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Abstract. The concept of convergence of sequences of points has
been extended by several authors to convergence of sequences of
sets. The three such extensions that we will consider in this paper
are those of Kuratowski, Wijsman and Hausdorff. We shall define
statistical convergence for sequences of sets and establish some
basic theorems, thereby obtaining generalizations of the corre-
sponding results for statistical convergence of sequences of points.
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1. Introduction and background

The natural density of a set K of positive integers is defined by

δ(K) := lim
n→∞

1

n
|{k ≤ n : k ∈ K}|,

where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding
n.

Statistical convergence of sequences of points was introduced by Fast [8].
In [17] Schoenberg established some basic properties of statistical conver-
gence and also studied the concept as a summability method.

A sequence x = (xk) is said to be statistically convergent to the number
L if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write st− limxk = L. limxk = L implies st− limxk = L, so
statistical convergence may be considered as a regular summability method.
This was observed by Schoenberg [17] along with the fact that the statistical
limit is a linear functional on some sequence spaces.
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If x = (xk) is a sequence such that xk satisfies property P for all k except
a set of natural density zero, then we say that xk satisfies P for almost all
k, and we abbreviate this by ”a.a. k.”. In [11], Fridy proved that if x is a
statistically convergent sequence then there is a convergent sequence y such
that xk = yk a.a.k.

The concepts of statistical limit superior and statistical limit inferior were
introduced by Fridy and Orhan [12]: For a real number sequence x = (xk)
let Bx denote the set

Bx := {b ∈ R : lim
n→∞

1

n
|{k ≤ n : xk > b}| 6= 0},

and, similarly,

Ax := {a ∈ R : lim
n→∞

1

n
|{k ≤ n : xk < a}| 6= 0}.

If x is a real number sequence, then the statistical limit superior of x is
defined by

st− lim supx :=

{
supBx, Bx 6= ∅
−∞, Bx = ∅.

Similarly, the statistical limit inferior of x is defined by

st− lim inf x :=

{
inf Ax, Ax 6= ∅
∞, Ax = ∅.

Limit of sequences of sets have been introduced by Painleve in 1902, as is
reported by his student Zoretti. They have been popularized by Kuratowski
in his famous book Topologie and thus, often called Kuratowski limit of
sequences. Although set convergence, introduced by Painleve , has a long
mathematical history, it is only during the last three decades that it has
started to be viewed as a major tool for dealing with approximations in
optimization, systems of equations and related objects.

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty
subset A of X, we define the distance from x to A

d(x,A) = inf
a∈A

ρ(x, a).

Let {Ak} be a sequence of sets in a metric space (X, ρ). Define the lower
limit and upper limit of the sequence {Ak} as follows:

lim inf Ak := {x ∈ X : ∃(ak) ⊂ (Ak), ak → x}

and
lim supAk := {x ∈ X : ∃(kl)∃(akl) ⊂ (Akl)akl → x}
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where (kl) denotes an increasing sequence of natural numbers and represents
the index set for a subsequence.

The lower limit of a sequence of subsets {Ak} is the set of limits of
sequences of elements ak ∈ Ak and the upper limit is the set of cluster points
of such sequences. Lower and upper limits are obviously closed. Clearly,
lim inf Ak ⊂ lim supAk and the upper limit and lower limit of subsets {Ak}
and of their closures {Ak} do coincide, since d(x,Ak) = d(x,Ak).

A subset A of X is said to be the limit or the set limit of the sequence
{Ak} if

A = lim inf Ak = lim supAk = limAk.

Alternatively, in the literature, convergence in this sense is called Painleve-
Kuratowski convergence, topological convergence, or closed convergence(see,
for example, [1],[2],[3], [4],[5]) Any decreasing sequence of subsets of Ak has
a limit, which is the intersection of their closures:

If An ⊂ Am when n ≥ m, then

limAk =
⋂
k≥0

Ak.

An upper limit may be empty(no sequence of elements ak ∈ Ak has a cluster
point). Concerning sequences of singleton {ak}, the set limit, when it is
exists, is either empty (the sequence of elements ak is not converging), or is
a singleton made of the limit of the sequence (see [1]).

For the sequence {Ak} of non-empty subsets Ak of X, we have (see, for
example, [19])

lim inf Ak := {x ∈ X : lim
k→∞

d(x,Ak) = 0}

and
lim supAk := {x ∈ X : lim inf

k→∞
d(x,Ak) = 0}.

Let (X, ρ) be a metric space. For any non-empty closed subsets A,Ak ⊆
X, we say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

dk(x) = d(x)

for each x ∈ X, where dk, d : X → R+ are defined as d(x) := d(x,A) and
dk(x) := d(x,Ak). In this case we write W − limAk = A (see [20],[21]).

As an example, consider the following sequence of circles in the (x, y)-plane:
Ak = {(x, y) : x2 + y2 − 2ky = 0}. As k → ∞ the sequence is Wijsman
convergent to the x−axis A = {(x, y) : y = 0}.

Let (X, ρ) be a metric space. For any non-empty closed subsets Ak ⊆ X,
we say that the sequence {Ak} is bounded if supk |d(x,Ak)| < ∞ for each
x ∈ X.
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We now define Cauchy Wijsman sequences.

Definition 1. Let (X, ρ) be a metric space. For any non-empty closed
subsets Ak ⊆ X, we say that the sequence {Ak} is Wijsman Cauchy if dk(x)
is a Cauchy sequence; i.e., if for ε > 0 and for each x ∈ X, there is a positive
integer k0 such that for all m,n > k0, |dn(x)− dm(x)| < ε.

If the pointwise convergence d(x,Ak) → d(x,A) is replaced by uniform
convergence, then Hausdorff convergence is obtained, which has been known
for a long time.

Let (X, ρ) be a metric space. A sequence Ak of closed subsets of X is
said to be Hausdorff convergent to a closed subset A of X if

lim
k→∞

sup
x∈X
|dk(x)− d(x)| = 0.

In this case we write A = H − limAk. Hausdorff and Wijsman definitions
of convergence of sequences of sets require that the sets be closed, since
otherwise the limit sets need not be well-defined (see[13]).

It is easy to see that, in any metric space X, Hausdorff convergence ⇒
Wijsman convergence ⇒ Kuratowski convergence. Kuratowski convergence
need not imply pointwise convergence of distance functions, and even when
pointwise convergence occurs to a finite limit, the limit need not be a dis-
tance function (see [3]).

2. Statistical convergence of sequences of sets

In this section, we introduce Kuratowski, Wijsman and Hausdorff statis-
tical convergences of sequences of sets.

Let (X, ρ) be a metric space. For the sequence {Ak} of non-empty closed
subsets Ak of X, define the the statistical lower limit and statistical upper
limit of {Ak} as follows:

st− lim inf Ak := {x ∈ X : ∃(ak) ⊂ (Ak), st− lim ak = x}

and

st− lim supAk := {x ∈ X : ∃(kl) ∃(akl) ⊂ (Akl) st− lim akl = x}.

Definition 2. Let (X, ρ) be a metric space. For any non-empty closed
subsets Ak ⊆ X, we say that the sequence {Ak} is Kuratowski statistically
convergent to A if

st− lim supAk = st− lim inf Ak = A.

In this case we write st− limAk = A.
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The lower statistical limit of a sequence of subsets {Ak} is the set of
statistical limits of sequences of elements ak ∈ Ak and the upper statistical
limit is the set of statistical cluster points of such sequences.

Definition 3. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman statistically
convergent to A if {d(x,Ak)} is statistically convergent to d(x,A); i.e., for
each ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0,

i.e.,

(1) |d(x,Ak)− d(x,A)| < ε a.a.k. .

In this case we write st− limW Ak = A.

It is clear that if the inequality in (1) holds for all but finitely many k, then
W − limAk = A. It follows that W − limAk = A implies st− limW Ak = A.

For example, let X = R and {Ak} be following sequence:

Ak :=

{
{x ∈ R : 2 ≤ x ≤ k}, if k ≥ 2 and kis a square integer,

{1}, otherwise.

This sequence is not Wijsman convergent. But since

1

n
|{k ≤ n : |d(x,Ak)− d(x, {1})| ≥ ε}| ≤

√
n

n
,

this sequence is Wijsman statistically convergent to set A = {1}.
As another example, let X = R2 and {Ak} be following sequence:

Ak :=

{
{(x, y) ∈ R2 : (x− 1)2 + y2 = 1

k}, if k is a square integer,
{(0, 0)}, otherwise.

This sequence also is Wijsman statistically convergent to set A = {(0, 0)}
but it is not Wijsman convergent.

Definition 4. Let (X, ρ) be a metric space. For any non-empty closed
subsets Ak of X, we say that the sequence {Ak} is Hausdorff statistically
convergent to a closed subset A of X if for each ε > 0,

lim
n→∞

1

n
|{k ≤ n : sup

x∈X
|d(x,Ak)− d(x,A)| ≥ ε}| = 0,

i.e.,
sup
x∈X
|d(x,Ak)− d(x,A)| < ε a.a.k.

in this case we write A = stH − limAk.
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In most convergence theories it is desirable to have a criterion that can
be used to verify convergence without using the value of the limit. For
this purpose we introduce the statistical analog of the Cauchy convergence
criterion.

Definition 5. Let (X, ρ) be a metric space. For any non-empty closed
subsets Ak ⊆ X, we say that the sequence {Ak} is Wijsman statistically
Cauchy if for each ε > 0 there exists a number N(= N(ε)) such that for
each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,AN )| ≥ ε}| = 0.

Theorem 1. Let (X, ρ) be a metric space. The following statements are
equivalent:

(i) {Ak} is a Wijsman statistically convergent sequence;
(ii) {Ak} is a Wijsman statistically Cauchy sequence;
(iii) {Ak} is a sequence for which there is a Wijsman convergent sequence

{Bk} such that Ak = Bk a.a.k.

Proof. Suppose st − limW Ak = A and ε > 0. Then |d(x,Ak) −
d(x,A)| < ε

2 a.a.k., if N is chosen so that |d(x,AN )−d(x,A)| < ε
2 , then we

have |d(x,Ak)−d(x,AN )| ≤ |d(x,Ak)−d(x,A)|+|d(x,AN )−d(x,A)| < ε
2+ ε

2
a.a.k. Hence, {Ak} is a Wijsman statistically Cauchy sequence.

Next, assume that (ii) is true and choose N so that the interval J =
[d(x,AN )−1, d(x,AN )+1] contains d(x,Ak) a.a.k. Now apply (ii) to choose
N2 so that J ′ = [d(x,AN2) − 1

2 , d(x,AN2) + 1
2 ] contains d(x,Ak) a.a.k. We

assert that J1 = J ∩ J ′ contains d(x,Ak) a.a.k. For

{k ≤ n : d(x,Ak) /∈ J ∩ J ′} = {k ≤ n : d(x,Ak) /∈ J}
∪{k ≤ n : d(x,Ak) /∈ J ′},

so

lim
n→∞

1

n
|{k ≤ n : d(x,Ak) /∈ J ∩ J ′}| ≤ lim

n→∞

1

n
|{k ≤ n : d(x,Ak) /∈ J}|

+ lim
n→∞

1

n
|{k ≤ n : d(x,Ak) /∈ J ′}| = 0.

Therefore J1 is a closed interval of length less than or equal 1 that contains
d(x,Ak) a.a.k. Now we proceed to choose N3 so that J ′′ = [d(x,AN3) −
1
4 , d(x,AN3) + 1

4 ] contains d(x,Ak) a.a.k, and by the proceeding argument
J2 = J1∩J ′′contains d(x,Ak) a.a.k, and J2 has length less than or equal to 1

2 .
Continuing this process, by induction we construct a sequence (Jm) of closed
intervals such that, for each m, Jm+1 ⊆ Jm, the length of Jm is not greater



Statistical convergence of sequences . . . 93

than 21−m, and d(x,Ak) ∈ Jm a.a.k. By the Nested Intervals Theorem
there is a number η equal to ∩∞m=1Jm. Using the fact that d(x,Ak) ∈ Jm
a.a.k we choose an increasing positive integer sequence {Tm} such that

(2)
1

n
|{k ≤ n : d(x,Ak) /∈ Jm}| < 1/m

if n > Tm. Now define a subsequence C = (Ck), consisting of all terms of
(Ak) such that k > T1 and if Tm < k ≤ Tm+1, then d(x,Ak) /∈ Jm.

Next define the sequence (Bk) by

Bk :=

{
{η}, if Ak is a term of C,
Ak, otherwise.

Then limBk = {η}; for if ε > 1/m > 0 and k > Tm, then either Ak, which
means Bk = {η}, or Bk = Ak ∈ Jm and |d(x,Bk) − d(x, {η})| ≤ length of
Jm ≤ 21−m. We also assert that Ak = Bk a.a.k. To verify this we observe
that if Tm < k < Tm+1, then

{k ≤ n : d(x,Ak) 6= d(x,Bk)} ⊆ {k ≤ n : d(x,Ak) /∈ Jm}.

So by (2)

1

n
|{k ≤ n : d(x,Bk) 6= d(x,Ak)}| ≤

1

n
|{k ≤ n : d(x,Ak) /∈ Jm}| <

1

m
.

Hence the limit as n→∞ is 0 and, Ak = Bk a.a.k. Therefore (ii) implies
(iii). Finally, assume that (iii) holds; say Ak = Bk a.a.k and limBk = {η}.
Let ε > 0, then for each n,

{k ≤ n : |d(x,Ak)− d(x, {η})| ≥ ε} ⊆
{k ≤ n : d(x,Bk) 6= d(x,Ak)} ∪ {k ≤ n : |d(x,Bk)− d(x, {η})| > ε}.

Since limBk = {η}, the latter set contains a fixed number of elements,
say, l = l(ε). Therefore

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x, {η})| ≥ ε}|

≤ lim
n→∞

1

n
|{k ≤ n : d(x,Bk) 6= d(x,Ak)}|+ lim

n→∞

l

n
= 0,

because Ak = Bk a.a.k. So (i) holds and proof is complete. �

In the following theorems, we give a Tauberian condition for Wijsman
and Hausdorff statistical convergences.
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Theorem 2. Let (X, ρ) be a metric space. If {Ak} is a sequence such that
st− limW Ak = A and 4dk(x) = O( 1k ) for each x ∈ X, then W− limAk = A
where 4dk(x) := dk+1(x)− dk(x).

Proof. Assume that {Ak} is Wijsman statistically convergent to A.
Then st − limW Ak = A and we can choose a sequence Bk such that W −
limBk = A and Ak = Bk a.a.k. For each k, write k = m(k) + p(k), where
m(k) = max{i ≤ k : Ai = Bi}. If the set {i ≤ k : Ai = Bi} is empty, take
m(k) = −1. This can occur for at most a finite number of k. We assert that

(3) lim
k

p(k)

m(k)
= 0.

For, if p(k)
m(k) > ε > 0, then

1

k
|{i ≤ k : Ai 6= Bi}| ≤

1

m(k) + p(k)
p(k) ≤ p(k)

p(k)
ε + p(k)

=
ε

1 + ε

so if p(k)
m(k) ≥ ε for infinitely many k, we have a contradiction to Ak = Bk

a.a.k. Thus (1) holds. Since 4dk(x) = O( 1k ) there is a constant K such that
|4dk(x)| ≤ K

k for all k and for each x ∈ X. Therefore

|d(x,Bm(k))− d(x,Ak)| = |d(x,Am(k))− d(x,Am(k)+p(k))|

≤
m(k)+p(k)−1∑

i=m(k)

|4di(x)| ≤ p(k)K

m(k)
.

By (3), the last expression tends to 0 as k →∞, and since W − limBk = A,
we conclude that W − limAk = A. �

Theorem 3. Let (X, ρ) be a metric space. If {Ak} is a sequence such
that st− limH Ak = A and supx∈X4dk(x) = O( 1k ), then H − limAk = A.

The proof is similar to the proof of Theorem 2.

Theorem 4. Let (X, ρ) be a metric space and {Ak} be a sequence of
non-empty closed subsets of X. If {Ak} is Wijsman statistically convergent,
then {Ak} is Kuratowski statistically convergent.

Proof. We need only show st − lim supAk ⊂ st − lim inf Ak. Fix x ∈
st− lim supAk and ε > 0. Since a Wijsman statistically convergent sequence
is Wijsman statistically Cauchy, choose N so that |d(x,Ak) − d(x,AN )| <
ε
2 a.a.k. and d(x,AN ) < ε

2 . We have d(x,Ak) ≤ d(x,AN ) + |d(x,Ak) −
d(x,AN )| < ε. a.a.k. By the definition we get x ∈ st − lim inf Ak and this
completes the proof. �

The following theorem follows immediately from Definitions 3 and 4.
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Theorem 5. Let (X, ρ) be a metric space and {Ak} be a sequence of
non-empty closed subsets of X. If {Ak} is Hausdorff statistically convergent,
then {Ak} is Wijsman statistically convergent.

3. Strongly summable set sequences

In this section we introduce Kuratowski Cesaro summable, Wijsman
summable and Wijsman strongly summable sequences of sets and give the
relation between Wijsman statistically convergent and Wijsman strongly
summable sequences of sets.

Let (X, ρ) be a metric space. For the sequence {Ak} of non-empty subsets
Ak of X, we have define the lower Cesaro limit and upper Cesaro limit as
follows:

(C, 1)− lim inf Ak := {x ∈ X : lim
n→∞

1

n

n∑
k=1

d(x,Ak) = 0}

and

(C, 1)− lim supAk := {x ∈ X : lim inf
n→∞

1

n

n∑
k=1

d(x,Ak) = 0}.

Definition 6. Let (X, ρ) be a metric space. For any non-empty subsets
Ak ⊆ X, we say that {Ak} is Kuratowski Cesaro summable to if

(C, 1)− lim inf Ak = (C, 1)− lim supAk.

Definition 7. Let (X, ρ) be a metric space. For any non-empty closed
subsets A, Ak ⊆ X, we say that {Ak} is Wijsman Cesaro summable to A if
{d(x,Ak)} is Cesaro summable to d(x,A); i.e., for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

d(x,Ak) = d(x,A).

Definition 8. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that {Ak} is Wijsman strongly Cesaro summable
to A if {d(x,Ak)} strongly summable to d(x,A); i.e., for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak)− d(x,A)| = 0.

Definition 9. Let (X, ρ) be a metric space. For any non-empty closed
subsets A, Ak ⊆ X, we say that {Ak} is Wijsman strongly p-Cesaro summable
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to A if {d(x,Ak)} strongly p-summable to d(x,A); i.e., for each p positive
real number and for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak)− d(x,A)|p = 0.

Theorem 6. Let (X, ρ) be a metric space and p be a positive real number.
Then, for any non-empty closed subsets A, Ak ⊆ X

(a) {Ak} is Wijsman statistically convergent to A if it is Wijsman strongly
p-Cesaro summable to A,

(b) If {Ak} is bounded and Wijsman statistically convergent to A then it
is Wijsman statistically convergent to A.

Proof. (a) For any {Ak}, fix an ε > 0. Then

n∑
k=1

|d(x,Ak)− d(x,A)|p ≥ ε|{k ≤ n : |d(x,Ak)− d(x,A)|p ≥ ε}|,

and it follows that if {Ak} is Wijsman strongly p-Cesaro summable to A
then {Ak} is Wijsman statistically convergent to A.

(b) Let {Ak} be bounded and Wijsman statistically convergent to A.
Since {Ak} is bounded, set supk |d(x,Ak)| + d(x,A) = M . Let ε > 0 be
given and select Nε such that

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ (

ε

2
)1/p}| < ε

2Mp

for all n > Nε and set Ln = {k ≤ n : |d(x,Ak)− d(x,A)| ≥ ( ε2)1/p}.

1

n

n∑
k=1

|d(x,Ak)− d(x,A)|p =
1

n
(
∑
k∈Ln

|d(x,Ak)− d(x,A)|p

+
∑

k≤n;k/∈Ln

|d(x,Ak)− d(x,A)|p)

<
1

n

nε

2Mp
Mp +

1

n

nε

2
=
ε

2
+
ε

2
= ε.

Hence, {Ak} is Wijsman strongly p-Cesaro summable to A. �

4. Strongly almost convergent set sequences

The idea of almost convergence of sequences of points was introduced by
Lorentz [15]: the sequence x = (xk) is said to be almost convergent to L if

lim
n→∞

1

n

n∑
k=1

xk+i = L
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uniformly in i.
Maddox [16] and (independently) Freedman et al. [10] introduced the

notion of strong almost convergence of sequences of points: the sequence
x = (xk) is said to be strongly almost convergent to L if

lim
n→∞

1

n

n∑
k=1

|xk+i − L| = 0

uniformly in i.
Let `∞, c, f and [f ], respectively, denote the sets of all bounded, con-

vergent, almost convergent and strongly almost convergent sequences. It is
known [16] that

c ⊂ f ⊂ [f ] ⊂ `∞.

In this section we introduce the concepts of Wijsman almost convergence,
Wijsman strongly almost convergence and Wijsman almost statistical con-
vergence for sequences of sets and give the relation between Wijsman almost
statistically convergent and Wijsman strongly almost convergent sequences
of sets. Kuratowski almost convergent and Hausdorff almost convergent
sequences can be defined in a similar manner.

Definition 10. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that {Ak} is Wijsman almost convergent to A if
for each ε > 0 and for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

d(x,Ak+i) = d(x,A).

uniformly in i.

Definition 11. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that {Ak} is Wijsman strongly almost convergent
to A if for each ε > 0 and for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak+i)− d(x,A)| = 0.

uniformly in i.

Let L∞, C, F and [F ], respectively, denote the sets of all Wijsman
bounded, Wijsman convergent, Wijsman almost convergent and Wijsman
strongly almost convergent sequences of sets. It is easy to see that

C ⊂ F ⊂ [F ] ⊂ L∞.
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Definition 12. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that {Ak} is Wijsman strongly p-almost conver-
gent to A if for each ε > 0, p positive real number and for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak+i)− d(x,A)|p = 0

uniformly in i.

Definition 13. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman almost sta-
tistically convergent to A if for each ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak+i)− d(x,A)| ≥ ε}| = 0,

uniformly in i.

Theorem 7. Let (X, ρ) be a metric space and p be a positive real number.
Then, for any non-empty closed subsets A, Ak ⊆ X

(a) {Ak} is Wijsman almost statistically convergent to A if it is Wijsman
strongly p-almost convergent to A,

(b) If {Ak} is bounded and Wijsman almost statistically convergent to A,
then it is Wijsman strongly p-almost convergent to A.

The proof is similar to the proof of Theorem 6.
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