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FUZZY C-FLATS

Abstract. In this paper, we introduce the notion of fuzzy
C-matroids, a new class of fuzzy matroids. We study properties
of this class and define several new types of fuzzy maps between
fuzzy matroids. In addition, we define fuzzy C-inner and fuzzy
C-closure operators in this class and characterize fuzzy C-matroids
and fuzzy maps between matroids in terms of these notions.

Key words: fuzzy matroid, fuzzy flat, fuzzy closure, fuzzy strong
map, fuzzy hesitant map.

AMS Mathematics Subject Classification: 05B35.

1. Introduction

Matroid theory has several interesting applications in system analysis,
operations research and economics. Since most of the time the aspects of
matroid problems are uncertain, it is nice to deal with these aspects via the
methods of fuzzy logic. The notion of fuzzy matroids was first introduced by
Geotschel and Voxman in their landmark paper [2] using the notion of fuzzy
independent set. The notion of fuzzy independent set was also explored in
[7, 8]. Some constructions, fuzzy spanning sets, fuzzy rank and fuzzy closure
axioms were also studied in [3, 4, 5, 11]. Several other fuzzifications of
matroids were also discussed in [6, 9]. Since the notion of flats in traditional
matroids is one of the most significant notions that plays a very important
rule in characterizing strong maps (see for example [10]), in [1], the notions
of fuzzy flats and fuzzy C flats were introduced and several examples were
provided. Thus in [1], fuzzy matroids are defined via fuzzy flats axioms
and it was shown that the levels of the fuzzy matroid introduced are indeed
crisp matroids. Moreover, fuzzy strong maps and fuzzy hesitant maps are
introduced and explored. We remark that this approach in [1] is different
from those mentioned above.

Let E be any be any non-empty set. By ℘(1) we denote the set of all fuzzy
sets on E. That is ℘(1) = [0, 1]E , which is a completely distributive lattice.
Thus let 0E and 1E denote its greatest and smallest elements, respectively.
That is 0E(e) = 0 and 1E(e) = 1 for every e ∈ E. Let A be a set of fuzzy sets
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and µ1, µ2 ∈ A. Then µ1 is a subset of µ2 , written µ1 ≤ µ2, if µ1(e) ≤ µ2(e)
for all e ∈ E. If µ1 ≤ µ2 and µ1 6= µ2, then µ1 is a proper subset of µ2, written
µ1 < µ2. Moreover, µ1 ≺ µ2 if µ1 < µ2 and there does not exist µ3 ∈ A such
that µ1 < µ3 < µ2. Finally, µ1∨µ2 = sup{µ1, µ2} and µ1∧µ2 = inf{µ1, µ2}.

Next we recall some basic definitions and results from [1].

Definition 1. Let E be a finite set and let F be a finite family of fuzzy
sets satisfying the following three conditions:

(i) 1E ∈ F.
(ii) If µ1, µ2 ∈ F, then µ1 ∧ µ2 ∈ F.

(iii) If µ ∈ F and µ1, µ2, . . . , µn are all minimal members of F (with
respect to standard fuzzy inclusion) that properly contain µ (in this case we
write µ ≺ µi for all i = 1, 2, . . . , n), then the fuzzy union of µ1, µ2, ..., µn is
equal to 1E (i.e. ∨ni=1µi = 1E).

Then the system FM = (E,F) is called fuzzy matroid and the elements
of F are fuzzy flats of FM : The set O = {1E − λ : λ ∈ F} is called the
collection of fuzzy open sets of FM.

Definition 2. For r ∈ (0, 1], let Cr(µ) = {e ∈ E|µ(e) ≥ r} be the r-level
of a fuzzy set µ ∈ F, and let Fr = {Cr(µ) : µ ∈ F} be the r-level of the
family F of fuzzy flats. Then for r ∈ (0, 1], (E,Fr) is ther-level of the fuzzy
set system (E,F).

Theorem 1. For every r ∈ (0, 1], the r-levels Fr = {Cr(µ) : µ ∈ F} of a
family of fuzzy flats F of a fuzzy matroid FM = (E,F) is a family of crisp
flats.

Definition 3. Let E be any set with n-elements and F = {χA : A ≤ E,
|A| = n or |A| < m} where m is a positive integer such that m ≤ n. Then
(E,F) is a fuzzy matroid called the fuzzy uniform matroid on n-elements and
rank m, denoted by Fm,n. Fm,m is called the free fuzzy uniform matroid on
n-elements.

We remark that the rank notion in the preceding definition coincides with
that in [4].

Definition 4. Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set.
Then the fuzzy closure of µ is µ̄ =

∧
λ∈F; µ≤λ λ.

Theorem 2. Let FM = (E,F) be a fuzzy matroid and X be a non-empty
subset of E. Then (X,FX) is a fuzzy matroid, where FX = {χX ∧µ : µ ∈ F}.

Let FM = (E,F) be a fuzzy matroid, X be a non-empty subset of E
and µ be a fuzzy set in X. We may realize µ as a fuzzy set in E by the
convention that µ(e) = 0 for all e ∈ E − X. It can be easily shown that
FX = {µ|X : µ ∈ F}, where µ|X is the restriction of µ to X.
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Let E1 and E2 be two sets, µ1 is a fuzzy set in E1, µ2 is a fuzzy set in E2

and f : E1 → E2 be a map. Then we define the fuzzy sets f(µ1) (the image
of µ1) and f−1(µ2) (the preimage of µ2) by

f(µ1)(y) =

{
sup{µ1(x) : x ∈ f−1({y})}, y ∈ Range(f)

0 , O.W.

and

f−1(µ2)(x) = µ2(f(x)) for all x ∈ E1.

Definition 5. A fuzzy strong map from a fuzzy matroid FM1 = (E1,F1)
into a fuzzy matroid FM2 = (E2,F2) is a map f : E1 → E2 such that the
preimage of every fuzzy flat in FM2 is a fuzzy flat in FM1.

Theorem 3. Let FM1 = (E1,F1) and FM2 = (E2,F2) be fuzzy matroids
and f : E1 → E2 be a map. Then the following are equivalent:

(i) f is fuzzy strong.
(ii) For every fuzzy set µ1 in FM1, f(µ1) ≤ f(µ1).

(iii) For every fuzzy set µ2 in FM2, f−1(µ2) ≤ f−1(µ2).

Definition 6. Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set.
Then µ is a fuzzy C flat if

∨
1E−λ∈F,λ≤µ λ ≤ µ.

Clearly, every fuzzy flat is a fuzzy C flat, but the converse need not be
true.

Example 1. Let E = {a, b, c, d} and F = {1E , 0, χ{b,d,c}, χ{a,c,d},χ{c,d}}.
By Theorem 2, FM = (E,F) is a fuzzy matroid. Since χ{d} = χ{c,d} and∨

1E−λ∈F,λ≤χ{c,d}
λ = 0 ≤ χ{c,d}, χ{d} is a fuzzy C flat that is not a fuzzy

flat.

Lemma 1. The intersection of fuzzy C flats is a fuzzy C flat.

Definition 7. Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set.
The fuzzy C closure of µ is µF =

∧
{µ́ : µ́ is a fuzzy C flat and µ ≤ µ́}.

Theorem 4. Let FM = (E,F) be a fuzzy matroid and µ, λ be fuzzy sets.
Then

(i) 0
F

= 0.
(ii) µF is a fuzzy C flat.

(iii) µ ≤ µF .
(iv) If µ ≤ λ, then µF ≤ λF .
(v) µF

F
= µF .

Theorem 5. Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set.
Then µ is a fuzzy C flat if and only if µF = µ.
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Theorem 6. Let FM = (E,F) be a fuzzy matroid and µ, λ be fuzzy sets.
Then

(i) µ ∨ λF ≥ µF ∨ λF .
(ii) µ ∧ λF ≤ µF ∧ λF .

Definition 8. A map f : FM1 → FM2 is
(i) fuzzy C strong if the inverse image of every fuzzy flat of FM2 is a

fuzzy C flat of FM1.
(ii) fuzzy hesitant if the inverse image of every fuzzy C flat of FM2 is

a fuzzy C flat of FM1.

Clearly, a fuzzy strong (fuzzy hesitant) map is fuzzy C strong, but the
converse need not be true since a fuzzy C flat need not be a fuzzy flat as we
have seen in Example 1.

A map f : FM1 → FM2 is said to be fuzzy if the image of every fuzzy
flat of FM1 is a fuzzy flat of FM2. The following is a trivial result.

Lemma 2. Let f : FM1 → FM2 be a fuzzy map that is also fuzzy strong.
Then f−1(µ̄) = f−1(µ) for every fuzzy set µ of FM2.

Theorem 7. A fuzzy map f : FM1 → FM2 that is also fuzzy strong is
fuzzy hesitant.

Theorem 8. The following are equivalent for a map f : FM1 → FM2 :
(i) f is hesitant.

(ii) f(µF ) ≤ f(µ)
F

for every fuzzy set µ of FM1.

(iii) f−1(λ)
F ≤ f−1(λF ) for every fuzzy set λ of FM2.

2. Fuzzy C-matroid

In this section, we define and study several properties of fuzzy C-matroids.
In addition, we characterize fuzzy C-open sets in terms of the fuzzy C-inner
and fuzzy weak closure of fuzzy sets. The following result is immediate:

Lemma 3. A fuzzy map f : FM1 → FM2 is fuzzy strong if and only if
f(λ) ≤ f(λ) for every subset λ of the ground set of FM1.

Definition 9. Let FM = (E ,O) be a fuzzy matroid. A fuzzy set λ ∈ E
is called a fuzzy C-open set in FM if there exists a fuzzy open set µ such
that µ ≤ λ ≤ µ̄.

The collection of all fuzzy C-open sets in FM is denoted by FO(FM)
and the pair (E,FO(FM)) is called the fuzzy C-matroid associated with
FM. A subset λ ∈ E is fuzzy C-closed if its complement is fuzzy C-open.
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Example 2. Let E = {a, b, c} and O = {0, χ{a}}. Consider the matroid
FM = (E,O). Then 0 and χ{a} are fuzzy C-open sets. In fact, every fuzzy
open set is fuzzy C-open and thus, the class of fuzzy C-matroids is not
empty.

Feeble-closure λ of λ can be defined in a manner analogous to the fuzzy
closure λ̄ of λ. The fuzzy C-inner λo of λ and fuzzy C-spanning sets can
be defined an analogous manner to the fuzzy inner and fuzzy spanning set
notions.

A map f : FM1 → FM2 is fuzzy C-strong if the inverse image of any
fuzzy open set in FM2 is a fuzzy C-open set in FM1, f is fuzzy hesitant
if the inverse image of any fuzzy C-open set in FM2 is a fuzzy C-open set
in FM1 and f is fuzzy pre-C-open if the image of any fuzzy C-open set in
FM1 is a fuzzy C-open set in FM2. Two fuzzy matroids FM1 and FM2 are
fuzzy C-isomorphic if there exists a fuzzy map h : FM1 → FM2 which is
bijective, fuzzy hesitant and fuzzy pre-C-open. Such an h is called fuzzy
C-isomorphism.

Our main goal is to study properties of fuzzy C-matroids and the preced-
ing maps between fuzzy matroids. We characterize fuzzy C-matroids and
the maps between fuzzy matroids purely in terms of fuzzy C-inner and fuzzy
C-closure operators. Finally, we define an equivalence relation on a certain
collection of fuzzy matroids which partitions that collection into two classes
of fuzzy matroids with the same collection of fuzzy C-open sets.

We next show that every fuzzy matroid is a fuzzy C-matroid, but the
converse needs not be true.

Theorem 9. Let FM = (E ,O) be a fuzzy matroid. Then
(a) O ≤ FO(FM);
(b) for λ ∈ FO(FM) and λ ≤ µ ≤ λ̄, then µ ∈ FO(FM).

Proof. (a) Is trivial. (b) As λ is fuzzy C-open, there exists a fuzzy open
set η such that η ≤ λ ≤ η̄. Thus by Theorem 4, η ≤ λ ≤ µ ≤ λ̄ ≤ η̄ = η̄ and
hence µ ∈ FO(FM). �

Corollary 1. Every fuzzy matroid is a fuzzy C-matroid.

In the following example, we show that the converse of the preceding
corollary needs not be true.

Example 3. Let E = {a, b, c, d} and O = {0, 1, χ{a,b}, χ{c,d}}. Consider
the matroid FM = (E,O). Then FO(FM) = {1, 0, χ{a}, χ{b}, χ{d}, χ{a,b},
χ{c,d}}, but {1−µ : µ ∈ FO(FM)} does not satisfy (iii) of Definition 1 and
hence the fuzzy C-matroid (E,FO(FM)) is not a matroid.
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Next, we show that a strong map which is also open, is a pre-fuzzy
C-open.

Theorem 10. Let FM1 = (E 1,O1) and FM2 = (E 2,O2) be fuzzy ma-
troids. Let f : FM1 → FM2 be a fuzzy strong and fuzzy open map. If
λ ∈ FO(FM1), then f(λ) ∈ FO(FM2).

Proof. As λ ∈ FO(FM1), there exists a fuzzy open set µ ∈ µ1 such that
µ ≤ λ ≤ µ̄. Thus f(µ) ≤ f(λ) ≤ f(µ̄). As f is a strong map, by Lemma 3,
f(µ̄) ≤ f(µ) and as f is open, f(µ) ∈ O2. Therefore, f(λ) ∈ FO(FM2). �

Next, we show all non-trivial fuzzy C-open sets in a fuzzy matroid, must
contain non-trivial fuzzy open sets.

Theorem 11. Let FM = (E , O) be a matroid and λ be a fuzzy C-open
set such that λ 6= 0 and λ 6= 1. Then there exists µ ∈ O − {0, 1} such that
µ ≤ λ.

Proof. As λ is fuzzy C-open, there exists a fuzzy open set µ such that
µ ≤ λ ≤ µ̄. As λ 6= 1 and µ ≤ λ, µ 6= 1. Also as λ 6= 0, µ̄ 6= 0 and hence
µ 6= 0. �

In the next result, we characterize fuzzy C-open sets in terms of the fuzzy
C-inner and fuzzy C-closure notions.

Theorem 12. Let FM = (E , O) be a matroid and λ ∈ E. Then
(a) λ is fuzzy C-open if and only if λo = λ.
(b) λ is fuzzy C-closed if and only if λ= λ.

Proof. Only the proof of part (a) is given. The proof of (b) is similar.
For every x ∈ λo, there exists a fuzzy C-open set µ such that x ∈ µ ≤ λ.

Thus x ∈ λ and hence λo ≤ λ. On the other hand, for every x ∈ λ, as λ is
fuzzy C-open, x ∈ λo. Thus λ ≤ λo and hence λo = λ. �

We end this section with two main results related to fuzzy C-open sets,
that shall be used in the next two sections.

Theorem 13. Let FM = (E , O) be a matroid, µ ∈ O and λ be a fuzzy
C-open set. Then µ ∨λ is fuzzy C-open.

Proof. As λ is fuzzy C-open, there exists a fuzzy open set η such that
η ≤ λ ≤ η̄. Thus η ∨ µ ≤ λ ∨ µ ≤ η̄ ∨ µ ≤ η ∨ µ and as η ∨ µ ∈ O, η ∨ µ is
fuzzy C-open. �

Corollary 2. Let FM(E , O) be a matroid, η be a fuzzy flat of M and
λ be a fuzzy C-closed set. Then η ∧ λ is fuzzy C-closed.
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Theorem 14. Let FM = (E , O) be a matroid and λ ∈ E. Then
(a) 1− (λ̄− λ) is a fuzzy C-spanning set.
(b) (λ̄)o ≤ (λ)o

Proof. (a) Suppose there exists e ∈ 1−1− (λ̄− λ). Then there exists

a fuzzy C open set µ containing e such that µ ∧
(
1− (λ̄− λ)

)
= 0. Thus

µ∧(1− λ̄) = 0 and µ∧λ = 0 and hence µ ≤ λ̄∧(1−λ). Then µ̄ ≤ λ̄∧(1− λ)
and thus µ̄ ≤ λ−λo ≤ λ and as µ ≤ µ̄, µ ≤ λ. Therefore, µ ≤ λ∧(1−λ) = 0,
which is impossible.

(b) We show x /∈ (λ)o implies x /∈ (λ̄)o. Assume x /∈ (λ)o and let µ be any
fuzzy open set containing x. Then by Theorem 9, µ is fuzzy C-open and as
x /∈ (λ)o, µ � λ. Thus there exists y ∈ µ such that y /∈ λ and as µ is fuzzy
C-open containing y, µ ∧ λ = 0. Hence y /∈ λ̄ and thus µ � λ̄. Therefore,
x /∈ (λ̄)o. �

3. Fuzzy hesitant maps

In this section, properties of fuzzy hesitant maps are studied. In addition,
connections between fuzzy hesitant maps and fuzzy strong maps, fuzzy open
maps, fuzzy C-strong maps, fuzzy pre-C-strong maps and fuzzy inner and
fuzzy closure notions are also studied. The following trivial result is an
elementary fuzzy matroid result.

Lemma 4. If f : FM1 → FM2 is a fuzzy strong and fuzzy open map,
then f−1(Ā) = f−1(λ) for any subset λ of the ground set of FM2.

Theorem 15. Any fuzzy map which is fuzzy open and fuzzy strong is
fuzzy hesitant.

Proof. Let f : FM1 → FM2 be a fuzzy open and fuzzy strong map.
If λ ∈ FO(FM2), then there exists a fuzzy open set µ in FM2 such that
µ ≤ λ ≤ µ̄. By Lemma 4, f−1(µ̄) = f−1(µ). Also, f−1(µ) ≤ f−1(λ) ≤
f−1(µ̄) = f−1(µ), and since f is fuzzy strong, f−1( µ) is fuzzy open. Thus
f−1(λ) ∈ FO(FM1) and hence f is fuzzy hesitant. �

In the following example, we show that a fuzzy map which is fuzzy strong
and fuzzy hesitant needs not be fuzzy open.

Example 4. Let E = {a, b, c}, O1 = {∅, {a}, {b}, {a, b}, E} and O2 =
O1 ∪ {{a, c}}. Then FO(E,O1) = FO(E,O2). Thus the identity map i :
(E,O2)→ (E,O1) is fuzzy strong and fuzzy hesitant but not fuzzy open.

Next, we show fuzzy strong maps and fuzzy hesitant maps are fuzzy
C-strong.
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Theorem 16. Let S(FM1, FM2), FS(FM1, FM2) and H(FM1, FM2)
denote respectively, the class of fuzzy strong, fuzzy C-strong and fuzzy hes-
itant maps. Then S(FM1, FM2) ⊆ FS(FM1, FM2) and H(FM1, FM2) ⊆
FS(FM1, FM2).

Proof. S(FM1, FM2) ⊆ FS(FM1, FM2) because if the inverses of fuzzy
open sets are fuzzy open, it follows by Theorem 9 that the inverses are fuzzy
C-open. H(FM1, FM2) ⊆ FS(FM1, FM2) because if the inverses of fuzzy
C-open sets are fuzzy C-open, it follows by Theorem 9 that the inverses of
fuzzy open sets are fuzzy C-open. �

Next, we characterize fuzzy hesitant maps in terms of fuzzy C-closed sets
and fuzzy C-closure of fuzzy sets.

Theorem 17. A fuzzy map f : FM1 → FM2 is fuzzy hesitant if and
only if the inverses of fuzzy C-closed sets in FM2 are fuzzy C-closed in FM1.

Proof. Follows directly from definitions. �

Theorem 18. A fuzzy map f : FM1 → FM2 is fuzzy hesitant if and
only if f(λ) ≤f(λ) for every subset λ ∈ E(FM1).

Proof. If λ ∈ E(FM1), then consider f(λ) which is fuzzy C-closed in

M2. Thus by Theorem 17, f−1(f(λ)) is fuzzy C-closed in M1. Furthermore,

λ ≤ f−1(f(λ)) ≤ f−1(f(λ)). Therefore, by definition of fuzzy C-closure,

λ≤ f−1(f(λ)), and consequently,

f(λ) ≤ f(f−1(f(λ))) = f(λ) ∧ f(1E1)) ≤ f(λ).

Conversely, if µ is fuzzy C-closed in M2, consider f−1(µ). Note that

f(f−1(µ)) ≤ f(f−1(µ)) = µ ∧ f(1E1)) ≤ µ = µ.

Hence, f−1(µ) ≤ f−1(µ), so that f−1(µ) = f−1(µ), and by Theorem 12,

f−1(µ) is fuzzy C-closed. Thus f is fuzzy hesitant by Theorem 17. �

Theorem 19. A fuzzy map f : FM1 → FM2 is fuzzy hesitant if and
only if f−1(µ)≤ f−1(µ) for every subset µ ∈ E(FM2).

Proof. The proof is similar to the proof of Theorem 18. �

Theorem 20. If f : FM1 → FM2 and g : FM2 → FM3 are fuzzy
hesitant, then g ◦ f is fuzzy hesitant.

Proof. Obvious. �
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Theorem 21. If f : FM1 → FM2 is a fuzzy strong and fuzzy open map,
then f is fuzzy hesitant and fuzzy pre-C-open.

Proof. The result follows from Theorem 10 and Theorem 15. �

4. C-isomorphisms

In this section, we study the properties of fuzzy C-isomorphisms. We
show that every fuzzy isomorphism is a fuzzy C-isomorphism and then we
characterize fuzzy C-isomorphisms purely in terms of fuzzy C-inner and
fuzzy C-closure of sets. The proof of the following result follows directly
from Theorem 21.

Theorem 22. Every fuzzy isomorphism is a fuzzy C-isomorphism.

The converse of the preceding theorem needs not be true. For example,
the fuzzy map i : (E,O2)→ (E,O1) in Example 4 is a fuzzy C-isomorphism,
but i is not a fuzzy isomorphism.

Theorem 23. If h : FM1 → FM2 is a fuzzy C-isomorphism, then
h−1(µ) = h−1(µ) for all µ ∈ E(FM2).

Proof. By Theorem 19, h−1(µ) ≤ h−1(µ) since h is fuzzy hesitant. h−1 is

a fuzzy hesitant map, so by Theorem 18, h−1(µ) ≤ h−1(µ) which completes
the proof. �

Corollary 3. If h : FM1 → FM2 is a fuzzy C-isomorphism, then h(λ) =
h(λ) for all λ ∈ E(FM1).

Corollary 4. The property of having a fuzzy C-spanning set is preserved
under fuzzy C-isomorphism.

Corollary 5. If h : FM1 → FM2 is a fuzzy C-isomorphism, then
h(λo) = (h(λ))o for all λ ∈ E(FM1).

Proof. λo = 1E1−(1E1 − λ). Thus,

h(λo) = 1E2 − h((1E1 − λ)) = 1E2 − h(1E1 − λ).

Therefore, h(λo) = 1E2 − 1E2 − h(λ)) = (h(λ))o. �

Corollary 6. If h : FM1 → FM2 is a fuzzy C-isomorphism, then
h−1(µo) = (h−1(µ))o for all µ ∈ E(FM2).

Theorem 24. (λ)o = 0 if and only if (λ̄)o = 0.
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Proof. If (λ)o = 0, then by Theorem 14, (λ̄)o ≤ (λ)o. Thus (λ̄)o = 0.
Conversely, if (λ̄)o = 0, then as λ≤ λ̄, 0 is the only fuzzy C-open set con-
tained in λ. Thus by Theorem 11, 0 is the only fuzzy open set contained in λ.
Hence 0 is the only fuzzy C-open set contained in λ. Therefore, (λ)o = 0. �

Theorem 25. If h : FM1 → FM2 is a fuzzy C-isomorphism and λ ∈
E(FM1) such that (λ̄)o = 0, then (h(λ))o = 0.

Proof. By Theorem 24, since (λ̄)o = 0, (λ)o = 0. Now consider h(λ).
Note that by Corollary 3, h(λ) = h(λ). Thus (h(λ))o = (h(λ))o = h(λo) by

Corollary 5. Hence (h(λ))o = h(0) = 0, and by Theorem 24, (h(λ))o = 0. �

Theorem 26. Feeble-isomorphism is an equivalence relation between
matroids.

Proof. Reflexivity and symmetry are immediate and transitivity follows
from Theorem 20. �

5. C-matroid classes

If E is a finite fuzzy set, let FM(E) denote the collection of all fuzzy
matroids which have E as their ground set. If (E,O1) and (E,O2) are two
elements of FM(E), then (E,O1) is fuzzy C-correspondent to (E,O2) if
FO(E,O1) = FO(E,O2).

Theorem 27. Fuzzy C-correspondent is an equivalence relation on FM(E).

Proof. Clearly (E,O) is fuzzy C-correspondent to itself for any collection
of fuzzy open sets O. Symmetry and transitivity follow from symmetry and
transitivity of fuzzy set equality, respectively. �

Thus, the collection M(E) is partitioned into equivalence classes. Denote
the equivalence class of fuzzy matroids with the same collection of fuzzy
C-open sets as FM(E,O) by [E,FO(E,O)]. Then clearly, [E,FO(E,O)]
contains a maximal fuzzy matroid in the sense that the fuzzy matroid in-
duced on E by the fuzzy C-closure operator is finer than the fuzzy matroid
on any other collection of fuzzy open sets in [E,FO(E,O)], and of course
the fuzzy matroid so induced gives a fuzzy matroid in [E,FO(E,O)]. We
end this section with two powerful results that have trivial proofs follow
immediately from definitions.

Theorem 28. If f : (E1,O1) → (E2,O2) is fuzzy hesitant, and if
(E1,O3) is an element of [E1, FO(E1,O1)] and (E2,O4) is an element of
[E2, FO(E2,O2)], then f : (E2,O3)→ (E2,O4) is fuzzy hesitant.
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Theorem 29. If f : (E1,O1) → (E2,O2) is fuzzy C-strong, and if
(E1,O3) ∈ [E1, FO(E1,O1)], then f : (E1,O3) → (E2,O2) is fuzzy C-fuzzy
strong.
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