$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 49}$

P. SUNDARAM, M. SHEIK JOHN, O. RAVI AND R. LATHA

ON *ĝ*-REGULAR AND *ĝ*-NORMAL SPACES

ABSTRACT. The concept of \hat{g} -closed sets [10] (= ω -closed sets [8]) was introduced by Veerakumar [10] (Sheik John [8]). The aim of this paper is to introduce and characterize \hat{g} -regular spaces and \hat{g} -normal spaces via the concept of \hat{g} -closed sets.

KEY WORDS: \hat{g} -closed set, \hat{g} -open set, \hat{g} -regular space, \hat{g} -normal space, \hat{g} -continuous function, \hat{g} -irresolute function.

AMS Mathematics Subject Classification: 54D10, 54D15, 54D08, 54C10.

1. Introduction and preliminaries

As a generalization of closed sets, in 1970, Levine [4] initiated the study of so called *g*-closed sets. As the strong forms of *g*-closed sets, the notion of \tilde{g} -closed sets and \hat{g} -closed sets (= ω -closed sets) were introduced and studied by Jafari et al [2] and Veerakumar [10] (Sheik John [8]) respectively. Using g-closed sets, Munshi [6] introduced g-regular and g-normal spaces in topological spaces. In a similar way, Rajesh and Ekici [7] introduced \tilde{g} -regular and \tilde{g} -normal spaces using \tilde{g} -closed sets in topological spaces.

In this paper, we introduce \hat{g} -regular spaces and \hat{g} -normal spaces in topological spaces. We obtain several characterizations of \hat{g} -regular and \hat{g} -normal spaces and some preservation theorems for \hat{g} -regular and \hat{g} -normal spaces.

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A in X, respectively.

We recall the following definitions, which are useful in the sequel.

Definition 1. A subset A of a space (X, τ) is called semi-open [3] if $A \subseteq cl(int(A))$. The complement of semi-open set is called semi-closed.

Definition 2. A subset A of a space (X, τ) is called \hat{g} -closed [8, 10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of \hat{g} -closed set is said to be \hat{g} -open.

Definition 3. A function $f : (X, \tau) \to (Y, \sigma)$ is called:

- 1. a \hat{g} -continuous [8, 10] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every closed set V of (Y, σ) .
- 2. a \hat{g} -irresolute [8, 10] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every \hat{g} -closed set V of (Y, σ) .
- 3. a pre-semi-open [1] if f(V) is semi-open in (Y, σ) for every semi-open set V of (X, τ) .
- 4. an irresolute [1] if $f^{-1}(V)$ is semi-closed in (X, τ) for each semi-closed set V of (Y, σ) .
- 5. a \hat{g} -closed [9] if the image of every closed set of (X, τ) is \hat{g} -closed of (Y, σ) .
- 6. weakly continuous [5] if for each point $x \in X$ and each open set V in (Y, σ) containing f(x), there exists an open set U containing x such that $f(U) \subseteq cl(V)$.

Theorem 1 ([8]). A set A is \hat{g} -open (X, τ) if and only if $F \subseteq int(A)$ whenever F is semi-closed in (X, τ) and $F \subseteq A$.

Definition 4 ([8]). Let x be a point of (X, τ) and V be a subset of X. Then V is called a \hat{g} -neighbourhood of x in (X, τ) if there exists a \hat{g} -open set U of (X, τ) such that $x \in U \subseteq V$.

Definition 5 ([8]). A space (X, τ) is called a $gT_{\hat{g}}$ -space if every g-closed set in it is \hat{g} -closed.

Theorem 2 ([8]). Suppose that $B \subseteq A \subseteq X$, B is a \hat{g} -closed set relative to A and that A is open and \hat{g} -closed in (X, τ) . Then B is \hat{g} -closed in (X, τ) .

2. \hat{g} -regular and \hat{g} -normal spaces

We introduce the following definition.

Definition 6. A space (X, τ) is said to be \hat{g} -regular if for every \hat{g} -closed set F and each point $x \notin F$, there exist disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

Remark 1. It is obvious that every \hat{g} -regular space is regular but not conversely. Consider $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then (X, τ) is a regular space but not \hat{g} -regular.

Theorem 3. Let (X, τ) be a topological space. Then the following statements are equivalent:

1. (X, τ) is a \hat{g} -regular space.

2. For each $x \in X$ and each \hat{g} -open neighbourhood W of x there exists an open neighbourhood V of x such that $cl(V) \subseteq W$.

Proof. 1. \Rightarrow 2. Let W be any \hat{g} -open neighbourhood of x. Then there exists a \hat{g} -open set G such that $x \in G \subseteq W$. Since G^c is \hat{g} -closed and $x \notin G^c$, by hypothesis there exist open sets U and V such that $G^c \subseteq U, x \in V$ and $U \cap V = \emptyset$ and so $V \subseteq U^c$. Now, $cl(V) \subseteq cl(U^c) = U^c$ and $G^c \subseteq U$ implies $U^c \subseteq G \subseteq W$. Therefore $cl(V) \subseteq W$.

2. ⇒ 1. Let *F* be any \hat{g} -closed set and $x \notin F$. Then $x \in F^c$ and F^c is \hat{g} -open and so F^c is a \hat{g} -neighbourhood of *x*. By hypothesis, there exists an open neighbourhood *V* of *x* such that $x \in V$ and $cl(V) \subseteq F^c$, which implies $F \subseteq (cl(V))^c$. Then $(cl(V))^c$ is an open set containing *F* and $V \cap (cl(V))^c = \emptyset$. Therefore, *X* is \hat{g} -regular.

Theorem 4. For a space (X, τ) the following are equivalent:

- 1. (X, τ) is normal.
- 2. For every pair of disjoint closed sets A and B, there exist \hat{g} -open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Proof. 1. \Rightarrow 2. Let A and B be disjoint closed subsets of (X, τ) . By hypothesis, there exist disjoint open sets (and hence \hat{g} -open sets) U and V such that $A \subseteq U$ and $B \subseteq V$.

2. ⇒ 1. Let A and B be closed subsets of (X, τ) . Then by assumption, $A \subseteq G, B \subseteq H$ and $G \cap H = \emptyset$, where G and H are disjoint \hat{g} -open sets. Since A and B are semi-closed, by Theorem 1, $A \subseteq int(G)$ and $B \subseteq int(H)$. Further, $int(G) \cap int(H) = int(G \cap H) = \emptyset$.

Definition 7 ([4]). A topological space (X, τ) will be termed symmetric if and only if for x and y in (X, τ) , $x \in cl(y)$ implies that $y \in cl(x)$.

Theorem 5 ([4]). A space (X, τ) is symmetric if and only if $\{x\}$ is g-closed in (X, τ) for each point x of (X, τ) .

Theorem 6. A $gT_{\hat{g}}$ -space (X, τ) is symmetric if and only if $\{x\}$ is \hat{g} -closed in (X, τ) for each point x of (X, τ) .

Proof. Follows from Definition 7 and Theorem 5.

Theorem 7. If (X, τ) is a \hat{g} -regular space and Y is an open and \hat{g} -closed subset of (X, τ) , then the subspace Y is \hat{g} -regular.

Proof. Let F be any \hat{g} -closed subset of Y and $y \in F^c$. By Theorem 2, F is \hat{g} -closed in (X, τ) . Since (X, τ) is \hat{g} -regular, there exist disjoint open sets U and V of (X, τ) such that $y \in U$ and $F \subseteq V$. Therefore, $U \cap Y$ and $V \cap Y$ are disjoint open sets of the subspace Y such that $y \in U \cap Y$ and $F \subseteq V \cap Y$. Hence the subspace Y is \hat{g} -regular.

Theorem 8. A topological space (X, τ) is \hat{g} -regular if and only if for each \hat{g} -closed set F of (X, τ) and each $x \in F^c$ there exist open sets U and V of (X, τ) such that $x \in U$, $F \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$.

Proof. Let F be a \hat{g} -closed set of (X, τ) and $x \notin F$. Then there exist open sets U_0 and V of (X, τ) such that $x \in U_0$, $F \subseteq V$ and $U_0 \cap V = \emptyset$, which implies $U_0 \cap cl(V) = \emptyset$. Since cl(V) is closed, it is \hat{g} -closed and $x \notin cl(V)$. Since (X, τ) is \hat{g} -regular, there exist open sets G and H of (X, τ) such that $x \in G$, $cl(V) \subseteq H$ and $G \cap H = \emptyset$, which implies $cl(G) \cap H = \emptyset$. Let $U = U_0 \cap G$, then U and V are open sets of (X, τ) such that $x \in U, F \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$.

Converse part is trivial.

Corollary 1. If a space (X, τ) is \hat{g} -regular, symmetric and $gT_{\hat{g}}$ -space, then it is Urysohn.

Proof. Let x and y be any two distinct points of (X, τ) . Since (X, τ) is symmetric and $gT_{\hat{g}}$ -space, $\{x\}$ is \hat{g} -closed by Theorem 6. Therefore, by Theorem 8, there exist open sets U and V such that $x \in U, y \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Theorem 9. Let (X, τ) be topological space. Then the following statements are equivalent:

- 1. (X, τ) is \hat{g} -regular.
- 2. For each point $x \in X$ and for each \hat{g} -open neighbourhood W of x, there exists an open neighbourhood U of x such that $cl(U) \subseteq W$.
- 3. For each point $x \in X$ and for each \hat{g} -closed set F not containing x, there exists an open neighbourhood V of x such that $cl(V) \cap F = \emptyset$.

Proof. $1 \Rightarrow 2$. It is obvious from Theorem 3.

2. \Rightarrow 3. Let $x \in X$ and F be a \hat{g} -closed set such that $x \notin F$. Then F^c is a \hat{g} -open neighbourhood of x and by hypothesis, there exists an open neighbourhood V of x such that $cl(V) \subseteq F^c$ and hence $cl(V) \cap F = \emptyset$.

3. ⇒ 2. Let $x \in X$ and W be a \hat{g} -open neighbourhood of x. Then there exists a \hat{g} -open set G such that $x \in G \subseteq W$. Since G^c is \hat{g} -closed and $x \notin G^c$, by hypothesis there exists an open neighbourhood U of x such that $cl(U) \cap G^c = \emptyset$. Therefore, $cl(U) \subseteq G \subseteq W$.

Definition 8. Let (X, τ) be a topological space and $E \subseteq X$. We define the \hat{g} -closure of E (briefly $\hat{g} - cl(E)$) [8] to be the intersection of all \hat{g} -closed sets containing E.

Definition 9. For a subset A of a topological space (X, τ) , $cl_{\theta}(A) = \{x \in X : cl(U) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U\}$ [11].

Theorem 10. The following are equivalent for a space (X, τ) .

1. (X, τ) is \hat{g} -regular, 2. $cl_{\theta}(A) = \hat{g} - cl(A)$ for each subset A of (X, τ) , 3. $cl_{\theta}(A) = A$ for each \hat{g} -closed set A.

is \hat{q} -regular.

Proof. 1. \Rightarrow 2. For any subset A of (X, τ) , we have always $A \subseteq \hat{g} - cl(A) \subseteq cl_{\theta}(A)$. Let $x \in (\hat{g} - cl(A))^c$. Then there exists a \hat{g} -closed set F such that $x \in F^c$ and $A \subseteq F$. By assumption, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$. Now, $x \in U \subseteq cl(U) \subseteq V^c \subseteq F^c \subseteq A^c$ and therefore $cl(U) \cap A = \emptyset$. Thus, $x \in (cl_{\theta}(A))^c$ and hence $cl_{\theta}(A) = \hat{g} - cl(A)$. 2. \Rightarrow 3. It is trivial.

3. \Rightarrow 1. Let F be any \hat{g} -closed set and $x \in F^c$. Since F is \hat{g} -closed, by assumption $x \in (cl_{\theta}(F))^c$ and so there exists an open set U such that $x \in U$ and $cl(U) \cap F = \emptyset$. Then $F \subseteq (cl(U))^c$. Let $V = (cl(U))^c$. Then V is an open such that $F \subseteq V$. Also, the sets U and V are disjoint and hence (X, τ)

Theorem 11 ([8]). If $f : (X, \tau) \to (Y, \sigma)$ is bijective, pre-semi-open and \hat{g} -continuous, then f is \hat{g} -irresolute.

Theorem 12. If (X, τ) is a \hat{g} -regular space and $f : (X, \tau) \to (Y, \sigma)$ is bijective, pre-semi-open, \hat{g} -continuous and open, then (Y, σ) is \hat{g} -regular.

Proof. Let F be any \hat{g} -closed subset of (Y, σ) and $y \notin F$. Since the function f is \hat{g} -irresolute by Theorem 11, we have $f^{-1}(F)$ is \hat{g} -closed in (X, τ) . Since f is bijective, let f(x) = y, then $x \notin f^{-1}(F)$. By hypothesis, there exist disjoint open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq V$. Since f is open and bijective, we have $y \in f(U), F \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. This shows that the space (Y, σ) is also \hat{g} -regular.

Theorem 13 ([8]). If $f : (X, \tau) \to (Y, \sigma)$ is irresolute \hat{g} -closed and A is a \hat{g} -closed subset of (X, τ) , then f(A) is \hat{g} -closed.

Theorem 14. If $f : (X, \tau) \to (Y, \sigma)$ is irresolute \hat{g} -closed continuous injection and (Y, σ) is \hat{g} -regular, then (X, τ) is \hat{g} -regular.

Proof. Let F be any \hat{g} -closed set of (X, τ) and $x \notin F$. Since f is irresolute \hat{g} -closed, by Theorem 13, f(F) is \hat{g} -closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is \hat{g} -regular and so there exist disjoint open sets U and V in (Y, σ) such that $f(x) \in U$ and $f(F) \subseteq V$. i.e., $x \in f^{-1}(U), F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Therefore, (X, τ) is \hat{g} -regular.

Theorem 15. If $f : (X, \tau) \to (Y, \sigma)$ is weakly continuous \hat{g} -closed injection and (Y, σ) is \hat{g} -regular, then (X, τ) is regular.

Proof. Let F be any closed set of (X, τ) and $x \notin F$. Since f is \hat{g} -closed, f(F) is \hat{g} -closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is \hat{g} -regular by Theorem 8 there exist open sets U and V such that $f(x) \in U$, $f(F) \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Since f is weakly continuous it follows that [5,Theorem 1], $x \in f^{-1}(U) \subseteq int(f^{-1}(cl(U))), F \subseteq f^{-1}(V) \subseteq int(f^{-1}(cl(V)))$ and $int(f^{-1}(cl(U))) \cap int(f^{-1}(cl(V))) = \emptyset$. Therefore, (X, τ) is regular.

We conclude this section with the introduction of \hat{g} -normal spaces in topological spaces.

Definition 10. A topological space (X, τ) is said to be \hat{g} -normal if for any pair of disjoint \hat{g} -closed sets A and B, there exist disjoint open sets Uand V such that $A \subseteq U$ and $B \subseteq V$.

Remark 2. It is obvious that every \hat{g} -normal space is normal but not conversely. Consider $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then X is normal space but not \hat{g} -normal.

Theorem 16. If (X, τ) is a \hat{g} -normal space and Y is an open and \hat{g} -closed subset of (X, τ) , then the subspace Y is \hat{g} -normal.

Proof. Let *A* and *B* be any disjoint \hat{g} -closed sets of *Y*. By Theorem 2, *A* and *B* are \hat{g} -closed in (X, τ) . Since (X, τ) is \hat{g} -normal, there exist disjoint open sets *U* and *V* of (X, τ) such that $A \subseteq U$ and $B \subseteq V$. Then $A \subseteq U \cap Y$ and $B \subseteq V \cap Y$ and so the subspace *Y* is normal.

In the next theorem we characterize \hat{g} -normal space.

Theorem 17. Let (X, τ) be a topological space. Then the following statements are equivalent:

- 1. (X, τ) is \hat{g} -normal.
- 2. For each \hat{g} -closed set F and for each \hat{g} -open set U containing F, there exists an open set V containing F such that $cl(V) \subseteq U$.
- 3. For each pair of disjoint \hat{g} -closed sets A and B in (X, τ) , there exists an open set U containing A such that $cl(U) \cap B = \emptyset$.
- 4. For each pair of disjoint \hat{g} -closed sets A and B in (X, τ) , there exist open sets U containing A and V containing B such that $cl(U) \cap cl(V) = \emptyset$.

Proof. 1. \Rightarrow 2. Let F be a \hat{g} -closed set and U be a \hat{g} -open set such that $F \subseteq U$. Then $F \cap U^c = \emptyset$. By assumption, there exist open sets V and W such that $F \subseteq V$, $U^c \subseteq W$ and $V \cap W = \emptyset$, which implies $cl(V) \cap W = \emptyset$. Now, $cl(V) \cap U^c \subseteq cl(V) \cap W = \emptyset$ and so $cl(V) \subseteq U$.

2. \Rightarrow 3. Let A and B be disjoint \hat{g} -closed sets of (X, τ) . Since $A \cap B = \emptyset$, $A \subseteq B^c$ and B^c is \hat{g} -open. By assumption, there exists an open set U containing A such that $cl(U) \subseteq B^c$ and so $cl(U) \cap B = \emptyset$.

 $3. \Rightarrow 4.$ Let A and B be any two disjoint \hat{g} -closed sets of (X, τ) . Then by assumption, there exists an open set U containing A such that $cl(U) \cap B = \emptyset$. Since cl(U) is closed, it is \hat{g} -closed and so B and cl(U) are disjoint \hat{g} -closed sets in (X, τ) . Therefore again by assumption, there exists an open set V containing B such that $cl(V) \cap cl(U) = \emptyset$.

4. ⇒ 1. Let A and B be any two disjoint \hat{g} -closed sets of (X, τ) . By assumption, there exist open sets U containing A and V containing B such that $cl(U) \cap cl(V) = \emptyset$, we have $U \cap V = \emptyset$ and thus (X, τ) is \hat{g} -normal.

Theorem 18. If $f : (X, \tau) \to (Y, \sigma)$ is bijective, pre-semi-open, \hat{g} -continuous and open and (X, τ) is \hat{g} -normal, then (Y, σ) is \hat{g} -normal.

Proof. Let A and B be any disjoint \hat{g} -closed sets of (Y, σ) . The function f is \hat{g} -irresolute by Theorem 11 and so $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint \hat{g} -closed sets of (X, τ) . Since (X, τ) is \hat{g} -normal, there exist disjoint open sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is open and bijective, we have f(U) and f(V) are open in (Y, σ) such that $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. Therefore, (Y, σ) is \hat{g} -normal.

Theorem 19. If $f : (X, \tau) \to (Y, \sigma)$ is irresolute \hat{g} -closed continuous injection and (Y, σ) is \hat{g} -normal, then (X, τ) is \hat{g} -normal.

Proof. Let A and B be any disjoint \hat{g} -closed subsets of (X, τ) . Since f is irresolute \hat{g} -closed, f(A) and f(B) are disjoint \hat{g} -closed sets of (Y, σ) by Theorem 13. Since (Y, σ) is \hat{g} -normal, there exist disjoint open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. i.e., $A \subseteq f^{-1}(U), B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Since f is continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are open in (X, τ) , we have (X, τ) is \hat{g} -normal.

Theorem 20. If $f : (X, \tau) \to (Y, \sigma)$ is weakly continuous \hat{g} -closed injection and (Y, σ) is \hat{g} -normal, then (X, τ) is normal.

Proof. Let A and B be any two disjoint closed sets of (X, τ) . Since f is injective and \hat{g} -closed, f(A) and f(B) are disjoint \hat{g} -closed sets of (Y, σ) . Since (Y, σ) is \hat{g} -normal, by Theorem 17, there exist open sets U and V such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Since f is weakly continuous, it follows that [5, Theorem 1], $A \subseteq f^{-1}(U) \subseteq int(f^{-1}(cl(U)))$, $B \subseteq f^{-1}(V) \subseteq int(f^{-1}(cl(V)))$ and $int(f^{-1}(cl(U))) \cap int(f^{-1}(cl(V))) = \emptyset$. Therefore, (X, τ) is normal.

Acknowledgement. We thank the referee for his/her suggestions for improvement of this paper.

References

152

- CROSSLEY S.G., HILDEBRAND S.K., Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [2] JAFARI S., NOIRI T., RAJESH N., THIVAGAR M.L., Another generalization of closed sets, *Kochi Journal of Mathematics*, 3(2008), 25-38.
- [3] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [4] LEVINE N., Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, 19(1970), 89-96.
- [5] LEVINE N., A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [6] MUNSHI B.M., Separation axioms, Acta Ciencia Indica, 12(1986), 140-144.
- [7] RAJESH N., EKICI E., On ğ-regular and ğ-normal spaces, Kochi Journal of Mathematics, 2(2007), 71-78.
- [8] SHEIK JOHN M., Ph. D Thesis, Bharathiyar University, Coimbatore, Tamil Nadu, India, 2002.
- [9] SUNDARAM P., SHEIK JOHN M., RAVI O., RAMKUMAR G., More on \hat{g} -homeomorphisms in topological spaces, (*submitted*).
- [10] VEERA KUMAR M.K.R.S., ĝ-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003) 99-112.
- [11] VELIČKO N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.

Palaniappan Sundaram Department of Mathematics N. G. M. College Pollachi, Tamil Nadu, India *e-mail:* p_sundaram@rediffmail.com

Mohamed Sheik John Department of Mathematics N. G. M. College Pollachi, Tamil Nadu, India

Ochanathevar Ravi Department of Mathematics P.M. Thevar College Usilampatti, Madurai District, Tamil Nadu, India *e-mail:* siingam@yahoo.com

> RATHINAKUMAR LATHA DEPARTMENT OF MATHEMATICS PRINCE SVP ENGINEERING COLLEGE PONMAR, CHENNAI-48, TAMIL NADU, INDIA *e-mail:* ar.latha@gmail.com

Received on 20.01.2010 and, in revised form, on 11.06.2012.