approximate solution
of variational inequalities in Hilbert spaces by using the technique of up-
dating the solution and the auxiliary principle. Glowinski and Le Tallec [3]
used three step iterative scheme to solve the elastoviscoplasticity problem,
liquid crystal theory and eigenvalue problems. In 1998, Haubruge, Nguyen
and Strocliot [5] studied the convergence analysis of three scheme of [3] and
obtain new splitting type algorithm for solving variational inequalities, sep-
arable convex programming and minimization of a sum of convex functions.
Recently Xu and Noor [26] introduced and studied a three step iteration with
errors scheme to approximate fixed points of asymptotically nonexpansive
mappings of asymptotically in Bach spaces. Cho et al.[2] extended the worf
of Xu and Noor to three step iteration scheme with errors and gave weak
& strong convergence theorems for asymptotically mappings. Moreover,
Suantai [22] gave weak and strong convergence theorem for a new three step
iterative scheme which can be viewed as an extension for three step and
two step iterative schemes of Glowinski and Le Tallec [3], Noor [14], Xu and
Noor [26], Ishikawa [7].

Inspired and motivated by these works we introduced three step iterative
scheme for asymptotically nonexpansive mappings in the intermediate sense
as follows:

Let X be a normed space, Cbe a nonempty convex subset of X and
T : C → C be a given mapping. Then for a given x1 ∈ C compute the
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sequence {xn}, {yn} and {zn} by the iterative scheme of asymptotically
nonexpansive mappings.

xn+1 = (1− αn − βn − γn)xn + αnT
nyn + βnT

nzn + γnT
nxn(1)

yn = (1− bn − cn)xn + bnT
nzn + cnT

nxn

zn = (1− an)xn + anT
nxn n ≥ 1

where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {bn + cn}, {αn + βn + γn} are ap-
propriate sequences in [0, 1]. The iterative scheme (1) is called the modified
Noor iteration scheme [21]. Noor iterations include the Mann & Ishikawa
iterations as special cases. If cn = βn = γn then (1) reduces to Noor iteration
defined by Xu and Noor [26]:

xn+1 = (1− αn)xn + αnT
nyn(2)

yn = (1− bn)xn + bnT
nzn

zn = (1− an)xn + anT
nxn n ≥ 1

where {an}, {bn}, {αn}are appropriate sequences in [0, 1].
For an = cn = βn = γn = 0 then (1) reduces to the usual Ishikawa

iterative scheme.

xn+1 = (1− αn)xn + αnT
nyn(3)

yn = (1− bn)xn + bnT
nxn, n ≥ 1

Where {bn}, {αn} are appropriate sequences in [0, 1].
For an = bn = cn = βn = γn = 0 then (1) reduces to the usual Mann

iteration.

(4) xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1

Where {αn} are appropriate sequences in [0, 1].
The purpose of this paper is to establish several strong and weal conver-

gence theorems using (1) for asymptotically nonexpansive mappings in the
intermediate sense in the uniformly convex Banach space.

2. Preliminaries

To prove our main results we recall some well results and definitions.

Definition 1 ([16]). A Banach space X is said to satisfy Opial’s condi-
tion if xn → x and x 6= y imply lim supn→∞ ‖xn−x‖ < lim supn→∞ ‖xn−y‖.
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Definition 2 ([1]). A Banach space X is said to satisfy τ−Opial’s con-
dition if for every bounded sequence {xn} ∈ X that τ−converges to x ∈ X
then

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for every x 6= y, where τ is a Hausdorff linear topology on X.

A Banach space X has the uniform τ−Opial property if for each c > 0
there exist r > 0 with the property that for each x ∈ X and each sequence
{xn} such that {xn} is τ−convergent to 0 and 1 ≤ lim supn→∞ ‖xn‖ <
∞, ‖x‖ ≥ c imply that lim sup

n→∞
‖xn − x‖ ≥ 1 + r.

Cleary uniform τ−Opial property implies τ−Opial’s condition. Note that
a uniformly convex space which has the τ−Opial condition necessarily has
the uniform τ -Opial property, τ is a Hausdorff linear topology on X.

Definition 3 ([21]). Let {xn} be a sequence in C. A mapping T :
C → C with nonempty fixed point set F (T ) in C is said to satisfy condition
(A) with respect to the sequence {xn} if there is a nondecreasing function
f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that
f(d(xn, F (T ))) ≤ ‖xn − Txn‖ for all n ≥ 1.

Lemma 1 ([23]). Let {an}, {bn} and {δn} be sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn for all n = 1, 2, · · ·

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then

(a) lim
n→∞

an exists;

(b) lim
n→∞

an = 0 whenever lim inf
n→∞

an = 0.

Lemma 2 ([24]). Let p > 1, r > 0 be two fixed numbers. Then a Banach
space X is uniformly convex if and only if there exists a continuous, strictly
increasing and convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − wp(λ)g(‖x− y‖)

for all x, y ∈ Br = {x ∈ X : ‖x‖ ≤ r} and λ ∈ [0, 1], where wp(λ) =
λ(1− λ)p + λp(1− λ).

Lemma 3 ([2]). Let X be a uniformly convex Banach space and Br =
{x ∈ X : ‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing
and convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

‖λx+ βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2 − λβg(‖x− y‖)
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for all x, y ∈ Br and λ, β, γ ∈ [0, 1], with λ+ β + γ = 1.

From Lemma 3 we easily get

Lemma 4. Let X be a uniformly convex Banach space and Br = {x ∈ X :
‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing and
convex function g : [0,∞)→ [0,∞), g (0) = 0 such that

‖λx+ βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2

− 1

2
γ(λg(‖x− z‖) + βg(‖y − z‖))

for all x, y ∈ Br and λ, β, γ ∈ [0, 1], with λ+ β + γ = 1.

Lemma 5 ([13]). Let X be a uniformly convex Banach space and Br =
{x ∈ X : ‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing
and convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

‖λx+ µy + ξz + νw‖2 ≤ λ‖x‖2 + µ‖y‖2 + ξ‖z‖2 + ν‖w‖2

− 1

3
ν(λg(‖x− w‖) + µg(‖y − w‖) + ξg(‖z − w‖)).

For every x, y, z, w ∈ Br and λ, µ, ξ, ν ∈ [0, 1], with λ+ µ+ ξ + ν = 1.

Lemma 6 ([1]). Suppose a Banach space X has the uniformly τ -Opial’s
condition. C is a norm bounded sequentially τ -compact subset of a X and
T : C → C is asymptotically nonexpansive in the weak sense. If {yn} is
a sequence in C such that limn→∞ ‖yn − z‖ exists for each fixed point z of
T and if {yn − T kyn} is τ -convergent to 0 for each k ∈ N , then {yn} is
τ -convergent to a fixed point of T .

3. Main results

In this section we prove our main results. For we begin with the following
lemmas.

Lemma 7. Let X be a uniformly convex Banach space and let C be a
nonempty closed, bounded and convex subset of X. Let T be an asymptoti-
cally nonexpansive mapping in the intermediate sense.
Put dn = sup

x,y∈C
(‖Tnx −Tny‖ − ‖x− y‖) ∨ 0, ∀n ≥ 1 so that

∑∞
n=1 dn <∞.

Let {an}, {bn}, {cn}, {αn}, {βn}, {γn} be real sequences in [0, 1] such
that αn + βn + γn and bn + cn in [0, 1] for all n ≥ 1. For a given x1 ∈ C, let
the sequence {xn}, {yn} and {zn} be the sequences defined as in (1).

(i) If q is a fixed point of T , then lim
n→∞

‖xn − q‖ exists;
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(ii) If 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

(αn + βn + γn) < 1 then

lim
n→∞

‖Tnyn − xn‖ = 0;

(iii) If 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

(αn + βn + γn) < 1 then

lim
n→∞

‖Tnzn − xn‖ = 0;

(iv) If 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

(αn + βn + γn) < 1 or

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

(αn + βn + γn) < 1 and

lim sup
n→∞

(bn + cn) < 1 then lim
n→∞

‖Tnxn − xn‖ = 0.

Proof. Existence of fixed point of T follows from [9].
So, F (T ) 6= ϕ. Let x∗ ∈ F (T ). Choose a real number r > 0 such that

C ⊆ Br and C − C ⊆ Br. By Lemma 2, there exists a continuous, strictly
increasing and convex function g1 : [0,∞)→ [0,∞), g1(0) = 0 such that

(5) ‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − w2(λ)g1(‖x− y‖)

for all x, y ∈ Br = {x ∈ X : ‖x‖ ≤ r} and λ ∈ [0, 1], where w2(λ) =
λ(1− λ)2 + λ2(1− λ). From (5) and (1), we have

‖zn − x∗‖2 = ‖(1− an)(xn − x∗) + an(Tnxn − x∗)‖2(6)

≤ an‖Tnxn − x∗‖2 + (1− an)‖xn − x∗‖2

− w2(an)g1(‖Tnxn − xn‖)
≤ an(‖xn − x∗‖+ dn)2 + (1− an)‖xn − x∗‖2

− w2(an)g1(‖Tnxn − xn‖)
≤ ‖xn − x∗‖2 + 2dnan‖xn − x∗‖+ and

2
n.

By Lemma 4, there exists a continuous strictly increasing and convex func-
tion g2 : [0,∞)→ [0,∞), g2(0) = 0 such that

‖λx+ βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2(7)

− 1

2
γ(λg2(‖x− z‖) + βg2(‖y − z‖))

for all x, y, z ∈ Br and all λ, β, γ ∈ [0, 1] with λ+ β + γ = 1. It follows from
(6) and (1) that

‖yn − x∗‖2 = ‖bn(Tnzn − x∗) + (1− bn − cn)(xn − x∗) + cn(Tnxn − x∗)‖2(8)

≤ bn‖Tnzn − x∗‖2 + (1− bn − cn)‖xn − x∗‖2 + cn‖Tnxn − x∗‖2

− 1

2
(1− bn − cn)(bng2(Tnzn − xn) + cng2(Tnxn − xn)
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≤ bn(‖zn − x∗‖+ dn)2 + (1− bn − cn)‖xn − x∗‖2 + cn(‖xn − x∗‖+ dn)2

−1

2
bn(1− bn − cn)g2(‖Tnzn − xn‖)

= bn‖zn − x∗‖2 + 2bndn‖zn − x∗‖+ bnd
2
n

+ (1− bn − cn)‖xn − x∗‖2 + cn‖xn − x∗‖2

+ 2cndn‖xn − x∗‖+ cnd
2
n −

1

2
bn(1− bn − cn)g2(‖Tnzn − xn‖)

By Lemma 5, there exist a continuous strictly increasing and convex func-
tion g3 : [0,∞)→ [0,∞), with g3(0) = 0 such that

‖λx+ µy + ξz + νw‖2 ≤ λ‖x‖2µ‖y‖2 + ξ‖z‖2 + ν‖w‖2(9)

− 1

3
ν(λg3(‖x− w‖) + µg3(‖y − w‖)

+ ξg3(‖z − w‖))

for all x, y, z, w ∈ Br and all λ, µ, ξ, ν ∈ [0, 1] with λ + µ + ξ + ν = 1. It
follows from (1) and using (6), (7), (8), (9), we get

‖xn+1 − x∗‖2 = ‖αn(Tnyn − x∗) + (1− αn − βn − γn)(xn − x∗)(10)

+ βn(Tnzn − x∗) + γn(Tnxn − x∗)‖2

≤ αn‖Tnyn − x∗‖2 + βn‖Tnzn − x∗‖2 + γn‖Tnxn − x∗‖2

+ (1− αn − βn − γn)‖xn − x∗‖2 −
1

3
(1− αn − βn − γn)

× {αng3(‖Tnyn − xn‖) + βng3(‖Tnzn − xn‖) + γng3(‖Tnxn − xn‖)}
≤ αn(‖yn − x∗‖+ dn)2 + βn(‖zn − x∗‖+ dn)2 + γn(‖xn − x∗‖+ dn)2

+ (1− αn − βn − γn)‖xn − x∗‖2 −
1

3
(1− αn − βn − γn)

×{αng3(‖Tnyn − xn‖) + βng3(‖Tnzn − xn‖) + γng3(‖Tnxn − xn‖)}
≤ αn[(‖yn − x∗‖2 + 2dn‖yn − x∗‖+ d2n)] + βn[(‖zn − x∗‖2

+ 2dn‖zn − x∗‖+ d2n] + γn[(‖xn − x∗‖2 + 2dn‖xn − x∗‖+ d2n)]

+ (1− αn − βn − γn)‖xn − x∗‖2 −
1

3
(1− αn − βn − γn)

×{αng3(‖Tnyn − xn‖) + βng3(‖Tnzn − xn‖) + γng3(‖Tnxn − xn‖)}

≤
{
bn‖zn − x∗‖2 + 2bndn‖zn − x∗‖+ bnd

2
n + (1− bn − cn)‖xn − x∗‖2

+ cn‖xn − x∗‖2 + 2cndn‖xn − x∗‖+ cnd
2
n

− 1

2
bn(1− bn − cn)g2(Tnzn − xn)

}
+ 2αndn{(1− bn − cn)‖xn − x∗‖+ bn‖xn − x∗‖
+ anbndn + cn‖xn − x∗‖+ cndn}+ αnd

2
n + βn{‖xn − x∗‖2

+ 2andn‖xn − x∗‖+ and
2
n}+ 2βndn{‖xn − x∗‖+ andn}

+ βnd
2
n + γn‖xn − x∗‖2 + γnd

2
n + 2γndn‖xn − x∗‖

+ (1− αn − βn − γn)‖xn − x∗‖2
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− 1

3
(1− αn − βn − γn){αng3(‖Tnyn − xn‖)

+ βng3(‖Tnzn − xn‖) + γng3(‖Tnxn − xn‖)}

≤
{
bn‖xn − x∗‖2 + 2anbndn‖xn − x∗‖+ anbnd

2
n + 2bndn‖xn − x∗‖

+ bnd
2
n + (1− bn − cn)‖xn − x∗‖2 + cn‖xn − x∗‖2

+ 2cndn‖xn − x∗‖+ cnd
2
n −

1

2
bn(1− bn − cn)g2(Tnzn − xn)

}
+ 2αn(1− bn − cn)dn‖xn − x∗‖+ 2αnbndn‖xn − x∗‖
+ 2anαnbnd

2
n + 2αncndn‖xn − x∗‖+ 2αncnd

2
n + 2αnd

2
n + βn‖xn − x∗‖2

+ 2anβndn‖xn − x∗‖+ 2anβnd
2
n + 2βndn‖xn − x∗‖+ 2anβnd

2
n + βnd

2
n

+ γn‖xn − x∗‖2 + γnd
2
n + 2γndn‖xn − x∗‖+ (1− αn − βn − γn)‖xn − x∗‖2

− 1

2
bn(1− bn − cn)g2(Tnzn − xn)− 1

3
(1− αn − βn − γn)

× {αng3(‖Tnyn − xn‖) + βng3(‖Tnzn − xn‖) + γng3(‖Tnxn − xn‖)}
≤ ‖xn − x∗‖2 + [2anbnαn + 2αnbn + 2αncn + 2anbn + 2αn + 2βn + 2γn]

× dn‖xn − x∗‖+ [3anbnαndn + 3αncndn + 3anβndn + αnbndn

+ (αn + βn + γn)dn]dn ≤ ‖xn − x∗‖2

+
{

[2anbnαn + 2αn(bn + cn) + 2anbn + 2αn + 2βn + 2γn]‖xn − x∗‖

+ [3anbnαndn + 3αncndn + 3anβndn + αnbndn + (αn + βn + γn)dn]
}
dn.

Since {dn} and K are bounded, so there exist a constant M > 0 such that

[2anbnαn + 2αn(bn + cn) + 2anbn + 2αn + 2βn + 2γn]‖xn − x∗‖(11)

+ [3anbnαndn + 3αncndn + 3anβndn + αnbndn

+ (αn + βn + γn)dn] ≤M

From (10) and (11), we get

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 +Mdn(12)

− 1

2
αnbn(1− bn − cn)g2(‖Tnzn − xn‖)

− 1

3
(1− αn − βn − γn){αng3(‖Tnyn − xn‖)

+ βng3(‖Tnzn − xn‖) + γng3(‖Tnxn − xn‖)}

Thus it follows from (12) that

αn(1− αn − βn − γn)g3(‖Tnyn − xn‖)(13)

≤ 3(‖xn − x∗‖2 − ‖xn+1 − x∗‖2 +Mdn)

βn(1− αn − βn − γn)g3(‖Tnzn − xn‖)(14)

≤ 3(‖xn − x∗‖2 − ‖xn+1 − x∗‖2 +Mdn)
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γn(1− αn − βn − γn)g3(‖Tnxn − xn‖)(15)

≤ 3(‖xn − x∗‖2 − ‖xn+1 − x∗‖2 +Mdn)

αnbn(1− bn − cn)g2(‖Tnzn − xn‖)(16)

≤ 2(‖xn − x∗‖2 − ‖xn+1 − x∗‖2 +Mdn).

(i) If q ∈ F (T ), by taking x∗ = q in (12), we get

‖xn+1 − q‖2 ≤ ‖xn − q‖2 +Mdn

Since
∑∞

n=1 dn <∞, so from Lemma 1, we get limn→∞ ‖xn − q‖ exist.

(ii) If 0 < lim infn→∞ αn ≤ lim supn→∞(1−αn−βn) < 1, then there exists
n0 ∈ N and η, η′ ∈ (0, 1) such that 0 < η < αn and αn + βn + γn < η′ < 1.

From (13),

η(1− η′)g3(‖Tnyn− xn‖) ≤ 3(‖xn− x∗‖2−‖xn+1− x∗‖2 +Mdn) ∀ n ≥ n0.

Thus from the above relation we have

η(1− η′)
∞∑

n=n0

g3(‖Tnyn − xn‖) ≤ 3(‖xn0 − x∗‖2 +M

∞∑
n=n0

dn) <∞.

This implies that
∑∞

n=n0
g3(‖Tnyn−xn‖) <∞ which implies that lim

n→∞
g3(‖Tnyn

−xn‖) = 0.
Since g3 is strictly increasing and continuous at zero with g (0) = 0 so we

have
lim
n→∞

‖Tnyn − xn‖ = 0

(iii) Similarly if 0 < lim infn→∞ βn ≤ lim supn→∞(1 − αn − βn) < 1 .
Then from (14) and using the same process as in (ii) we can show that

lim
n→∞

‖Tnzn − xn‖ = 0

(iv) Finally, if 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

(αn + βn + γn) < 1. Then from

(15) we have
lim
n→∞

‖Tnxn − xn‖ = 0.

On the other hand, using (16) we can also prove that lim
n→∞

‖Tnxn−xn‖ = 0

as follows:
Consider

‖Tnxn − xn‖ ≤ ‖Tnxn − Tnyn‖+ ‖Tnyn − xn‖
≤ ‖xn − yn‖+ dn + ‖Tnyn − xn‖.
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Again ‖yn − xn‖ ≤ bn‖Tnzn − xn‖+ cn‖Tnxn − xn‖.
Thus

‖Tnxn − xn‖ ≤ ‖xn − yn‖+ dn + ‖Tnyn − xn‖(17)

≤ bn‖Tnzn − xn‖+ cn‖Tnxn − xn‖+ dn + ‖Tnyn − xn‖.

Let {mj} be a subsequence of {n}. If lim inf
j→∞

bmj > 0, then from (16), we get

lim
j→∞

‖Tmjzmj − xmj‖ = 0.

Again, since 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

(αn + βn + γn) < 1, then from (ii) we

get

lim
j→∞

∥∥Tmjymj − xmj

∥∥ = 0.

So from (17), we get

lim
j→∞

(1− cmj )‖Tmjxmj − xmj‖ = 0.

Thus we have

lim
j→∞

∥∥Tmjxmj − xmj

∥∥ = 0.

Again, if lim inf
j→∞

bmj = 0, then there exist a subsequence {bnk
} of {bmj}

such that

lim
k→∞

bnk
= 0.

From (ii) and (17), we get

lim
k→∞

(1− cnk
)‖Tnkxnk

− xnk
‖ = 0.

Thus we have

lim
k→∞

‖Tnkxnk
− xnk

‖ = 0.

Hence

lim
n→∞

‖Tnxn − xn‖ = 0.

�

Theorem 1. Let X be a uniformly convex Banach space and C be a
nonempty closed bounded and convex subset of X. Let T be an asymp-
totically nonexpansive self map of C in the intermediate sense. Put dn =
supx,y∈C(‖Tnx−Tny‖−‖x−y‖)∨0, for all n ≥ 1 so that

∑∞
n=1 dn <∞. Let

{xn} be the sequence defined as in (1) with {an}, {bn}, {cn}, {αn}, {βn},
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{γn} be real sequences in [0,1] such that αn + βn + γn and bn + cn are in
[0, 1] for all n ≥ 1 and

(i) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

(αn + βn + γn) < 1 or

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

(αn + βn + γn) < 1 and

(ii) lim sup
n→∞

(bn + cn) < 1

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. By Lemma 7 (iv) we have limn→∞ ‖Tnxn − xn‖ = 0. Now

‖Tnzn − xn‖ ≤ ‖Tnzn − Tnxn‖+ ‖Tnxn − xn‖(18)

≤ ‖zn − xn‖+ ‖Tnxn − xn‖+ dn

= an‖Tnxn − xn‖+ dn + ‖Tnxn − xn‖ → 0 as n→∞.

Again

‖Tnyn − xn‖ ≤ ‖Tnyn − Tnxn‖+ ‖Tnxn − xn‖(19)

≤ ‖yn − xn‖+ ‖Tnxn − xn‖+ dn

= bn‖Tnzn − xn‖+ cn‖Tnxn − xn‖
+ dn + ‖Tnxn − xn‖ → 0 as n→∞.

Now

‖xn+1−xn‖ ≤ αn‖Tnyn−xn‖+βn‖Tnzn−xn‖+γn‖Tnxn−xn‖ → 0 as n→∞.

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖(20)

+ ‖Tn+1xn+1 − Tn+1xn‖+ ‖Tn+1xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖

+ ‖xn+1 − xn‖+ dn+1 + ‖Tn+1xn − Txn‖
= 2‖xn+1 − xn‖+ ‖xn+1 − Tn+1xn+1‖

+ dn+1 + ‖Tn+1xn − Txn‖.

As T is uniformly continuous, we have

(21) lim
n→∞

‖xn − Txn‖ = 0.

Since T satisfies condition (A) with respect to the sequence {xn} so there
is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0
for all r ∈ (0,∞) such that

f(d(xn, F (T ))) ≤ ‖xn − Txn‖ → 0 as n→∞.
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So lim
n→∞

d(xn, F (T )) = 0. Now by (1) we get

‖xn+1 − x∗‖ ≤ (1− αn − βn − γn)‖xn − x∗‖+ αn‖Tnyn − x∗‖
+ βn‖Tnzn − x∗‖+ γn‖Tnxn − x∗‖

≤ (1− αn − βn − γn)‖xn − x∗‖+ αn(‖yn − x∗‖+ dn)

+ βn(‖zn − x∗‖+ dn) + γn(‖xn − x∗‖+ dn)

≤ ‖xn − x∗‖+ (αnbn + 2αn + 2βn + γn)dn

≤ ‖xn − x∗‖+ 6dn

Therefore

‖xn+m − x∗‖ ≤ ‖xn+m−1 − x∗‖+ 6dn+m−1

≤ ‖xn+m−2 − x∗‖+ 6dn+m−2 + 6dn+m−1
...

≤ ‖xn − x∗‖+ 6
n+m−1∑
j=n

dj .

Since lim
n→∞

d(xn, F (T )) = 0 and
∑∞

n=1 dn < ∞, for given ε > 0, there

exists N0 ∈ N such that d(xn, F (T )) < ε
2 ,
∑∞

j=n dj <
ε
24 , for all n ≥ N0. In

particular, d(xN0 , F (T )) < ε
4 . So there exists q ∈ F (T ) such that ‖xN0−q‖ =

d(xN0 , q) <
ε
4 .

From (18) we get

‖xn+m − xn‖ ≤ ‖xn+m − q‖+ ‖xn − q‖

≤ ‖xn − q‖+ 6
n+m−1∑
j=n

dj + ‖xn − q‖

≤ 2‖xn − q‖+ 6
n+m−1∑
j=n

dj

≤ 2‖xN0 − q‖+ 12

n−1∑
j=N0

dj + 6

n+m−1∑
j=n

dj

≤ 2‖xN0 − q‖+ 12
∞∑

j=N0

dj

< 2
ε

4
+ 12

ε

24
=
ε

2
+
ε

2
= ε.

Hence {xn}is a Cauchy sequence in C. So by completeness of C we get there
exists p ∈ C such that xn → p as n → ∞. By (17) and continuity of T we
get Tp = p that is p ∈ F (T ). This completes the proof of the theorem. �
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For γn = 0 in Theorem 1 we obtain the following result.

Corollary 1. Let X be a uniformly convex Banach space and C be a
nonempty closed bounded and convex subset of X. Let T be an asymptot-
ically nonexpansive self map of C in the intermediate sense. Put dn =
supx,y∈C(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0, for all n ≥ 1 so that

∑∞
n=1 dn <∞.

Let {xn} be the sequence defined as in (1) (with γn = 0) with {an}, {bn},
{cn}, {αn}, {βn} be real sequences in [0, 1] such that αn + βn and bn + cn
are in [0, 1] for all n ≥ 1 and

(i) 0 < lim inf
n→∞

αn ≤ lim supn→∞(αn + βn) < 1

(ii) lim sup
n→∞

(bn + cn) < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

For cn = βn = γn = 0 in Theorem 1 we obtain the following result.

Corollary 2. Let X be a uniformly convex Banach space and C be a
nonempty closed bounded and convex subset of X. Let T be an asymptot-
ically nonexpansive self map of C in the intermediate sense. Put dn =
supx,y∈C(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0, for all n ≥ 1 so that

∑∞
n=1 dn <∞.

Let {xn} be the sequence defined as in (2) with {an}, {bn}, {αn} be real
sequences in [0, 1] for all n ≥ 1 and

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(ii) lim sup
n→∞

bn < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

For an = cn = βn = γn = 0 in Theorem 1 we obtain the following result.

Corollary 3. Let X be a uniformly convex Banach space and C be a
nonempty closed bounded and convex subset of X. Let T be an asymptot-
ically nonexpansive self map of C in the intermediate sense. Put dn =
supx,y∈C(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0, for all n ≥ 1 so that

∑∞
n=1 dn <∞.

Let {xn} be the sequence defined as in (3) with {bn},{αn} be real sequences
in [0, 1] for all n ≥ 1 and

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(ii) lim sup
n→∞

bn < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Corollary 4. Let X be a uniformly convex Banach space and C be a
nonempty closed bounded and convex subset of X. Let T be an asymptot-
ically nonexpansive self map of C in the intermediate sense. Put dn =
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supx,y∈C(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0, for all n ≥ 1 so that
∑∞

n=1 dn <∞.
Let {xn} be the sequence defined as in (4) with{αn} be real sequences in [0, 1]
for all n ≥ 1 such that 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Since every asymptotically nonexpansive mapping is uniformly continu-
ous, we immediately get.

Corollary 5. Let X be a uniformly convex Banach space and C be a
nonempty closed, bounded and convex subset of X. Let T be asymptotically
nonexpansive self map of C with {kn} satisfying kn ≥ 1 and

∑∞
n=1(kn−1) <

∞. Let {xn} be the sequence defined as in (1) with {an}, {bn}, {cn}, {αn},
{βn}, {γn} be real sequences in [0, 1] such that αn +βn + γn and bn + cn are
in [0, 1] for all n ≥ 1 and

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

(αn + βn + γn) < 1,

(ii) lim supn→∞(bn + cn) < 1.
If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. Since
∑∞

n=1 dn =
∑∞

n=1(kn−1)diam(C) <∞, where diam(C) =
supx,y∈C ‖x − y‖ < ∞, so the conclusion follows immediately from Theo-
rem 1. �

Corollary 6. Let X be a uniformly convex Banach space and C be a
nonempty closed, bounded and convex subset of X. Let T be asymptotically
nonexpansive self map of C with {kn} satisfying kn ≥ 1 and

∑∞
n=1(kn−1) <

∞. Let {xn} be the sequence defined as in (1) (for γn = 0) with {an}, {bn},
{cn}, {αn}, {βn} be real sequences in [0, 1] such that αn + βn and bn + cn
are in [0, 1] for all n ≥ 1 and

(i) 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1
(ii) lim supn→∞(bn + cn) < 1

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. The conclusion follows from Corollary 1. �

Remark 1. Corollary 6 includes Theorem 2.2 and Theorem 2.3 of [26].

For cn = βn = γn = 0 in Theorem 1 we obtain the following result which
improves Theorem 2.1 of [25].

Corollary 7. Let X be a uniformly convex Banach space and C be a
nonempty closed, bounded and convex subset of X. Let T be asymptotically
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nonexpansive self map of C with {kn} satisfying kn ≥ 1 and
∑∞

n=1(kn−1) <
∞. Let {xn} be the sequence defined as in (2) with {an}, {bn}, {αn} be real
sequences in [0,1] such that

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 and

(ii) lim sup
n→∞

bn < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. The conclusion follows from Corollary 2. Since
∑∞

n=1 dn =∑∞
n=1(kn − 1)diam(C) <∞, where diam(C) = supx,y∈C ‖x− y‖ <∞. �

For an = cn = βn = γn = 0 in Theorem 1 we obtain the following result.

Corollary 8. Let X be a uniformly convex Banach space and C be a
nonempty closed, bounded and convex subset of X. Let T be asymptotically
nonexpansive self map of C with {kn} satisfying kn ≥ 1 and

∑∞
n=1(kn−1) <

∞. Let {xn} be the sequence defined as in (3) with {bn}, {αn} be real
sequences in [0, 1] such that

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1
(ii) lim supn→∞ bn < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. The conclusion follows from Corollary 3. Since
∑∞

n=1 dn =∑∞
n=1(kn − 1)diam(C) <∞, where diam(C) = supx,y∈C ‖x− y‖ <∞. �

For an = bn = cn = βn = γn = 0 in Theorem 1 we obtain the following
result.

Corollary 9. Let X be a uniformly convex Banach space and C be a
nonempty closed, bounded and convex subset of X. Let T be asymptotically
nonexpansive self map of C with {kn} satisfying kn ≥ 1 and

∑∞
n=1(kn−1) <

∞. Let {xn} be the sequence defined as in (4) with {αn} be real sequences
in [0, 1] such that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.

If T satisfies condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. The conclusion follows from Corollary 3. Since
∑∞

n=1 dn =∑∞
n=1(kn − 1)diam(C) <∞, where diam(C) = supx,y∈C ‖x− y‖ <∞. �

Remark 2. Corollary 9 extends Theorem 2.6 of [22].
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Theorem 2. Let X be a uniformly convex Banach space which satisfies
Opial’s condition and C be a nonempty closed, bounded and convex subset
of X. Let T : C → C be an asymptotically nonexpansive mapping in the
intermediate sense. Put dn = supx,y∈C(‖Tnx− Tny‖− ‖x− y‖)∨ 0, ∀n ≥ 1
so that

∑∞
n=1 dn <∞. Let {xn} be the sequence defined as in (1) with {an},

{bn}, {cn}, {αn}, {βn}, {γn} be real sequences in [0, 1] such that αn+βn+γn
and bn + cn in [0, 1] for all n ≥ 1 and

(i) 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn + γn) < 1
(ii) lim supn→∞(bn + cn) < 1

Then {xn} converges weakly to a fixed point of T .

Proof. From (18) we get limn→∞ ‖xn − Txn‖ = 0 and so limn→∞ ‖xn −
Tmxn‖ = 0 for all m ∈ N by the uniform continuity of T . Then on applying
Lemma 2 with the τ -topology taken as weak topology and get the conclusion
as follows: {xn} is a sequence in C such that limn→∞ ‖xn − z‖ exists for
each fixed point z ∈ F (T ). Since limn→∞ ‖xn−Tmxn‖ = 0 for all m ∈ N so
{xn− Tmxn} is weakly convergent to zero for each m ∈ N . So by Lemma 2
we get that {xn} converges weakly to a fixed point of T . �

For cn = βn = γn = 0 in Theorem 2 we obtain the following result.

Corollary 10. Let X be a uniformly convex Banach space which satisfies
Opial’s condition and C be a nonempty closed, bounded and convex subset
of X. Let T : C → C be an asymptotically nonexpansive mapping in the
intermediate sense. Put dn = supx,y∈C(‖Tnx− Tny‖− ‖x− y‖)∨ 0, ∀n ≥ 1
so that

∑∞
n=1 dn <∞. Let {xn} be the sequence defined as in (2) with {an},

{bn}, {αn} be real sequences in [0, 1] for all n ≥ 1 and
(i) 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn < 1,

(ii) lim sup
n→∞

bn < 1

Then {xn} converges weakly to a fixed point of T .

For an = cn = βn = γn = 0 in Theorem 2 we get the following result.

Corollary 11. Let X be a uniformly convex Banach space which satisfies
Opial’s condition and C be a nonempty closed, bounded and convex subset
of X. Let T : C → C be an asymptotically nonexpansive mapping in the
intermediate sense. Put dn = supx,y∈C(‖Tnx− Tny‖− ‖x− y‖)∨ 0, ∀n ≥ 1
so that

∑∞
n=1 dn <∞. Let {xn} be the sequence defined as in (3) with {bn},

{αn} be real sequences in [0, 1] for all n ≥ 1 and
(i) 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn < 1

(ii) lim sup
n→∞

bn < 1

Then {xn} converges weakly to a fixed point of T .
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For an = bn = cn = βn = γn = 0 in Theorem 2 we get the following
result.

Corollary 12. Let X be a uniformly convex Banach space which satisfies
Opial’s condition and C be a nonempty closed, bounded and convex subset
of X. Let T : C → C be an asymptotically nonexpansive mapping in the
intermediate sense. Put dn = supx,y∈C(‖Tnx− Tny‖− ‖x− y‖)∨ 0, ∀n ≥ 1
so that

∑∞
n=1 dn < ∞. Let {xn} be the sequence defined as in (4) with

{αn} be real sequences in [0, 1] for all n ≥ 1 and 0 < lim infn→∞ αn ≤
lim supn→∞ αn < 1. Then {xn} converges weakly to a fixed point of T .
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