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Abstract. In this article we introduce some statistically conver-
gent difference double sequence spaces defined by Orlicz function.
Completeness of the spaces will be proved. We study some of their
other properties like solidness, symmetricity etc. and prove some
inclusion results.
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1. Introduction

Throughout, a double sequence is denoted by A = < ank >, a double
infinite array of elements ank ∈ X for all n, k ∈ N , where X is the set of
real or complex numbers.

The initial works on double sequences is found in Bromwich [3]. Later
on it is studied by Hardy [5], Moricz [10] and many others.

Throughout the article 2w, 2`∞, 2c, 2c0, 2c
R, 2c

R
0 denote the spaces of all,

bounded, convergent in Pringsheim’s sense, null in Pringsheim’s sense, reg-
ularly convergent and regularly null double sequences of complex numbers.

The notion of difference sequence spaces (for single sequences) was intro-
duced by Kizmaz [7] as follows.

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N .
Following Hardy [5] the difference of double sequences is defined by Tri-

pathy and Sarma [13] as follows.

∆ank = ank − an+1,k − an,k+1 + an+1,k+1 for all n, k ∈ N.
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The notion of statistical convergence of double sequences is introduced
by Tripathy [11]. The idea depends on the density of subsets of N ×N . A
subset E of N ×N is said to have density ρ(E) if

ρ(E) = lim
p,q→∞

1

pq

∑
n≤p

∑
k≤q

χE exists.

A double sequence < ank > is said to be statistically convergent in Pring-
sheim’s sense to a number L if for given ε > 0, ρ({(n, k) : |ank−L| ≥ ε}) = 0.

A double sequence < ank > is said to regularly statistically convergent
to a number L if < ank > converges statistically in Pringsheim’s sense to L
and the following statistical limits exist.

stat− lim
n→∞

ank = xk, exist for each k ∈ N.

and
stat− lim

n→∞
ank = yk, exist for each k ∈ N.

2. Definitions and preliminaries

An Orlicz function M is a mapping M : [0,∞) → [0,∞) such that it is
continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0
and M(x)→∞, as x→∞.

Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to construct
the sequence space,

`M =

{
(xk) :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
,

which is a Banach space normed by

||(xk)|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Remark 1. Let 0 < λ < 1, then M(λx) ≤ λM(x), for all x ≥ 0.

Definition 1. A double sequence space E is said to be solid if < αnk ank >
∈ E whenever < ank >∈ E for all double sequences < αnk > of scalars with
|αnk| ≤ 1 for all n, k ∈ N .

Definition 2. Let K = {(ni, ki) : i ∈ N ;n1 < n2 < n3 < . . . and k1 <
k2 < k3 < . . .} ⊆ N ×N and E be a double sequence space. A K-step space
of E is a sequence space λEk = {< aniki > ∈ 2w :< ank > ∈ E}. A canonical
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pre-image of a sequence < aniki > ∈ λEk is a sequence < bnk > ∈ E defined
as follows:

bnk =

{
ank, if (n, k) ∈ K,
0, otherwise.

A canonical pre-image of a step space λEk is a set of canonical pre-images
of all elements in λEk .

Definition 3. A double sequence space E is said to be monotone if it
contains the canonical pre-images of all its step spaces.

Remark 2. From the above notions, it follows that ’If a sequence space
E solid then E is monotone’.

Definition 4. A double sequence space E is said to be symmetric if
< ank > ∈ E implies < aπ(n)π(k) > ∈ E, where π is a permutation of N .

Definition 5. A double sequence space E is said to be convergence free
if < bnk > ∈ E whenever < ank > ∈ E where ank = 0 implies bnk = 0.

Let M be an Orlicz function. We have the following double sequence
spaces.

2`∞(M, q) =

{
< ank > ∈ 2w(q) : sup

n,k
M

(
q

(
ank
ρ

))
<∞, for some ρ > 0

}

2c(M, q) =

{
< ank > ∈ 2w(q) : stat− lim

n,k
M

(
q

(
ank − L

ρ

))
= 0, for some ρ > 0

}
.

Also < ank > ∈ 2c
R(M, q) i.e. regularly convergent if < ank > ∈2 c(M, q)

and the following limits hold:

There exists Lk ∈ X, such that stat− lim
n
M
(
q
(
ank−Lk

ρ

))
= 0, for some

ρ > 0 and all k ∈ N .

There exists Jn ∈ X, such that stat− lim
k
M
(
q
(
ank−Jn

ρ

))
= 0, for some

ρ > 0 and all n ∈ N .
The definition of 2c0(M, q) and 2c

R
0 (M, q) follows from the above defini-

tion on taking L = Lk = Jn = θ, for all n, k ∈ N .
We introduce the following difference double sequence spaces.

2`∞(M,∆) =

{
< ank > ∈ 2w : sup

n,k
M

(
|∆ank|
r

)
<∞, for some r > 0

}

2c(M,∆) =

{
< ank > ∈ 2w : stat− limM

(
|∆ank − L|

r

)
= 0, for some r > 0

}
.
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Also< ank > ∈2c
R(M,∆) i.e. regularly convergent if< ank > ∈2c(M,∆)

and the following limits hold:

There exists Lk ∈ X, such that stat − lim
n
M
(
|∆ank−Lk|

r

)
= 0, for some

r > 0 and all k ∈ N .
There exists Jn ∈ X, such that stat − lim

k
M
(
|∆ank−Jn|

r

)
= 0, for some

r > 0 and all n ∈ N .
The definition of 2c0(M,∆) and 2c

R
0 (M,∆) follows from the above defi-

nition on taking L = Lk = Jn = 0, for all n, k ∈ N .

3. Main results

Theorem 1. The classes Z(M,∆), where Z = 2c, 2c0, 2c
R, 2c

R
0 and 2`∞

are linear spaces.

Theorem 2. The spaces Z(M,∆), where Z = 2c
R, 2c

R
0 and 2`∞ are

Banach spaces normed by

f(< ank >) = sup
n
|an1|+ sup

k
|a1k|+ inf

{
r > 0 : sup

n,k
M

(
|∆ank|
r

)
≤ 1

}
.

Proof. We prove the theorem for the space 2c
R(M,∆) and the proof for

the other cases can be established following similar technique. Let Ai =<
aink > be a Cauchy sequence in 2c

R(M,∆). We have to show the following:
(i) aink → ank as i→∞, for each (n, k) ∈ N ×N ,

(ii) ai → a as i→∞ where stat− lim aink = ai for each i ∈ N .
(iii) ank → a (statistically relative to M).
Let ε > 0 be given. For a fixed x0 > 0, choose t > 0 such thatM

(
tx0
2

)
≥ 1

and m0 ∈ N be such that

(1) f(< aink − a
j
nk >) <

ε

tx0
for all i, j ≥ m0.

By the definition of f we have

|ain1 − a
j
n1| <

ε

tx0
, |ai1k − a

j
1k| <

ε

tx0
, M

(
|∆aink −∆ajnk|

r

)
≤ 1

⇒M

(
|∆aink −∆ajnk|
f(aink − a

j
nk)

)
≤ 1 ≤M

(
tx0

3

)
for all i, j ≥ m0

⇒ |∆aink −∆ajnk| <
tx0

3

ε

tx0
=
ε

3
for all i, j ≥ m0.

Hence < ajn1 >, < aj1k > and < ∆ajnk > are Cauchy sequences of complex
numbers and so there exists complex numbers an1, a1k and ynk such that

lim
j→∞

ajn1 = an1, lim
j→∞

aj1k = a1k, lim
j→∞

∆ajnk = ynk.
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From this it is clear that lim
j→∞

ajnk exists. Using continuity of f , from (1)

we have

(2) aink → ank as i→∞.

(ii) We have stat− lim aink = a for each i ∈ N . Thus there exists a subset
Ei ⊂ N ×N such that ρ(Ei) = 1 and

M

(
|aink − ai|

r

)
≤ M

( ε
3r

)
for all (n, k) ∈ Ei,(3)

for each i ∈ N and for some t > 0.

⇒ |aink − ai| <
ε

3
.

for all (n, k) ∈ Ei, for each i ∈ N and by continuity of M .
Let i, j ≥ m0 and (n, k) ∈ Ei ∩ Ej . Then we have

|ai − aj | ≤ |aink − ai|+ |aink − a
j
nk|+ |a

j
nk − aj |

<
ε

3
+
ε

3
+
ε

3
= ε by (2) and (3).

Hence < ai > is a Cauchy sequence in X, which is complete. Thus < ai >
converges in X and let lim

i→∞
ai = a.

(iii) Let ε1 > 0 be given. Let i ≥ m0 and t > 0 be so chosen that
M
(
ε
t

)
< ε1. From (ii) we have a subset E ⊂ N × N with ρ(E) = 1 such

that
|aink − ai| <

ε

3
.

By (i) we have |ank−aink| <
ε
3 for all i ≥ m0. By (ii) we have |ai−a| < ε

3
for all i ≥ m0. Hence for all i ≥ m0 and for all (n, k) ∈ E with ρ(E) = 1,
we have

|ank − a| ≤ |ank − aink|+ |aink − ai|+ |ai − a|

<
ε

3
+
ε

3
+
ε

3
= ε

⇒ M

(
|ank − a|

t

)
≤M

(ε
t

)
= ε1 for some t > 0

and all (n, k) ∈ E with ρ(E) = 1

⇒ stat− lim ank = a.

Hence < ank >∈ 2c̄
R(M,∆). Thus 2c̄

R(M,∆) is a Banach space. �

Proposition 1. (i) Z(M,∆) ⊂2 `∞(M,∆) for Z =2 c
R,2 c

R
0 . The inclu-

sions are strict.
(ii) Z(M) ⊂ Y (M,∆) for Z = 2c

R, 2c and Y = 2c
R
0 , 2c0 respectively.

The inclusions are strict.
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Proposition 2. The spaces Z(M,∆) for Z = 2c
R, 2c

R
0 are nowhere

dense subset of 2`∞(M,∆).

Proof. The proof is clear from the Theorem 2 and Proposition 1(i). �

Proposition 3. Let M , M1, M2 be Orlicz functions. Then
(i) Z(M2,∆) ⊆ Z(M1,∆) for Z = 2c, 2c0, 2c

R, 2c
R
0 if M1(x) ≤M2(x)

for all x ∈ [0,∞).
(ii) Z(M1,∆) ∩ Z(M2,∆) ⊆ Z(M1 +M2,∆) for Z = 2c, 2c0, 2c

R, 2c
R
0 .

(iii) Z(M1,∆) ⊆ Z(M ◦M1,∆) for Z = 2c, 2c0, 2c
R, 2c

R
0 .

Proof. The proof of (i) and (ii) are obvious.
(iii) Consider Z = 2c̄. Let < ank > ∈ 2c̄(M1,∆). Then for some r > 0,

stat− limM1

(
|∆ank − L|

r

)
= 0.

Let bnk = M1

(
|∆ank−L|

r

)
. Since bnk → 0(stat), there exists J ⊆ N ×N

with ρ(J) = 1 such that bnk < 1 for all (n, k) ∈ J .
Now by the Remark 1, we have M(bnk) ≤ bbkM(1).

⇒ stat− limM

(
M1

(
|∆ank − L|

r

))
= 0

⇒ stat− lim(M ◦M1)

(
|∆ank − L|

r

)
= 0.

Hence < ank > ∈2 c̄(M ◦M1,∆). Similarly the result can be proved for
the other cases also. �

Proposition 4. The spaces Z(M,∆) for Z = 2c
R, 2c

R
0 and 2`∞ are

K-spaces.

Property 1. The spaces Z(M,∆) for Z = 2c, 2c0, 2c
R, 2c

R
0 and 2`∞

are not symmetric.

Proof. The result follows from the following example. �

Example 1. Consider the sequence space 2c0. Let M(x) = x3. Let the
sequence < ank > be defined by

ank =

{
1, if n is odd for all k ∈ N,
−1, otherwise.

Then ∆ank = 0 for all n, k ∈ N .
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Let < bnk > be a rearrangement of the sequence < ank > defined by

bnk =

{
−1, if n+ k is even,

1, otherwise.

Then

∆bnk =

{
−4, if n+ k is even,

4, otherwise.

The sequence < ank > ∈ 2c0(M,∆) but < bnk > /∈ 2c0(M,∆).
Hence the space 2c0(M,∆) is not symmetric. Similarly the other spaces

are also not symmetric.

Property 2. The spaces Z(M,∆) for Z = 2c, 2c0, 2c
R, 2c

R
0 and 2`∞

are not monotone and hence are not solid.

Proof. To prove the results, consider the following example. �

Example 2. We prove the result for Z = 2c̄ and the other cases can be
proved using similar technique. Let M(x) = x. Let the sequence < ank > be
defined by

ank = 1 for all n, k ∈ N.

Then < ank > ∈2 c(M,∆). Let J = {(n, k) ∈ N × N : n ≥ k}. Let the
sequence < bnk > be defined by

bnk =

{
ank, for all (n, k) ∈ J,

0, otherwise.

The sequence < bnk > belongs to the canonical pre-image of J-step space
of 2c(M,∆), but < bnk > /∈2 c(M,∆). Hence 2c(M,∆) is not monotone.
Similarly it can be shown that the other spaces are not monotone.

Thus by Remark 2 the spaces are not solid. The proof of the following
result is obvious.

Property 3. The spaces Z(M,∆) for Z = 2c, 2c0, 2c
R, 2c

R
0 and 2`∞

are not convergence free.
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