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ON ALMOST CO-F-CLOSED TOPOLOGIES

AND THEIR APPLICATIONS

Abstract. In this paper, we investigate more properties of the
notion of co-F-closed topologies which was introduced by Abo
Khadra and Nasef [1]. Several results which have appeared in [5]
are expanded and improved. Also, we introduce a new concept of
almost co-F-closed topologies of a given topological space and give
a new class of functions, namely, almost F-continuous functions
which properly contains the class of almost F-continuous functions
(Chae et al., [5]). Finally, we show that the concept of almost
F-continuity can be considered naturally from the point of view
of change of topology.
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1. Introduction

The field of the mathematical science which goes under the name of topol-
ogy is concerned with all questions directly or indirectly related to continuity.
General topologists have introduced and investigated many different gener-
alizations of continuous functions. The most significant of those notions
are based on different kinds of compact and closed subsets. The concept
of almost C-continuity was defined and studied in [7], [8] and [17], respec-
tively. Gauld [7] investigated the concept of almost H-continuity. Malghan
and Hanchinamani [15] have considered the class of almost N-continuous
functions between topological spaces. Also other properties and the be-
haviour of almost N-continuous functions in product spaces are discussed in
[11]. Jiang and Reilly [10] defined almost S-continuity. Abo Khadra and
Nasef [1] defined the notion co-F-closed topologies and investigate some of
its properties.
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In this paper, some of the basic properties of co-F-closed (τ∗) and almost
co-F-closed topologies (τ∗∗) are studied. Also, we investigate certain func-
tions which involve F-closed spaces and we provide improvements of several
results due to Chae et al., [5].

2. Terminologies

Throughout this paper X and Y represent topological spaces on which no
separation axioms are assumed unless explicitly stated. Let A be a subset
of a space X. The closure and the interior of A in X are denoted by ClX(A)
and IntX(A) (or simply Cl(A) and Int(A)), respectively. A subset A of X
is regular open (resp. α-open [16], semi open [12]) if A = Int(Cl(A))(resp.
A ⊂ Int(Cl(Int(A))), A ⊂ Cl(Int(A))). A subset A of X is said to be
feebly open [13] if there is an open set O such that O ⊂ A ⊂ sCl(O). It
was shown in [[3], Lemma 2.4] and [[9], Proposition 1] that the concept of
feebly open set is equivalent to the notion of α-open set. The complement
of a feebly open (resp. semi open) set is said to be feebly closed (resp.
semi closed). The intersection of all semi closed sets containing A is called
the semi-closure of A and denoted by sCl(A). τ(X), RO(X) and FO(X)
will denote the family of all open, regular open and feebly open sets of X,
respectively.

A Hausdorff space X is called H-closed [20] if every open cover of X
has a finite proximate subcover. A space X is called N-closed [2] (resp.
S-closed [19], F-closed [4], quasi H-closed (shortly QHC) [18]) if every open
(resp. semi open, feebly open, open) cover of X has a finite subcover such
that the interior of the closure (resp. the closure, the closure, the closure)
of its members covers X. A subset A of a Hausdorff space X is said to be
H-closed relative to X [18] if for any cover {Uα : α ∈ ∇, Uα ∈ τ(X)} of
A, there is a finite subset ∇0 of ∇ such that A ⊂

⋃
{Cl(Uα) : α ∈ ∇o}. A

subset A of a space X is called N- closed [2] (resp. S-closed [19], F-closed [4],
quasi H- closed [18]) relative to X if for any cover {Uα : α ∈ ∇, Uα ∈ τ(X)}
(resp. Uα ∈ SO(X) , Uα ∈ FO(X), Uα ∈ τ(X)) of A, there is a finite subset
∇0 of ∇ such that A ⊂

⋃
α∈∇0

{Int(Cl(resp. Cl, Cl, Cl)(Uα)}.

Definition 1. A function f : X → Y from a space X into a space Y is
said to be:

(a) almost C-continuous [7] if whenever U ⊂ Y is a regular open set with
compact complement, f−1(U) is open in X.

(b) almost N -continuous [15] if for each point x ∈ X and each regular
open set V containing f(x) and having N -closed complement there is an
open set U containing x such that f(U) ⊂ V .



On almost co-F -closed topologies . . . 53

(c) almost H-continuous [7] if for each point x ∈ X and each regular open
set V containing f(x) and having H-closed complement there is an open set
U containing x such that f(U) ⊂ V .

(d) almost S-continuous [10] if for each point x ∈ X and each regular
open set V containing f(x) and having S-closed complement there is an open
set U containing x such that f(U) ⊂ V .

3. Almost F-continuity

We introduce a new class of functions between topological spaces with
the following definition.

Definition 2. A function f : (X, τ)→ (Y, σ) is called almost F-continuous
at a point x ∈ X if for each regular open set V in Y containing f(x) and
having F-closed complement, there is an open set U in X containing x such
that f(U) ⊂ V .

If f is almost F-continuous at each point of its domain, it is said to be
almost F-continuous. We can replace an F-closed complement by a QHC
complement in Definition 2 from Lemma 2.1 [5].

We recall that a function f : (X, τ) → (Y, σ) is called F -continuous [5]
if for every point x ∈ X and each open set V containing f(x) and hav-
ing F-closed complement, there is an open set U containing x such that
f(U) ⊂ V . Observe that the following implications hold and none of them
is reversible: Continuity ⇒ F -continuity ⇒ almost F -continuity.

Theorem 1. For a function f : (X, τ)→ (Y, σ) the following statements
are equivalent:

(a) f is almost-F -continuous.
(b) The inverse image of every regular open subset of Y having an F -closed

complement is open in X.
(c) The inverse image of every regular closed F-closed subset of Y is

closed in X.
(d) For each x ∈ X and each net {xα}α∈∇ which converges to x, the

net {f(xα})α∈∇ is eventually in every regular open set containing f(x) and
having an F -closed complement.

Proof. (a) ⇒ (b): Let V be a regular open set having an F-closed
complement and let x ∈ f−1(V ). Then there exists an open set U of X
containing x such that f(U) ⊂ V . Thus x ∈ U ⊂ f−1(V ) and hence f−1(V )
is open.

(b) ⇒ (c): Let W be regular closed and F-closed in Y , then Y −W is
a regular open set having an F-closed complement. By (b) f−1(Y −W ) =
X − f−1(W ) is open and hence f−1(W ) is closed in X.
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(c)⇒ (a): Let x ∈ X and f(x) ∈ V ∈ RO(Y, x) and having an F -closed
complement, then x /∈ f−1(Y − V ) = X − f−1(V ) which is closed by hy-
pothesis. So x ∈ f−1(V ) is open. Setting U = f−1(V ), we have f(U) ⊂ V .

(b) ⇒ (d): Let {xα}α∈∇ be a net in X converging to x and let V ∈
RO(Y, f(x)) and having an F-closed complement. Then x ∈ f−1(V ) which
is open in X and {xα}α∈∇ is residually in f−1(V ). Hence {f(xα)}α∈∇ is
eventually in V .

(d) ⇒ (b): Let V ∈ RO(Y ) having an F-closed complement. To show
f−1(V ) is open in X, suppose the set f−1(V ) containing x is not open.
Then there is a net {xα}α∈∇ converging to x such that it is finitely many in
f−1(V ) or cofinally in f−1(V ). Thus the net {f(xα)}α∈∇ is finitely many in
V or cofinally in V . It contradicts. �

Theorem 2. For any function f : X → Y , the following are true.
(a) If f is almost F-continuous and A ⊂ X, then the restriction f |A :

A→ Y is almost F-continuous.
(b) If {Uα : α ∈ ∇} is an open cover of X and fα = f |Uα is almost

F-continuous for each α ∈ ∇, then f is almost F-continuous.

Proof. (a) Let V ∈ RO(Y ) having an F-closed complement. Then
we have from Theorem 1 (b), f−1(V ) is open in X because (f |A)−1(V ) =
f−1(V ) ∩A which is open in A.

(b) Let V ∈ RO(Y ) having an F-closed complement. Then since each
fα = f |Uα is almost F-continuous, f−1α (V ) = (f |Uα)−1(V ) = f−1(V )∩Uα is
open in Uα from Theorem 1, and it is also open in X since Uα is open in X.
Thus

⋃
α

(f−1(V )∩Uα) = f−1(V )∩
⋃
α
Uα is open in X. Since {Uα : α ∈ ∇} is

an open cover of X, f−1(V )∩
⋃
α
Uα = f−1(V )∩X = f−1(V ) is open in X. �

The composition of almost F-continuous functions need not be almost
F-continuous. For example, let (X, τ), (Y, σ) and (Z, θ) be the real line
endowed with the cofinite, the discrete and the usual topologies, respectively,
and f1 : (X, τ) → (Y, σ) and f2 : (Y, σ) → (Z, θ) be the identities. Then f1
and f2 are F-continuous and hence almost F-continuous but f2◦f1 : (X, τ)→
(Z, θ) is not almost F-continuous, for let V = R − [0, 1], then V is regular
open having an F-closed complement. Since (f2◦f1)−1(V ) = R− [0, 1] is not
open in X. Hence (f2◦f1)−1 is not almost F-continuous from Theorem 1 (b).

Theorem 3. The following are true where f : X → Y and g : Y → Z
are functions.

(a) If f is continuous and g is almost F-continuous, then g ◦ f is almost
F-continuous.

(b) If f is surjective (open or closed) and g ◦ f is almost F-continuous,
then g is almost F-continuous.
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(c) If f is a quotient function, then g is almost F-continuous if and only
if g ◦ f is almost F-continuous.

Proof. (a) and (b) are obvious.
(c) We prove only the sufficiency, the proof of the necessity being ob-

vious from (a). Let V ∈ RO(Z) having an F-closed complement. But
(g ◦ f)−1(V ) = f−1(g−1(V )) which is open in X, since f is quotient and
g−1(V ) is open in Y . Thus g is almost F-continuous. �

Lemma 1 ([3]). In an extremally disconnected (shortly e.d.) space X,
the following are equivalent for A ⊂ X.

(a) A is F-closed relative to X.
(b) A is S-closed relative to X.
(c) A is N-closed (or Nearly compact) relative to X.
(d) A is QHC relative to X.

Theorem 4. Let f : X → Y be a function and Y be extremally discon-
nected. Then almost F -continuity, almost H-continuity, almost S-continuity
and almost N -continuity are equivalent.

Proof. It follows immediately from Lemma 1. �

Lemma 2 ([14]). Let f : X → Y be a function, then C-continuity,
N-continuity and continuity are equivalent if Y is compact.

Theorem 5. Let f : X → Y be a function and Y be a compact e.d. space.
Then the following are equivalent: almost F-continuity, almost S-continuity,
almost C-continuity, almost N-continuity, almost H-continuity and continu-
ity.

Proof. It follows directly by using Lemma 1 and 2. �

Lemma 3 ([3]). The following are equivalent for any subset A of a
regular space X.

(a) A is F (or QHC)-closed relative to X.
(b) A is N-closed relative to X.
(c) A is compact relative to X.

Theorem 6. Let Y be a regular space. Then the following are equivalent
for a function f : X → Y .

(a) f is almost F-continuous.
(b) f is almost N-continuous.
(c) f is almost H-continuous.
(d) f is almost C-continuous.

Proof. It is obvious from Lemma 3. �
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4. Co-F-closed and almost co-F-closed topologies

Let (Y, τ) be a topological space. Let F
′
(τ) = {U ∈ τ : Y −U is F -closed

relative to τ}. Since the union of two F-closed sets is F-closed, F
′
(τ) is a base

for a topology τ∗ on Y , called the co-F-closed topology. Let us replace the
condition U ∈ τ in the definition of F

′
(τ) by U ∈ RO(Y, τ), the collection

of regular open subsets (Y, τ), to get F
′′
(τ). Since the intersection of two

regular open sets is regular open, F
′′
(τ) will be a base for another topology

τ∗∗ on Y , called the almost co-F-closed topology. Note that τ∗∗ ⊂ τ∗ ⊂ τ .
The basic relationship between the topology τ∗∗ and the concept of al-

most F -continuity is given by the following result. The topology on X is
unchanged, so it is not specified. The proof is immediate from the defini-
tions.

Theorem 7. For a function f : X → (Y, τ) the following are equivalent:
(a) f is F-continuous.
(b) f : X → (Y, τ∗) is continuous.
(c) The inverse image of every open set with F-closed complement is open.
(d) The inverse image of every F-closed and closed set is closed.

Proof. (a)⇔ (b): Let V ∈ τ∗, then V ∈ τ and Y −V is F-closed relative
to τ . Since f is F- continuous, then for all x ∈ f−1(V ) there exists an open
set U such that x ∈ U ⊂ f−1(V ). Thus f−1(V ) ∈ τ and f is continuous.
The converse is clear, since every continuous function is F-continuous.

(a)⇒ (c), (c)⇒ (d) and (d)⇒ (a). Follows from Theorem 3.1 [5]. �

From Theorem 7, we state the following result.

Corollary 1. A function f : X → (Y, τ) is almost F-continuous if and
only if f : X → (Y, τ∗∗) is continuous.

F
′′
(τ) is a base for a topology denoted by τ∗∗ and called an almost

Co-F-closed topology.
For any subset A of a space (Y, τ), we denote the closure of A with respect

to τ∗ (resp. τ∗∗) by Clτ∗(A) (resp. Clτ∗∗(A)). Similarly for the interior of A.

Lemma 4 ([16]). For any subset A of a space (Y, τ) we have A ∈ τ∗ if
and only if A = U−V , such that U ∈ τ and V ∈ NO(Y, τ), where NO(Y, τ)
denotes the family of all nowhere dense subsets of (Y, τ).

Theorem 8. For any space (Y, τ) the following hold:
(a) NO(Y, τ∗) ⊂ NO(Y, τ).
(b) FO(Y, τ∗) ⊂ FO(Y, τ).

Proof. (a) Let A ∈ NO(Y, τ∗), then Clτ∗(A) contains no nonempty set
from τ∗. But Clτ (A) ⊂ Clτ∗(A), thus Clτ (A) contains no nonempty set
from τ . Therefore A ∈ NO(Y, τ).
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(b) Follows from the inclusion τ∗ ⊂ τ . �

Theorem 9. For any topological space (Y, τ), the space (Y, τ∗) is F -closed.

Proof. Follows from Theorem 8 (b). �

Lemma 5. Let A be a feebly closed subset of an F-closed space (X, τ),
then A is F-closed relative to X.

Proof. Let {Vα : α ∈ ∇} be a feebly open cover of A. Then {Vα : α ∈
∇}

⋃
(X − A) is a feebly open cover of X. Since X is F-closed, then there

exists a finite subset ∇0 of ∇ such that X =
⋃
{Cl(Vα) : α ∈ ∇0}

⋃
(X−A).

Therefore, A =
⋃
{A ∩ Cl(Vα) : α ∈ ∇0} ⊂

⋃
{Cl(Vα) : α ∈ ∇0} and A is

F-closed relative to X. �

Theorem 10. Let (Y, τ) be a space. Then (Y, τ∗) is feebly Hausdorff if
and only if (Y, τ) is F-closed and feebly Hausdorff.

Proof. The property of being T1-space is expansive, that is if (Y, τ) is
T1 and τ ⊂ τ∗ then (Y, τ∗) is T1 but it is not generally contractive. �

The following result proves the contractivity of T1 property from (Y, τ)
to (Y, τ∗).

Theorem 11. If (Y, τ) is T1, then (Y, τ∗) is T1.

Proof. Let x be any point of Y , then {x} is closed in τ and F-closed
in (Y, τ). Thus Y − {x} is open in τ and {x}is F-closed. Hence Y − {x} is
open in τ∗. Therefore (Y, τ∗) is T1. �

5. Conclusion

In this paper we introduce a new class of functions between topological
spaces, larger than the class of F-continuous functions of Chae et al.,[5].
We call such functions almost F-continuous. Section relates this class of
functions to other classes of functions. In Section we show that if the
codomain of an almost F-continuous function f is retopologized in an appro-
priate way then f is simply a continuous function. The result (Corollary 1)
puts the notion of almost F-continuity in its natural context, and enables us
to obtain alternative characterizations and standard properties of this class
of functions.
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