$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 49}$ 2012

O. RAVI, J.A.R. RODRIGO, S. THARMAR AND K. VIJAYALAKSHMI

BETWEEN CLOSED SETS AND *g-CLOSED SETS

ABSTRACT. Veerakumar [16] introduced the notion of *g-closed sets and further properties of *g-closed sets are investigated. In this paper, we introduce the notion of m^*g -closed sets and obtain the unified characterizations for certain families of subsets between closed sets and *g-closed sets.

KEY WORDS: *g-closed set, m-structure, m-space and m^*g -closed set.

AMS Mathematics Subject Classification: 54A05, 54D15, 54D30.

1. Introduction

In 1970, Levine [4] introduced the notion of generalized closed(g-closed) sets in topological spaces. Veerakumar [15] introduced the notion of \hat{g} -closed sets in topological spaces. Recently, many variations of g-closed sets are introduced and investigated. One among them is *g-closed sets which were introduced by Veerakumar[16].

In this paper, we introduce the notion of m^*g -closed sets and obtain the basic properties, characterizations and preservation properties. In the last section, we define several new subsets which lie between closed sets and *g-closed sets.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A is said to be regular open [14] (resp. regular closed [14]) if int(cl(A)) = A (resp. cl(int(A)) = A). The finite union of regular open sets is said to be π -open [18]. The complement of π -open set is said to be π -closed.

Definition 1. A subset A of a topological space (X, τ) is said to be semi-open [3] (resp. α -open [7]) if $A \subset cl(int(A))$ (resp. $A \subset int(cl(int(A))))$. The complement of semi-open set (resp. α -open set) is said to be semi-closed (resp. α -closed).

The family of all semi-open (resp. α -open, regular open, π -open) sets in X is denoted by SO(X) (resp. τ^{α} , RO(X), $\pi O(X)$).

Definition 2. A subset A of a topological space (X, τ) is said to be g-closed [4] (resp. \hat{g} -closed [15], πg -closed [2], rg-closed [10]) if $cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. semi-open, π -open, regular open).

The complements of the above closed sets are called their respective open sets.

The family of all \hat{g} -open sets in (X, τ) is a topology on X and it is denoted by $\hat{g}O(X)$.

The \hat{g} -closure (resp. α -closure) of a subset A of X is, denoted by $\hat{g}cl(A)$ (resp. $\alpha cl(A)$) defined to be the intersection of all \hat{g} -closed sets (resp. α -closed sets) containing A.

Definition 3. A subset A of a topological space (X, τ) is said to be *g-closed [16] if $cl(A) \subset U$ whenever $A \subset U$ and U is \hat{g} -open in (X, τ) .

Definition 4. A subset A of a topological space (X, τ) is said to be αg -closed [5] (resp. αgs -closed [17], $\pi g\alpha$ -closed [1], $r\alpha g$ -closed [8]) if $\alpha cl(A)$ $\subset U$ whenever $A \subset U$ and U is open (resp. semi-open, π -open, regular open) in (X, τ) .

Throughout the present paper, (X, τ) and (Y, σ) always denote topological spaces and $f: (X, \tau) \to (Y, \sigma)$ presents a function.

3. *m*-structures

Definition 5. A subfamily m_x of the power set $\wp(X)$ of a nonempty set X is called a minimal structure (briefly m-structure) [11] on X if $\emptyset \in m_x$ and $X \in m_x$.

By (X, m_x) , we denote a nonempty set X with a minimal structure m_x on X and call it an m-space. Each member of m_x is said to be m_x -open (or briefly m-open) and the complement of an m_x -open set is said to be m_x -closed (or briefly m-closed).

Remark 1. Let (X, τ) be a topological space. Then the families τ , SO(X), RO(X), $\pi O(X)$ and $\hat{g}O(X)$ are all *m*-structures on *X*.

Definition 6. Let (X, m_x) be an *m*-space. For a subset A of X, the m_x -closure of A and the m_x -interior of A are defined in [6] as follows:

(a) $m_x - cl(A) = \cap \{F : A \subset F, X - F \in m_x\},\$

(b) $m_x - int(A) = \bigcup \{ U : U \subset A, U \in m_x \}.$

Remark 2. Let (X, τ) be a topological space and A a subset of X. If $m_x = \tau$ (resp. τ^{α} , $\hat{g}O(X)$), then we have $m_x - cl(A) = cl(A)$ (resp. $\alpha cl(A)$, $\hat{g}cl(A)$).

4. m^*g -closed sets

In this section, let (X, τ) be a topological space and m_x an *m*-structure on X. We obtain several basic properties of m^*g -closed sets.

Definition 7. Let (X, τ) be a topological space and m_x an *m*-structure on X. A subset A of X is said to be

(a) m-semiopen [13] if $A \subset m_x - cl(m_x - int(A))$,

(b) $m\hat{g}$ -closed [12] if $cl(A) \subset U$ whenever $A \subset U$ and U is m-semiopen,

(c) $m\hat{g}$ -open [12] if its complement is $m\hat{g}$ -closed.

The family of all \hat{mg} -open sets in X is an m-structure on X and denoted by $\hat{mgO}(X)$.

Definition 8. Let (X, τ) be a topological space and m_x an *m*-structure on X. A subset A of X is said to be

(a) m^*g -closed if $cl(A) \subset U$ whenever $A \subset U$ and U is $m\hat{g}$ -open,

(b) m^*g -open if its complement is m^*g -closed.

Definition 9. Let $(X, m\hat{g}O(X))$ be an m-space. For a subset A of X, the $m\hat{g}$ -closure of A and the $m\hat{g}$ -interior of A are defined as follows:

(a) $m\hat{g} - cl(A) = \cap \{F : A \subset F, X - F \in m\hat{g}O(X)\},\$

(b) $m\hat{g} - int(A) = \bigcup \{U : U \subset A, U \in m\hat{g}O(X)\}.$

Theorem 1. Let $(X, m\hat{g}O(X))$ be an m-space and A a subset of X. Then $x \in m\hat{g} - cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $m\hat{g}$ -open set U containing x.

Proof. Suppose that there exists $m\hat{g}$ -open set U containing x such that $U \cap A = \emptyset$. Then $A \subset X - U$ and $X - (X - U) = U \in m\hat{g}O(X)$. Then by Definition 9, $m\hat{g} - cl(A) \subset X - U$. Since $x \in U$, we have $x \notin m\hat{g} - cl(A)$. Conversely, suppose that $x \notin m\hat{g} - cl(A)$. There exists a subset F of X such that $X - F \in m\hat{g}O(X)$, $A \subset F$ and $x \notin F$. Then there exists $m\hat{g}$ -open set X - F containing x such that $(X - F) \cap A = \emptyset$.

Definition 10. An *m*-structure $\hat{mgO}(X)$ on a nonempty set X is said to have property C if the union of any family of subsets belonging to $\hat{mgO}(X)$ belongs to $\hat{mgO}(X)$.

Example 1. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}\}$ and $m_x = \{\emptyset, X, \{a, b\}, \{a, c\}, \{b, d\}\}$. Then $m\hat{g}$ -open sets are $\emptyset, X, \{a\}$, $\{b\}, \{d\}, \{a, b\}, \{a, d\}, \{a, b, d\}$. It is shown that $m\hat{g}O(X)$ does not have property \mathcal{C} .

Remark 3. Let (X, τ) be a topological space. Then the families SO(X), τ^{α} and $\hat{g}O(X)$ are all *m*-structures with property \mathcal{C} .

Lemma 1. Let X be a nonempty set and $m\hat{g}O(X)$ an m-structure on X satisfying property C. For a subset A of X, the following properties hold:

(a) $A \in m\hat{g}O(X)$ if and only if $m\hat{g} - int(A) = A$,

(b) A is m \hat{g} -closed if and only if $m\hat{g} - cl(A) = A$,

(c) $m\hat{g} - int(A) \in m\hat{g}O(X)$ and $m\hat{g} - cl(A)$ is $m\hat{g}$ -closed.

Remark 4. Let (X, τ) be a topological space and A a subset of X. If $m\hat{g}O(X) = \hat{g}O(X)$ (resp. $SO(X), \tau, \pi O(X), RO(X)$) and A is m^*g -closed, then A is *g-closed (resp. \hat{g} -closed, g-closed, πg -closed, rg-closed).

Proposition 1. Let $\hat{g}O(X) \subset m\hat{g}O(X)$. Then the following implications hold:

$$closed \longrightarrow m^*g\text{-}closed \longrightarrow^*g\text{-}closed$$

Proof. It is obvious that every closed set is m^*g -closed. Suppose that A is an m^*g -closed set. Let $A \subset U$ and $U \in \hat{g}O(X)$. Since $\hat{g}O(X) \subset m\hat{g}O(X)$, $cl(A) \subset U$ and hence A is *g-closed.

Example 2. (a) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{b, c\}\}$ and $m_x = \{\emptyset, X\}$. Then $m\hat{g}$ -open sets are the power set of X; \hat{g} -open sets are \emptyset, X , $\{c\}, \{b, c\}; m^*g$ -closed sets are $\emptyset, X, \{a\}, \{a, b\}$ and *g-closed sets are $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}$. It is clear that $\{a, c\}$ is *g-closed set but it is not m^*g -closed.

(b) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{b, c\}\}$ and $m_x = \{\emptyset, X, \{c\}\}$. Then $m\hat{g}$ -open sets are \emptyset , X, $\{c\}$, $\{b, c\}$; \hat{g} -open sets are \emptyset , X, $\{c\}$, $\{b, c\}$ and m^*g -closed sets are \emptyset , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$. It is clear that $\{a, c\}$ is m^*g -closed set but it is not closed.

Proposition 2. If A and B are m^*g -closed, then $A \cup B$ is m^*g -closed.

Proof. Let $A \cup B \subset U$ and $U \in m\hat{g}O(X)$. Then $A \subset U$ and $B \subset U$. Since A and B are m^*g -closed, we have $cl(A \cup B) = cl(A) \cup cl(B) \subset U$. Therefore, $A \cup B$ is m^*g -closed.

Proposition 3. If A is m^*g -closed and $m\hat{g}$ -open, then A is closed.

Proposition 4. If A is m^*g -closed and $A \subset B \subset cl(A)$, then B is m^*g -closed.

Proof. Let $B \subset U$ and $U \in m\hat{g}O(X)$. Then $A \subset U$ and A is m^*g -closed. Hence $cl(B) \subset cl(A) \subset U$ and B is m^*g -closed.

Definition 11. Let $(X, m\hat{g}O(X))$ be an m-space and A a subset of X. The $m\hat{g}$ -frontier of A, $m\hat{g} - Fr(A)$, is defined as follows: $m\hat{g} - Fr(A) = m\hat{g} - cl(A) \cap m\hat{g} - cl(X - A)$.

Proposition 5. If A is m^*g -closed and $A \subset U \in m\hat{g}O(X)$, then $m\hat{g} - Fr(U) \subset int(X - A)$.

Proof. Let A be m^*g -closed and $A \subset U \in m\hat{g}O(X)$. Then $cl(A) \subset U$. Suppose that $x \in m\hat{g} - Fr(U)$. Since $U \in m\hat{g}O(X)$, $m\hat{g} - Fr(U) = m\hat{g} - cl(U) \cap m\hat{g} - cl(X - U) = m\hat{g} - cl(U) \cap (X - U) = m\hat{g} - cl(U) - U$. Therefore, $x \notin U$ and $x \notin cl(A)$. This shows that $x \in int(X - A)$ and hence $m\hat{g} - Fr(U) \subset int(X - A)$.

Proposition 6. A subset A of X is m^*g -open if and only if $F \subset int(A)$ whenever $F \subset A$ and F is $m\hat{g}$ -closed.

Proof. Suppose that A is m^*g -open. Let $F \subset A$ and F be $m\hat{g}$ -closed. Then $X - A \subset X - F \in m\hat{g}O(X)$ and X - A is m^*g -closed. Therefore, we have $X - int(A) = cl(X - A) \subset X - F$ and hence $F \subset int(A)$. Conversely, let $X - A \subset G$ and $G \in m\hat{g}O(X)$. Then $X - G \subset A$ and X - G is $m\hat{g}$ -closed. By the hypothesis, we have $X - G \subset int(A)$ and hence $cl(X - A) = X - int(A) \subset G$. Therefore, X - A is m^*g -closed and A is m^*g -open.

Corollary 1. Let $\hat{g}O(X) \subset m\hat{g}O(X)$. Then the following properties hold:

(a) Every open set is m^{*}g-open and every m^{*}g-open set is ^{*}g-open,

- (b) If A and B are m^*g -open, then $A \cap B$ is m^*g -open,
- (c) If A is m^*g -open and $m\hat{g}$ -closed, then A is open,
- (d) If A is m^*g -open and $int(A) \subset B \subset A$, then B is m^*g -open.

Proof. This follows from Propositions 1, 2, 3 and 4.

5. Characterizations of m^*q -closed sets

In this section, let (X, τ) be a topological space and m_x an *m*-structure on X. We obtain some characterizations of m^*g -closed sets.

Theorem 2. A subset A of X is m^*g -closed if and only if $cl(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is $m\hat{g}$ -closed.

Proof. Suppose that A is m^*g -closed. Let $A \cap F = \emptyset$ and F be $m\hat{g}$ -closed. Then $A \subset X - F \in m\hat{g}O(X)$ and $cl(A) \subset X - F$. Therefore, we have $cl(A) \cap F = \emptyset$. Conversely, let $A \subset U$ and $U \in m\hat{g}O(X)$. Then $A \cap (X - U) = \emptyset$ and X - U is $m\hat{g}$ -closed. By the hypothesis, $cl(A) \cap (X - U) = \emptyset$ and hence $cl(A) \subset U$. Therefore, A is m^*g -closed.

Theorem 3. Let $\hat{g}O(X) \subset m\hat{g}O(X)$ and $m\hat{g}O(X)$ have property C. A sub-set A of X is m^*g -closed if and only if cl(A) - A contains no nonempty $m\hat{g}$ -closed set.

Proof. Suppose that A is m^*g -closed. Let $F \subset cl(A) - A$ and F be $m\hat{g}$ -closed. Then $F \subset cl(A)$ and $F \not\subseteq A$ and so $A \subset X - F \in m\hat{g}O(X)$ and hence $cl(A) \subset X - F$. Therefore, we have $F \subset X - cl(A)$. Hence $F = \emptyset$. Conversely, suppose that A is not m^*g -closed. Then by Theorem 2, $\emptyset \neq cl(A) - U$ for some $U \in m\hat{g}O(X)$ containing A. Since $\tau \subset \hat{g}O(X) \subset m\hat{g}O(X)$ and $m\hat{g}O(X)$ has property \mathcal{C} , cl(A) - U is $m\hat{g}$ -closed. Moreover, we have $cl(A) - U \subset cl(A) - A$, a contradiction. Hence A is m^*g -closed.

Theorem 4. Let $\hat{g}O(X) \subset m\hat{g}O(X)$ and $m\hat{g}O(X)$ have property \mathcal{C} . A sub-set A of X is m^*g -closed if and only if cl(A) - A is m^*g -open.

Proof. Suppose that A is m^*g -closed. Let $F \subset cl(A) - A$ and F be $m\hat{g}$ -closed. By Theorem 3, we have $F = \emptyset$ and $F \subset int(cl(A) - A)$. It follows from Proposition 6, cl(A) - A is m^*g -open. Conversely, let $A \subset U$ and $U \in m\hat{g}O(X)$. Then $cl(A) \cap (X - U) \subset cl(A) - A$ and cl(A) - A is m^*g -open. Since $\tau \subset \hat{g}O(X) \subset m\hat{g}O(X)$ and $m\hat{g}O(X)$ has property \mathcal{C} , $cl(A) \cap (X - U)$ is $m\hat{g}$ -closed and by Proposition 6, $cl(A) \cap (X - U) \subset int(cl(A) - A)$. Now, $int(cl(A) - A) = int(cl(A)) \cap int(X - A) \subset cl(A) \cap int(X - A) = cl(A) \cap (X - C) \cap cl(A)) = \emptyset$. Therefore, we have $cl(A) \cap (X - U) = \emptyset$ and hence $cl(A) \subset U$. This shows that A is m^*g -closed.

Theorem 5. Let $(X, m\hat{g}O(X))$ be an *m*-structure with property C. A sub-set A of X is m^*g -closed if and only if $m\hat{g} - cl(\{x\}) \cap A \neq \emptyset$ for each $x \in cl(A)$.

Proof. Suppose that A is m^*g -closed and $m\hat{g} - cl(\{x\}) \cap A = \emptyset$ for some $x \in cl(A)$. By Lemma 1, $m\hat{g} - cl(\{x\})$ is $m\hat{g}$ -closed and $A \subset X - (m\hat{g} - cl(\{x\})) \in m\hat{g}O(X)$. Since A is m^*g -closed, $cl(A) \subset X - (m\hat{g} - cl(\{x\})) \subset X - \{x\}$, a contradiction, since $x \in cl(A)$. Conversely, suppose that A is not m^*g -closed. Then by Theorem 2, $\emptyset \neq cl(A) - U$ for some $U \in m\hat{g}O(X)$ containing A. There exists $x \in cl(A) - U$. Since $x \notin U$, by Theorem 1, $m\hat{g} - cl(\{x\}) \cap U = \emptyset$ and hence $m\hat{g} - cl(\{x\}) \cap A \subset m\hat{g} - cl(\{x\}) \cap U = \emptyset$. This shows that $m\hat{g} - cl(\{x\}) \cap A = \emptyset$ for some $x \in cl(A)$. Hence A is m^*g -closed.

Corollary 2. Let $\hat{g}O(X) \subset m\hat{g}O(X)$ and $m\hat{g}O(X)$ have property C. For a subset A of X, the following properties are equivalent:

- (a) A is m^*g -open,
- (b) A int(A) contains no nonempty m \hat{g} -closed set,
- (c) A int(A) is m^*g -open,
- (d) $m\hat{g} cl(\{x\}) \cap (X A) \neq \emptyset$ for each $x \in A int(A)$.

Proof. This follows from Theorems 3, 4 and 5.

6. Preservation theorems

Definition 12. A function $f: (X, m_x) \to (Y, m_y)$ is said to be

- (a) $M\hat{g}$ -continuous if $f^{-1}(V)$ is $m\hat{g}$ -closed in (X, m_x) for every $m\hat{g}$ -closed V in (Y, m_u) ,
- (b) $M\hat{g}$ -closed if for each $m\hat{g}$ -closed set F of (X, m_x) , f(F) is $m\hat{g}$ -closed in (Y, m_y) .

Theorem 6. Let $m\hat{g}O(X)$ be an *m*-structure with property C. Let $f : (X, m_x) \to (Y, m_y)$ be a function from a minimal space (X, m_x) into a minimal space (Y, m_y) . Then the following are equivalent:

- (a) f is $M\hat{g}$ -continuous,
- (b) $f^{-1}(V) \in m\hat{g}O(X)$ for every $V \in m\hat{g}O(Y)$.

Proof. Assume that $f: (X, m_x) \to (Y, m_y)$ is $M\hat{g}$ -continuous. Let $V \in m\hat{g}O(Y)$. Then V^c is $m\hat{g}$ -closed in (Y, m_y) . Since f is $M\hat{g}$ -continuous, $f^{-1}(V^c)$ is $m\hat{g}$ -closed in (X, m_x) . But $f^{-1}(V^c) = X - f^{-1}(V)$. Thus $X - f^{-1}(V)$ is $m\hat{g}$ -closed in (X, m_x) and so $f^{-1}(V)$ is $m\hat{g}$ -open in (X, m_x) . Conversely, let for each $V \in m\hat{g}O(Y)$, $f^{-1}(V) \in m\hat{g}O(X)$. Let F be any $m\hat{g}$ -closed set in (Y, m_y) . By assumption, $f^{-1}(F^c)$ is $m\hat{g}$ -open in (X, m_x) . But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is $m\hat{g}$ -open in (X, m_x) .

Lemma 2. A function $f : (X, m_x) \to (Y, m_y)$ is $M\hat{g}$ -closed if and only if for each subset B of Y and each $U \in m\hat{g}O(X)$ containing $f^{-1}(B)$, there exists $V \in m\hat{g}O(Y)$ such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose that f is $M\hat{g}$ -closed. Let $B \subset Y$ and $U \in m\hat{g}O(X)$ containing $f^{-1}(B)$. Put V = Y - f(X - U). Then V is $m\hat{g}$ -open in (Y, m_y) and $f^{-1}(V) \subset f^{-1}(Y) - (X - U) = X - (X - U) = U$. Also, since $f^{-1}(B) \subset U$, then $X - U \subset f^{-1}(Y - B)$ which implies $f(X - U) \subset Y - B$ and hence $B \subset V$. Hence we obtain $V \in m\hat{g}O(Y)$, $B \subset V$ and $f^{-1}(V) \subset U$. Conversely, let F be any $m\hat{g}$ -closed set of (X, m_x) . Set f(F) = B, then $F \subset f^{-1}(B)$ and $f^{-1}(Y - B) \subset X - F \in m\hat{g}O(X)$. By the hypothesis, there exists $V \in m\hat{g}O(Y)$ such that $Y - B \subset V$ and $f^{-1}(V) \subset X - F$ and so $F \subset f^{-1}(Y - V)$. Therefore $f(F) \subset Y - V$. Hence, we obtain $Y - V \subset B = f(F) \subset Y - V$. Therefore f(F) = Y - V is $m\hat{g}$ -closed in (Y, m_y) . Hence f is $M\hat{g}$ -closed.

Theorem 7. If $f : (X, \tau) \to (Y, \sigma)$ is closed and $f : (X, m_x) \to (Y, m_y)$ is $M\hat{g}$ -continuous, where $m\hat{g}O(X)$ has property \mathcal{C} , then f(A) is m^*g -closed in (Y, m_y) for each m^*g -closed set A of (X, m_x) .

Proof. Let A be any m^*g -closed set of (X, m_x) and $f(A) \subset V \in m\hat{g}O(Y)$. Then, by Theorem 6, $A \subset f^{-1}(V) \in m\hat{g}O(X)$. Since A is m^*g -closed, $cl(A) \subset f^{-1}(V)$ and $f(cl(A)) \subset V$. Since f is closed, $cl(f(A)) \subset f(cl(A)) \subset V$. Hence f(A) is m^*g -closed in (Y, m_y) .

Theorem 8. If $f : (X, \tau) \to (Y, \sigma)$ is continuous and $f : (X, m_x) \to (Y, m_y)$ is $M\hat{g}$ -closed, then $f^{-1}(B)$ is m^*g -closed in (X, m_x) for each m^*g -closed set B of (Y, m_y) .

Proof. Let B be any m^*g -closed set of (Y, m_y) and $f^{-1}(B) \subset U \in m\hat{g}O(X)$. Since f is $M\hat{g}$ -closed, by Lemma 2, there exists $V \in m\hat{g}O(Y)$ such that $B \subset V$ and $f^{-1}(V) \subset U$. Since B is m^*g -closed, $cl(B) \subset V$ and since f is continuous, $cl(f^{-1}(B)) \subset f^{-1}(cl(B)) \subset f^{-1}(V) \subset U$. Hence $f^{-1}(B)$ is m^*g -closed in (X, m_x) .

7. New forms of closed sets in topological spaces

By $\hat{g}O(X)$ (resp. GO(X), $\pi GO(X)$, RGO(X), $\alpha GSO(X)$, $\alpha GO(X)$, $\pi G\alpha O(X)$, $R\alpha GO(X)$), we denote the collection of all \hat{g} -open (resp. g-open, πg -open, πg -open, αgs -open, αg -open, $\pi g\alpha$ -open, $r\alpha g$ -open) sets of a topological space (X, τ) . These collections are m-structure on X.

By the definitions, we obtain the following diagram:

Diagram 1.

For subsets of a topological space (X, τ) , we can define many new variations of closed sets.

Definition 13. A subset A of a topological space (X, τ) is said to be *g-closed (resp. g*-closed, π gg-closed, rgg-closed, α gsg-closed, α gg-closed, π g α g-closed, r α gg-closed) if cl(A) \subset U whenever A \subset U and U is \hat{g} -open (resp. g-open, πg -open, rg-open, αgs -open, αg -open, $\pi g\alpha$ -open, $r\alpha g$ -open) in (X, τ) .

By Diagram 1 and Definition 13, we have the following diagram:

Diagram 2.

References

- AROCKIARANI I., BALACHANDRAN K., JANAKI C., On contra-πgα-continuous functions, *Kochi J. Math.*, 3(2008), 201-209.
- [2] DONTCHEV J., NOIRI T., Quasi-normal spaces and πg-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [3] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [4] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970),89-96.
- [5] MAKI H., DEVI R., BALACHANDRAN K., Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [6] MAKI H., RAO K.C., NAGOOR GANI A., On generalizing semi-open and preopen sets, *Pure Appl. Math. Sci.*, 49(1999), 17-29.
- [7] NJASTAD O., On some classes of nearly open sets, *Pacific J. Math.*, 15(1965), 961-970.
- [8] NOIRI T., Almost αg-closed functions and separation axioms, Acta Math. Hungar., 82(3)(1999), 193-205.
- [9] NOIRI T., POPA V., Between closed sets and g-closed sets, Rend. Circ. Mat. Palermo (2), 55(2006), 175-184.
- [10] PALANIAPPAN N., RAO K.C., Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [11] POPA V., NOIRI T., On M-continuous functions, Anal. Univ. "Dunărea de Jos" Galati. Ser. Mat. Fiz. Mec. Teor. (2), 18(23)(2000), 31-41.
- [12] RAVI O., THARMAR S., mg-closed sets in minimal structures, (submitted).
- [13] ROSES E., RAJESH N., CARPINTERO C., Some new types of open and closed sets in minimal structures-II¹, International Mathematical Forum, 44(4)(2009), 2185-2198.
- [14] STONE M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [15] VEERAKUMAR M.K.R.S., On ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.
- [16] VEERAKUMAR M.K.R.S., Between g*-closed sets and g-closed sets, Antarctica J. Math., (3)(1)(2006), 43-65.

136 O. RAVI, J.A.R. RODRIGO, S. THARMAR AND K. VIJAYALAKSHMI

- [17] VISWANATHAN K., Studies on α Generalized Semi-Closed Sets in Topological and Bitopological Spaces, Ph. D Thesis, Bharathiar University, Coimbatore 2006.
- [18] ZAITSEV V., On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.

O. RAVI DEPARTMENT OF MATHEMATICS P. M. THEVAR COLLEGE USILAMPATTI, MADURAI DT, TAMILNADU, INDIA *e-mail:* siingam@yahoo.com

> J. ANTONY REX RODRIGO DEPARTMENT OF MATHEMATICS V. O. CHIDAMBARAM COLLEGE THOOTHUKUDI, TAMIL NADU, INDIA *e-mail:* antonyrexrodrigo@yahoo.co.in

S. THARMAR DEPARTMENT OF MATHEMATICS RVS College of Engineering and Technology Dindigul, Tamilnadu, India *e-mail:* tharmar11@yahoo.co.in

K. VIJAYALAKSHMI DEPARTMENT OF MATHEMATICS VEL TECH MULTI TECH ENGINEERING COLLEGE AVADI, CHENNAI, TAMIL NADU, INDIA *e-mail:* suresh_star_2000@yahoo.com

Received on 18.12.2010 and, in revised form, on 27.02.2012.