$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 49} 2012$

VALERIU POPA AND ALINA-MIHAELA PATRICIU

ALTERING DISTANCES, FIXED POINT FOR OCCASIONALLY HYBRID MAPPINGS AND APPLICATIONS

ABSTRACT. The purpose of this paper is to prove a general fixed point theorem by altering distance for two pairs of hybrid occasionally weakly compatible mappings and to reduce the study of fixed points of pairs of mappings satisfying a contractive condition of integral type at the study of fixed point in symmetric spaces by altering distance satisfying an implicit relation.

KEY WORDS: symmetric space, occasionally weakly compatible, hybrid mappings, common fixed point, implicit relation, altering distance, integral type.

AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

Let A and S be self mappings of a metric space (X, d). Jungck [11] defined A and S to be compatible if $\lim_{n\to\infty} d(ASx_n, SAx_n) = 0$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Ax_n = t$ for some $t \in X$.

A point $x \in X$ is a coincidence point of A and S if Ax = Sx. We denote by C(A, S) the set of all coincidence points of A and S. In [21], Pant defined A and S to be pointwise R - weakly commuting if for each $x \in X$ there exists R > 0 such that $d(SAx, ASx) \leq Rd(Ax, Sx)$. It is proved in [22] that pointwise R - weakly commuting is equivalent with the commuting at coincidence points.

Definition 1. A and S are said to be weakly compatible [12] if ASu = SAu for $u \in C(A, S)$.

Definition 2. A and S are said to be occasionally weakly compatible (owc) [5] if ASu = SAu for some $u \in C(A, S)$.

Remark 1. If A and S are weakly compatible and $C(A, S) \neq \emptyset$ then A and S are owc, but the converse in not true (see Example [5]).

Some fixed point theorems for owc mappings are proved in [3], [4], [15] and in other papers.

Let X be a nonempty set. A symmetric on X is a nonnegative real valued function D on $X \times X$ such that:

(i) D(x,y) = 0 if and only if x = y;

(ii) D(x,y) = D(y,x) for all $x, y \in X$.

Let (X, d) be a metric (symmetric) space and B(X) the set of all nonempty bounded subset of X. As in [8], [9] we define the functions $\delta(A, B)$ and D(A, B), where $A, B \in B(X)$:

$$D(A,B) = \inf\{d(a,b) : a \in A, b \in B\},\$$

$$\delta(A,B) = \sup\{d(a,b) : a \in A, b \in B\}.$$

If A consists of a single point "a" we write $\delta(A, B) = \delta(a, B)$. If B consists also of a single point "b" we write $\delta(A, B) = d(a, b)$. If follows immediately from definition of δ that:

$$\delta(A,B)=\delta(B,A), \ \, \forall A,B\in B(X).$$

If $\delta(A, B) = 0$ then $A = B = \{a\}$.

Definition 3. Let $f : (X, d) \to (X, d)$ and $F : X \to B(X)$.

1) A point $x \in X$ is said to be a coincidence point of f and F if $fx \in Fx$. We denote by C(f, F) the set of all coincidence points of f and F.

2) A point $x \in X$ is a fixed point of F if $x \in Fx$.

Definition 4. Let (X, d) be a metric space. A sequence $\{A_n\}$ of nonempty sets of X is said to be convergent to a set A of X [8], [9] if

(i) each point $a \in A$ is the limit of a convergent sequence $\{a_n\}$, where $a_n \in A_n$ for all $n \in \mathbb{N}$

(ii) for arbitrary $\varepsilon > 0$, there exists an integer m > 0 such that $A_n \subset A_{\varepsilon}$ for n > m, where A_{ε} denote the set of all point $x \in X$ for which there exists a point $a \in X$, depending on x, such that $d(a, x) < \varepsilon$.

A is said to be the limit of the sequence $\{A_n\}$.

Definition 5. The mappings $f : X \to X$ and $F : X \to B(X)$ are δ compatible [13] if $\lim_{n\to\infty} \delta(Ffx_n, fFx_n) = 0$, whenever $\{x_n\}$ is a sequence in X such that $fFx_n \in B(X)$, $fx_n \to t$, $Ffx_n \to t$ for some $t \in X$.

Definition 6. The pair $f : X \to X$ and $F : X \to B(X)$ is weakly compatible [14] if for each $x \in C(f, F)$, fFx = Ffx.

If the pair (f, F) is δ -compatible then (f, F) is weakly compatible, but the converse is not true [14].

Definition 7. The hybrid pair $f : X \to X$ and $F : X \to B(X)$ is occasionally weakly compatible [1] if there exists $x \in C(f, F)$ such that $fFx \subset Ffx$.

Remark 2. Every weakly compatible hybrid mappings are occasionally weakly compatible. The converse is not true (see Example 1.3 [1]).

The following theorems are proved in [1].

Theorem 1. Let f, g be self maps of a metric space (X, d) and F, G be maps of X into B(X) such that (f, F) and (g, G) are owc. If

$$\delta(Fx, Gy) < \max\{d(fx, gy), D(fx, Fx), D(gy, Gy), \delta(fx, Gy), \delta(gy, Fx)\}$$

for all $x, y \in X$ for which $fx \neq gy$, then f, g, F and G have a unique common fixed point.

Theorem 2. Let f, g be self maps of a metric space (X, d) and F, G be maps of X into B(X) such that (f, F) and (g, G) are owc. If

$$\begin{split} \delta(Fx,Gy) \ < \ h \max \Big\{ d(fx,gy), D(fx,Fx), D(gy,Gy), \\ & \frac{1}{2} [\delta(fx,Gy) + \delta(gy,Fx)] \Big\} \end{split}$$

for all $x, y \in X$ for which $fx \neq gy$ and $h \in (0, 1)$, then f, g, F and G have a unique common fixed point.

Theorem 3. Let f, g be self maps of a metric space (X, d) and F, G be maps of X into B(X) such that (f, F) and (g, G) are owc. If

$$\begin{split} \delta(Fx,Gy) \ < \ ad(fx,gy) + b \max \left\{ D(fx,Fx), D(gy,Gy) \right\} \\ + \ c \max\{d(fx,gy), \delta(fx,Gy), \delta(gy,Fx)\} \end{split}$$

for all $x, y \in X$ for which $fx \neq gy$, where a, b, c > 0 and a + b + c = 1, then f, g, F and G have a unique common fixed point.

2. Contractive condition of integral type

In [7], Branciari established the following result

Theorem 4. Let (X,d) be a complete metric space, $c \in (0,1)$ and $f : X \to X$ be a mapping such that

(1)
$$\int_0^{d(fx,fy)} h(t)dt \le c \int_0^{d(x,y)} h(t)dt$$

where $h : [0,\infty) \to [0,\infty)$ is a Lebesgue measurable mapping which is summable (i.e. with a finite integral) on each compact subset of $[0,\infty)$, such that for $\varepsilon > 0$, $\int_0^{\varepsilon} h(t)dt > 0$. Then f has a unique fixed point $z \in X$ such that for each $x \in X$, $\lim_{n\to\infty} f^n x = z$.

Quite recently, Kumar et al. [18] extended Theorem 4 for two compatible mappings.

Theorem 5. Let $f, g : X \to X$ two compatible mappings satisfying the following conditions:

(i) $f(X) \subset g(X)$,

(ii) g is continuous and

(2)
$$\int_0^{d(fx,fy)} h(t)dt \le c \int_0^{d(gx,gy)} h(t)dt$$

for all $x, y \in X$, $c \in (0, 1)$, where h(t) is as in Theorem 4. Then, f and g have a unique common fixed point.

Some fixed point theorem in metric and symmetric spaces for compatible, weakly compatible and occasionally weakly compatible mappings satisfying a contractive condition of integral type are proved in [2], [17], [20], [25], [27], [30] and in other papers.

Let (X, d) be a metric space and $D(x, y) = \int_0^{d(x,y)} h(t)dt$, where h(t) is as in Theorem 4. It is proved in [20], [25] that D(x, y) is a symmetric on X. It is proved in [20], [25] that the study of fixed points for mappings satisfying a contractive condition of integral type is reduced to the study of fixed points in symmetric spaces.

The method is not applicable for hybrid pairs of mappings.

Definition 8. An altering distance is a mapping $\psi : [0, \infty) \to [0, \infty)$ which satisfies the conditions:

(i) $\psi(t)$ is increasing and continuous,

(ii) $\psi(t) = 0$ if and only if t = 0.

Fixed point problem involving altering distances have been studied in [16], [19], [26], [28], [29] and in other papers.

Lemma 1. The function $\psi(x) = \int_{0}^{x} h(t)dt$, where h(t) is as in Theorem 4 is an altering distance.

Proof. By definitions of ψ and h it follows that $\psi(x)$ is increasing and $\psi(x) = 0$ if and only if x = 0. By Lemma 2.5 [20], $\psi(x)$ is continuous.

A general fixed point theorem for compatible mappings satisfying an implicit relation is proved in [23]. In [10] the result from [23] is improved relaxing the compatibility to weak compatibility.

The purpose of this paper is to prove a general fixed point theorem by altering distance for two pairs of owc hybrid pairs dued to reduce the study of fixed points of hybrid pairs of mappings satisfying a contractive condition of integral type at the study of fixed points in metric (symmetric) spaces by altering distance satisfying an implicit relation.

3. Implicit relations

Definition 9. Let \mathcal{F}_W be the set of all functions $\phi(t_1, \ldots, t_6) : \mathbb{R}^6_+ \to \mathbb{R}$ satisfying the following conditions:

 (ϕ_1) : ϕ is nonincreasing in variables t_2 , t_5 and t_6 , (ϕ_2) : $\phi(t, t, 0, 0, t, t) \ge 0, \forall t > 0.$

Example 1. $\phi(t_1, \ldots, t_6) = t_1 - \max\{t_2, \ldots, t_6\}.$

Example 2. $\phi(t_1, \ldots, t_6) = t_1 - h \max \{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\},$ where $h \in (0, 1).$

Example 3. $\phi(t_1, \ldots, t_6) = t_1 - at_2 - b \max\{t_3, t_4\} - c \max\{t_2, t_5, t_6\},$ where $a, b, c \ge 0$ and a + b + c = 1.

Example 4. $\phi(t_1, \ldots, t_6) = t_1^p - at_2^p - (1-a) \max\{t_3^p, t_4^p, (t_3t_4)^{p/2}, (t_5t_6)^{p/2}\},\$ where $0 < a < 1, p \ge 1.$

Example 5. $\phi(t_1, \ldots, t_6) = t_1 - at_2 - b(t_3 + t_4) - c \min\{t_5, t_6\}$, where $a > 0, b, c \ge 0$ and $a + c \le 1$.

Example 6. $\phi(t_1, \ldots, t_6) = t_1 - at_2 - b(t_3 + t_4) - c\sqrt{t_5t_6}$, where $a, b, c \ge 0$ and $a + c \le 1$.

Example 7. $\phi(t_1, \ldots, t_6) = t_1 - (1 - \alpha)t_2 - \alpha(t_3t_4 + t_5t_6) - at_2 - (1 - a) \max\{t_3, t_4, (t_5t_6)^{1/2}, (t_3t_6)^{1/2}\},$ where $\alpha \ge 0$ and 0 < a < 1.

Example 8. $\phi(t_1, \ldots, t_6) = t_1 - \alpha \max\{t_2, t_3, t_4\} - (1 - \alpha)(at_5 + bt_6)$, where $0 < \alpha < 1$, a, b > 0 and a + b < 1.

Example 9. $\phi(t_1, \ldots, t_6) = t_1 - at_2 - b(t_3 + t_4) - c(t_5 + t_6)$, where a > 0, $b, c \ge 0$ and $a + 2c \le 1$.

Example 10.
$$\phi(t_1, ..., t_6) = t_1^3 - t_2^3 - \frac{t_3^2 \cdot t_5 + t_4^2 \cdot t_6}{1 + t_3 + t_4}$$
.

Example 11. $\phi(t_1, \ldots, t_6) = t_1^2 - at_2^2 - b \frac{\min\{t_5^2, t_6^2\}}{1 + t_3 + t_4}$, where $a > 0, b \ge 0$ and $a + b \le 1$.

Example 12. $\phi(t_1, ..., t_6) = t_1 - at_2 - b \frac{t_5 t_6}{1 + t_3 + t_4}$, where $a > 0, b \ge 0$ and a + 2b < 1.

Example 13. $\phi(t_1, \ldots, t_6) = t_1 - c \max \{ct_2, ct_3, ct_4, at_5 + bt_6\}$, where $0 < c \le 1, a \ge 0, b \ge 0$ and a + b < 1.

Example 14. $\phi(t_1, \ldots, t_6) = t_1 - \varphi(\max\{t_2, t_3, \ldots, t_6\}), \text{ where } \varphi : \mathbb{R}^+ \to \mathbb{R} \text{ with } \varphi(t) < t, \forall t > 0.$

Example 15.
$$\phi(t_1, ..., t_6) = t_1 - \max\left\{t_2, \frac{t_3 + t_4}{2}, \frac{t_5 + t_6}{2}\right\}$$

and others.

4. Main results

Definition 10. A weakly altering distance is a mapping $\psi : \mathbb{R}_+ \to \mathbb{R}$ which satisfies:

 $(\psi_1): \psi$ is increasing,

 $(\psi_2): \psi(t) = 0 \text{ if and only if } t = 0.$

Theorem 6. Let f, g be self maps of the symmetric space (X, d) and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owc. If

(3)
$$\phi(\psi(\delta(Fx,Gy)),\psi(d(fx,gy)),\psi(D(fx,Fx)), \\ \psi(D(gy,Gy)),\psi(\delta(fx,Gy)),\psi(\delta(gy,Fx))) < 0$$

for all $x, y \in X$ for which $fx \neq gy$, where $\psi(t)$ is an weakly altering distance and $\phi \in \mathcal{F}_W$, then f, g, F and G have a unique common fixed point.

Proof. Because (f, F) and (g, G) are owe, there exist $x, y \in X$ such that $fx \in Fx$, $gy \in Gy$ and $fFx \subset Ffx$ and $gGy \subset Ggy$. First we prove that fx = gy. Suppose that $fx \neq gy$. Then $0 < d(fx, gy) \leq \delta(Fx, Gy)$. By (3) and (ϕ_1) we obtain

$$\phi(\psi(\delta(Fx,Gy)),\psi(\delta(Fx,Gy)),0,0,\psi(\delta(Fx,Gy)),\psi(\delta(Fx,Gy)))<0,$$

a contradiction of (ϕ_2) . Next we show that $fx = f^2x$. Suppose that $fx \neq f^2x$. Then $0 < d(fx, f^2x) \leq \delta(fx, fFx) = \delta(gy, fFx) \leq \delta(Ffx, Gy)$. By (3) and (ϕ_1) we have successively

$$\begin{split} &\phi(\psi(\delta(Ffx,Gy)),\psi(\delta(f^2x,gy)),0,0,\psi(\delta(f^2x,Gy)),\psi(\delta(gy,Ffx)))<0,\\ &\phi(\psi(\delta(Ffx,Gy)),\psi(\delta(Ffx,Gy)),0,0,\psi(\delta(Ffx,Gy)),\psi(\delta(Ffx,Gy)))<0, \end{split}$$

a contradiction of (ϕ_2) . Hence $fx = f^2x$. Similarly, $gy = g^2y$. Therefore $fx = f^2x = gy = g^2y = gfx$. Hence fx is a common fixed point of f and g. On the other hand $fx = f^2x \in fFx \subset Ffx$ and fx is a fixed point of F. Similarly, $fx = f^2x = gy = g^2y \in gGy \subset Ggy$ and fx is a fixed point of G. Hence w = fx is a common fixed point of f, g, F and G.

Suppose that $w' \neq w$ is an other common fixed point of f, g, F and G. Because

$$0 < d(w, w') = d(fw, gw') \le \delta(Fw, Gw'),$$

by (3) and (ϕ_1) we have successively

$$\begin{split} \phi(\psi(\delta(Fw,Gw')),\psi(d(fw,gw')),\psi(D(fw,Fw)),\\ \psi(D(gw',Gw')),\psi(\delta(fw,Gw')),\psi(\delta(gw',Fw)) < 0, \end{split}$$

 $\phi(\psi(\delta(Fw,Gw')),\psi(\delta(Fw,Gw')),0,0,\psi(\delta(Fw,Gw')),\psi(\delta(Fw,Gw'))<0,$

a contradiction of (ϕ_2) . Therefore, w = fx is the unique common fixed point of f, g, F and G.

Corollary 1. Let f, g be self mappings of a symmetric space (X, d) and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owc. If

(4)
$$\psi(\delta(Fx, Gy)) < \max\{\psi(d(fx, gy)), \psi(D(fx, Fx)), \psi(D(gy, Gy)), \psi(\delta(fx, Gy)), \psi(\delta(gy, Fx))\}$$

for all $x, y \in X$ for which $fx \neq gy$, where $\psi(t)$ is an weakly altering distance, then f, g, F and G have a unique common fixed point.

Proof. The proof follows from Theorem 6 and Example 1.

Corollary 2. Let f, g be self mappings of a symmetric space (X, d) and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owc. If

(5)
$$\psi(\delta(Fx,Gy)) < h \max\{\psi(d(fx,gy)), \psi(D(fx,Fx)), \psi(D(gy,Gy)), \frac{1}{2}[\psi(\delta(fx,Gy)) + \psi(\delta(gy,Fx))]\},$$

for all $x, y \in X$ for which $fx \neq gy$, $h \in (0,1)$ and ψ is an weakly altering distance, then f, g, F and G have a unique common fixed point.

Proof. The proof follows from Theorem 6 and Example 2.

Corollary 3. Let f, g be self mappings of a symmetric space (X, d) and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owc. If

(6)
$$\psi(\delta(Fx, Gy)) < a\psi(d(fx, gy))$$

+ $b \max\{\psi(D(fx, Fx)), \psi(D(gy, Gy))\}$
+ $c \max\{\psi(\delta(fx, gy)), \psi(\delta(fx, Gy)), \psi(\delta(gy, Fx))\}$

for all $x, y \in X$ for which $fx \neq gy$, $a, b, c \geq 0$ and a + b + c = 1 and ψ is an weakly altering distance, then f, g, F and G have a unique common fixed point.

Proof. The proof follows from Theorem 6 and Example 3.

Remark 3. 1) In the proof of Theorem 6 is used a similar technique as in the proof of Theorem 2.2 [6].

2) From Theorem 6 and Example 4 - 15 we obtain new results.

For $\psi(t) = t$ we obtain:

Theorem 7 (Theorem 3.5 [4]). Let f, g be self mappings of a symmetric space (X, d) and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owc. If

(7)
$$\phi(\delta(Fx,Gy),d(fx,gy),D(fx,Fx),D(gy,Gy),\\\delta(fx,Gy),\delta(gy,Fx)) < 0$$

for all $x, y \in X$ for which $fx \neq gy$ and $\phi \in \mathcal{F}_W$, then f, g, F and G have a unique common fixed point.

Remark 4. From Theorem 7 and Example 1, 2, 3 we obtain Theorem 1, 2, 3.

If f, g, F and G are self mappings of a symmetric space (X, d), by Theorem 6 we obtain

Theorem 8. Let f, g, F, G be self mappings of a symmetric space (X, d) such that (f, F) and (g, G) are owc. If

(8)
$$\phi(\psi(d(Fx,Gy)),\psi(d(fx,gy)),\psi(d(fx,Fx)), \\ \psi(d(gy,Gy)),\psi(d(fx,Gy)),\psi(d(gy,Fx))) < 0$$

for all $x, y \in X$ for which $fx \neq gy$, where $\psi(t)$ is an weakly altering distance and $\phi \in \mathcal{F}_W$, then f, g, F and G have a unique common fixed point.

If $\psi(t) = t$ by Theorem 8 we obtain:

Theorem 9. Let f, g, F, G be self mappings of a symmetric space (X, d) such that (f, F) and (g, G) are owc. If

(9)
$$\phi(d(Fx,Gy),d(fx,gy),d(fx,Fx),d(gy,Gy), \\ d(fx,Gy),d(gy,Fx)) < 0$$

for all $x, y \in X$ for which $fx \neq gy$ and $\phi \in \mathcal{F}_W$, then f, g, F and G have a unique common fixed point.

Remark 5. *i*) From Theorem 9 and Example 1, 2, 3 we obtain Theorem 1, Corollary 1 and Theorem 2 from [15].

ii) By Theorem 9 and Example 4 we obtain a correct form of Theorem 3 from [15].

5. Applications

Theorem 10. Let f, g be self mappings of the symmetric space (X, d)and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owc. If

(10)
$$\phi(\int_{0}^{\delta(Fx,Gy)} h(t)dt, \int_{0}^{d(fx,gy)} h(t)dt, \int_{0}^{D(fx,Fx)} h(t)dt, \int_{0}^{D(gy,Gy)} h(t)dt, \int_{0}^{\delta(fx,Gy)} h(t)dt, \int_{0}^{\delta(gy,Fx)} h(t)dt) < 0$$

for all $x, y \in X$ for which $fx \neq gy$, where $\phi \in \mathcal{F}_W$ and h(t) is as in Theorem 4, then f, g, F and G have a unique common fixed point.

Proof. As in Lemma 1 we have

$$\begin{split} \psi(\delta(Fx,Gy)) &= \int_0^{\delta(Fx,Gy)} h(t)dt, \psi(d(fx,gy)) = \int_0^{d(fx,gy)} h(t)dt, \\ \psi(D(fx,Fx)) &= \int_0^{D(fx,Fx)} h(t)dt, \psi(D(gy,Gy)) = \int_0^{D(gy,Gy)} h(t)dt, \\ \psi(\delta(fx,Gy)) &= \int_0^{\delta(fx,Gy)} h(t)dt, \psi(\delta(gy,Fx)) = \int_0^{\delta(gy,Fx)} h(t)dt. \end{split}$$

Then, by (10) we have

$$\begin{split} \phi(\psi(\delta(Fx,Gy)),\psi(d(fx,gy)),\psi(D(fx,Fx)),\\ \psi(D(gy,Gy)),\psi(\delta(fx,Gy)),\psi(\delta(gy,Fx))) < 0 \end{split}$$

for all $x, y \in X$ with $fx \neq gy$ and $\phi \in \mathcal{F}_W$. Because by Lemma 1, then $\psi(t) = \int_0^t h(t)dt$ is an weakly altering distance, the conditions of Theorem 6 are satisfied and Theorem 10 follows from Theorem 6.

For example, by Theorem 10 and Example 2 we obtain

Corollary 4. Let f, g be self mappings of the symmetric space (X, d)and F, G be maps of X into B(X) such that the pairs (f, F) and (g, G) are owe and

$$\begin{split} \int_{0}^{\delta(Fx,Gy)} h(t)dt &< k \max\left\{\int_{0}^{d(fx,gy)} h(t)dt, \int_{0}^{D(fx,Fx)} h(t)dt, \\ &\int_{0}^{D(gy,Gy)} h(t)dt, \int_{0}^{\delta(fx,Gy)} h(t)dt, \int_{0}^{\delta(gy,Fx)} h(t)dt\right\} < 0 \end{split}$$

for all $x, y \in X$ with $fx \neq gy$, where $k \in (0, 1)$ and h(t) is as in Theorem 4. Then f, g, F and G have a unique common fixed point.

If f, g, F and G are single valued mappings, by Theorem 10 we obtain

Theorem 11. Let f, g, F and G be self mappings of a symmetric space (X, d) such that (f, F) and (g, G) are owc and

(11)
$$\phi \left(\int_{0}^{d(Fx,Gy)} h(t)dt, \int_{0}^{d(fx,gy)} h(t)dt, \int_{0}^{d(fx,Fx)} h(t)dt, \int_{0}^{d(gy,Fx)} h(t)dt, \int_{0}^{d(gy,Fx)} h(t)dt, \int_{0}^{d(gy,Fx)} h(t)dt \right) < 0$$

for all $x, y \in X$ with $fx \neq gy, \phi \in \mathcal{F}_W$ and h(t) is as in Theorem 4. Then f, g, F and G have a unique common fixed point.

For example, by Theorem 11 and Example 3 we have

Corollary 5. Let f, g, F and G be self mappings of a symmetric space (X, d) such that (f, F) and (g, G) are owc and

$$(12) \quad \int_{0}^{d(Fx,Gy)} h(t)dt < a \int_{0}^{d(fx,gy)} h(t)dt + b \max\left\{\int_{0}^{d(fx,Fx)} h(t)dt, \int_{0}^{d(gy,Gy)} h(t)dt\right\} + c \max\left\{\int_{0}^{d(fx,gy)} h(t)dt, \int_{0}^{d(fx,Gy)} h(t)dt, \int_{0}^{d(gy,Fx)} h(t)dt\right\} < 0$$

for all $x, y \in X$ with $fx \neq gy$, where $a, b, c \geq 0$, a + b + c = 1 and h(t) is as in Theorem 4. Then f, g, F and G have a unique common fixed point.

References

- ABBAS M., RHOADES B.E., Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings, *Pan Amer. Math. J.*, 18(2003), 56-62.
- [2] ALIOUCHE A., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying contractive conditions of integral type, J. Math. Anal. Appl., 322(2006), 796-802.
- [3] ALIOUCHE A., POPA V., Common fixed point for occasionally weakly compatible mappings via implicit relations, *Filomat*, 22(2)(2008), 99-107.
- [4] ALIOUCHE A., POPA V., General fixed point theorems for occasionally weakly compatible hybrid mappings and applications, *Novi Sad J. Math.*, 30(1)(2009), 89-109.
- [5] AL-THAGAFI M.A., SHAHZAD N., Generalized I nonexpansive maps and invariant approximations, *Acta Math. Sinica*, 24(5)(2008), 867-876.
- [6] BOUHADJERA H., GODET-THOBIE C., Common fixed point theorems for occasionally weakly compatible maps, Acta Math. Vietnamica, 36(1)(2011), 1-17.
- BRANCIARI A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, *Intern. J. Math. Math. Sci.*, 29(9)(2002), 531 - 536.
- [8] FISHER B., Common fixed points of mappings and set valued mappings, Rostock Math. Kollock, 18(1981), 69-77.
- [9] FISHER B., SESSA S., Two common fixed point theorems for weakly commuting mappings, *Period Math. Hungar*, 20(3)(1989), 207-218.
- [10] IMDAD M., KUMAR S., KHAN M.S., Remarks on some fixed points satisfying implicit relations, *Radovi Math.*, 1(2002), 135-143.
- [11] JUNGCK G., Compatible mappings and common fixed points, Intern. J. Math. Math. Sci., 9(1986), 771-779.
- [12] JUNGCK G., Common fixed points for noncontinuous nonself maps on a nonnumeric space, Far. East J. Math. Sci., 4(2)(1996), 199-215.
- [13] JUNGCK G., RHOADES B.E., Some fixed point theorems for compatible mappings, Intern. J. Math. Math. Sci., 16(1993), 417-428.
- [14] JUNGCK G., RHOADES B.E., Fixed point theorems for set valued functions without continuity, *Indian J. Pure Appl. Math.*, 29(3)(1998), 227-238.
- [15] JUNGCK G., RHOADES B.E., Fixed point theorems for occasionally weakly compatible mappings, *Fixed Point Theory*, 7(2)(2006), 287 - 297.
- [16] KHAN M.S., SWALEH M., SESSA S., Fixed point theorems by altering distances between points, Bull. Austral. Math. Soc., 30(1984), 1-9.
- [17] KOHLI J.K., WASHISTHA S., Common fixed point theorems for compatible and weak compatible mappings satisfying a general contractive condition, *Stud. Cerc. St. Ser. Mat. Univ. Bacău*, 16(2006), 33-42.
- [18] KUMAR S., CHUGH R., KUMAR R., Fixed point theorem for compatible mappings satisfying a contractive condition of integral type, *Soochow J. Math.*, 33(2007), 181-185.
- [19] MARZOUKI B., MBARKI A.M., Multivalued fixed point theorems by altering distances between points, Southwest J. Pure Appl. Math., 1(2002), 126-134.

- [20] MOCANU M., POPA V., Some fixed point theorems for mappings satisfying implicit relations in symmetric spaces, *Libertas Math.*, 28(2008), 1-13.
- [21] PANT R.P., Common fixed points for noncommuting mappings, J. Math. Anal. Appl., 188(1994), 436-440.
- [22] PANT R.P., Common fixed points for four mappings, Bull. Calcutta Math. Soc., 90(1998), 281-286.
- [23] POPA V., Some fixed point theorem for four compatible mappings satisfying an implicit relation, *Demontratio Math.*, 32(1999), 157-163.
- [24] POPA V., A fixed point theorem for four compatible mappings in compact metric spaces, U. P. B. Bull. Ser. A, 63(4)(2001), 43-46.
- [25] POPA V., MOCANU M., A new viewpoint in the study of fixed points for mappings satisfying a contractive condition of integral type, Bull. Inst. Politeh. Iaşi, Sect. Mat. Mec. Teor. Fiz., 53(57)(2007), 269-272.
- [26] POPA V., MOCANU M., Altering distance and common fixed points under implicit relations, *Hacettepe J. Math. Statistics*, 38(3)(2009), 329-337.
- [27] RHOADES B.E., Two fixed point theorems for mappings satisfying a general contractive condition of integral type, *Intern. J. Math. Math. Sci.*, 15(2005), 2359-2364.
- [28] SASTRI K.P., BABU G.V.R., Fixed point theorems by altering distances, Bull. Calcutta Math. Soc., 90(1998), 175-182.
- [29] SASTRI K.P., BABU G.V.R., Some fixed point theorems by altering distance between the points, *Indian J. Pure Appl. Math.*, 30(1999), 641-647.
- [30] VIAYARAJU P., RHOADES B.E., MOHANRAJ R., A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, *Intern. J. Math. Math. Sci.*, 15(2005), 2359-2364.

Valeriu Popa

DEPARTMENT OF MATHEMATICS, INFORMATICS AND EDUCATIONAL SCIENCES FACULTY OF SCIENCES "VASILE ALECSANDRI" UNIVERSITY OF BACĂU 157 CALEA MĂRĂŞEŞTI, BACĂU, 600115, ROMANIA *e-mail:* vpopa@ub.ro

Alina-Mihaela Patriciu Department of Mathematics Informatics and Educational Sciences Faculty of Sciences "Vasile Alecsandri" University of Bacău 157 Calea Mărăşeşti, Bacău, 600115, Romania *e-mail:* alina.patriciu@ub.ro

Received on 30.11.2011 and, in revised form, on 02.03.2012.