$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 50}$

SABIR HUSSAIN AND ENNIS ROSAS

PROPERTIES OF γ -SEMI-REGULAR-OPEN SETS AND γ -s-CLOSED SPACES

ABSTRACT. The concept of γ -semi-regular-open sets and γ -sclosed spaces have been introduced and explored in [6]. In this paper, we continue studying the properties and characterizations of γ -semi-regular open sets and γ -s-closed spaces.

KEY WORDS: γ -semi-closed (open), γ -semi-interior (closure), γ -semi-regular-open (closed), γ - θ -semi-open (closed), γ -semi-extremally disconnected, γ -SR-converge, γ -SR-accumulate, γ -s-closed spaces.

AMS Mathematics Subject Classification: 54A05, 54A10, 54D10, 54D99.

1. Introduction

Topology is the branch of mathematics, whose concepts exist not only in all branches of mathematics, but also in many real life applications. A lot of researchers working on the different structures of topological spaces. N. Levine [11] initiated and explored the notion of semi-open sets. S. Kasahara [10] introduced and discussed an operation γ of a topology τ into the power set P(X) of a space X. H. Ogata [13] introduced the concept of γ -open sets and investigated the related topological properties of the associated topology τ_{γ} and τ by using operation γ .

S. Hussain and B. Ahmad [1-9] continued studying the properties of γ -operations on topological spaces and investigated many interesting results. S. Hussain, B. Ahmad and T. Noiri [8] and B. Ahmad and S. Hussain [4] defined and discussed γ -semi-open sets in topological spaces. They explored many interesting properties of γ -semi-open sets. It is interesting to mention that γ -semi-open sets generalized γ -open sets introduced by H. Ogata [13].

In 1987, G. Di. Maio and T. Noiri [12] introduced the notion of s-closed space. S. Hussain and B. Ahmad [6] introduced a class of topological spaces called γ -s-closed space by utilizing γ -semi-closure[1]. It is shown that the concept of γ -s-closed space generalized s-closed space [12]. It is observed

that γ -s-closedness is the generalization of γ_0 -compactness defined and investigated in [3]. In [5], they also defined and characterized sets γ -closed relative to a space X.

The purpose of this paper is to continue studying the properties and characterizations of γ -semi-regular open sets and γ -s-closed spaces defined and discussed in [6].

First, we recall some definitions and results used in this paper. Hereafter, we shall write a space in place of a topological space.

2. Preliminaries

Throughout the present paper, X denotes topological spaces.

Definition 1 ([10]). An operation $\gamma : \tau \to P(X)$ is a function from τ to the power set of X such that $V \subseteq V^{\gamma}$, for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The operations defined by $\gamma(G) = G$, $\gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ .

Definition 2 ([10]). Let $A \subseteq X$. A point $x \in A$ is said to be γ -interior point of A, if there exists an open nbd N of x such that $N^{\gamma} \subseteq A$ and we denote the set of all such points by $int_{\gamma}(A)$. Thus

$$int_{\gamma}(A) = \{x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A\} \subseteq A.$$

Note that A is γ -open [13] iff $A = int_{\gamma}(A)$. A set A is called γ -closed [1] iff X - A is γ -open.

Definition 3 ([1]). A point $x \in X$ is called a γ -closure point of $A \subseteq X$, if $U^{\gamma} \cap A \neq \phi$, for each open nbd U of x. The set of all γ -closure points of Ais called γ -closure of A and is denoted by $cl_{\gamma}(A)$. A subset A of X is called γ -closed, if $cl_{\gamma}(A) \subseteq A$. Note that $cl_{\gamma}(A)$ is contained in every γ -closed superset of A.

Definition 4 ([8]). A subset A of a space X is said to be a γ -semi-open set, if there exists a γ -open set O such that $O \subseteq A \subseteq cl_{\gamma}(O)$. The set of all γ -semi-open sets is denoted by $SO_{\gamma}(X)$. A is γ -semi-closed if and only if X - A is γ -semi-open in X. Note that A is γ -semi-closed if and only if $int_{\gamma}cl_{\gamma}(A) \subseteq A$.

Definition 5 ([4]). Let A be a subset of a space X. The intersection of all γ -semi-closed sets containing A is called γ -semi-closure of A and is denoted by $scl_{\gamma}(A)$. Note that A is γ -semi-closed if and only if $scl_{\gamma}(A) = A$. The set of all γ -semi-closed subsets of A is denoted by $SC_{\gamma}(A)$. **Definition 6** ([4]). Let A be a subset of a space X. The union of all γ -semi-open subsets contained in A is called γ -semi-interior of A and is denoted by $sint_{\gamma}(A)$.

Definition 7 ([4]). An operation γ on τ is said to be semi open, if for any semi open set U of each $x \in X$, there exists semi-open set B such that $x \in B$ and $U^{\gamma} \supseteq B$.

3. γ -semi-regular-open sets

Definition 8 ([6]). A subset A of X is said to be γ -semi-regular-open (respt. γ -semi-regular-closed), if $A = sint_{\gamma}(scl_{\gamma}(A))$ (respt. $A = scl_{\gamma}(sint_{\gamma}(A))$). The set of all γ -semi-regular open sets is denoted by $SRO_{\gamma}(X, \tau)$. It is clear that $SRO_{\gamma}(X, \tau) \subseteq SO_{\gamma}(X, \tau)$ and A is γ -semi-regular open if

and only if X - A is γ -semi-regular closed.

The following example shows that the converse of above inclusion is not true in general.

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \begin{cases} A, & \text{if } b \in A \\ cl(A), & \text{if } b \notin A \end{cases}$$

The calculations shows that: $\{a, b\}$, $\{a, c\}$, $\{b\}$, X, \emptyset are γ -open sets, $\{a, b\}$, $\{a, c\}$, $\{b\}$, X, \emptyset are γ -semi-open sets and $\{a, c\}$, $\{b\}$, X, \emptyset are γ -semi-regular-open sets. Clearly the set $\{a, b\}$ is γ -semi-open but not γ -semi-regular-open.

Definition 9. A space X is called γ -semi-extremally disconnected, if for all γ -semi-open subset U of X, $scl_{\gamma}(U)$ is a γ -semi-open subset of X.

Example 2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ be a topology on X. Define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \begin{cases} A, & \text{if } b \in A \\ X, & \text{if } b \notin A \end{cases}$$

The calculations shows that $\{a, b\}, X, \emptyset$ are γ -semi open sets, in consequence X is a γ -semi-extremally disconnected space.

Example 3. In Example 1, calculations shows that the space X is γ -semi-extremally disconnected space, because $scl_{\gamma}(\{a, b\}) = X$, $scl_{\gamma}(\{a, c\}) = \{a, c\}$, $scl_{\gamma}(\{b\}) = \{b\}$, $scl_{\gamma}(X) = X$ and $scl_{\gamma}(\emptyset) = \emptyset$ are all γ -semi open sets.

Proposition 1. If A is a γ -semi-clopen set in X, then A is a γ -semi-regular-open set. Moreover, if X is γ -semi-extremally disconnected then the converse holds.

Proof. If A is a γ -semi-clopen set, then $A = scl_{\gamma}(A)$ and $A = sint_{\gamma}(A)$, and so we have $A = sint_{\gamma}(scl_{\gamma}(A))$. Hence A is γ -semi-regular-open.

Suppose that X is a γ -semi-extremally disconnected space and A is a γ -semi-regular-open set in X. Then A is γ -semi-open and so $scl_{\gamma}(A)$ is a γ -semi-open set. Follows $A = sint_{\gamma}(scl_{\gamma}(A)) = scl_{\gamma}(A)$ and hence A is γ -semi-closed set. This completes the proof.

The following example shows that space X to be γ -semi-extremally disconnected is necessary in the converse of above Proposition.

Example 4. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \begin{cases} cl(A), & \text{if } a \in A\\ int(cl(A)), & \text{if } a \notin A \end{cases}$$

Calculations shows that $\{a\}$, $\{a, c\}$, $\{b\}$, X, ϕ are γ -semi-open. Clearly X is not γ -extremally disconnected space. Here $\{a\}$ is a γ -semi-regular-open set but not γ -semi-clopan set.

Theorem 1. Let $A \subseteq X$, then $(a) \Rightarrow (b) \Rightarrow (c)$, where:

- (a) A is γ -semi-clopen.
- (b) $A = scl_{\gamma}(sint_{\gamma}(A)).$
- (c) X A is γ -semi-regular-open.

Proof. $(a) \Rightarrow (b)$. This is obvious by definitions of γ -semi-open and γ -semi-closed set [4].

 $(b) \Rightarrow (c)$. Let $A = scl_{\gamma}(sint_{\gamma}(A))$. Then by Theorem 3.14 [4], $X - A = X - scl_{\gamma}(sint_{\gamma}(A)) = sint_{\gamma}(X - sint_{\gamma}(A)) = sint_{\gamma}(scl_{\gamma}(X - A))$, and hence X - A is γ -semi-regular-open set. Hence the proof.

Using Proposition 1, we have the following Theorem:

Theorem 2. If X is a γ -semi-extremally disconnected space. Then $(a) \Rightarrow (b) \Rightarrow (c)$, where:

- (a) X A is γ -semi-regular-open.
- (b) A is γ -semi-regular-open.
- (c) A is γ -semi-clopen.

Proof. $(a) \Rightarrow (b)$. Suppose X is γ -semi-extremally disconnected space. From Proposition 1, X - A is a γ -semi-open and γ -semi-closed set, and hence A is a γ -semi-open and γ -semi-closed set. Thus $A = sint_{\gamma}(scl_{\gamma}(A))$ implies A is γ -semi-regular-open set. Combining Theorems 1 and 2, we have the following:

Theorem 3. If X is a γ -semi-extremally disconnected space. Then the following statements are equivalent:

- (a) A is γ -semi-clopen.
- (b) $A = scl_{\gamma}(sint_{\gamma}(A)).$
- (c) X A is γ -semi-regular-open.
- (d) A is γ -semi-regular-open.

The following example shows that if the $scl_{\gamma}(A)$ is a γ -semi-regular-open set, then A not necessarily is γ -semi-open set.

Example 5. In the Example 1, if we take $A = \{b, c\}$, the $scl_{\gamma}(A)$ is a γ -semi-regular-open set but A is not a γ -semi-open set.

Corollary 1. Let X be a γ -semi-extremally disconnected space. Then for each subset A of X, the set $scl_{\gamma}(sint_{\gamma}(A))$ is a γ -semi-regular-open set.

Definition 10. A point $x \in X$ is said to be a γ - θ -semi-cluster point of a subset A of X, if $scl_{\gamma}(U) \cap A \neq \emptyset$, for every γ -semi-open set U containing x. The set of all γ - θ -semi-cluster points of A is called the γ - θ -semi-closure of A and is denoted by $\gamma scl_{\theta}(A)$.

Definition 11. A subset A of X is said to be γ - θ -semi-closed, if γ scl $_{\theta}(A) = A$. The complement of γ - θ -semi-closed set is called γ - θ -semi-open set. Clearly a γ - θ -semi-closed (γ - θ -semi-open) is γ -semi-closed (γ -semi-open) set.

Proposition 2. Let A and B be subsets of a space X. Then the following properties hold:

(a) If $A \subseteq B$, then $\gamma scl_{\theta}(A) \subseteq \gamma scl_{\theta}(B)$.

(b) If A_i is γ - θ -semi-closed in X, for each $i \in I$, then $\bigcap_{i \in I} A_i$ is γ - θ -semi-closed in X.

Proof. (a) This is obvious.

(b) Let A_i be a γ - θ -semi-closed in X for each $i \in I$. Then $A_i = \gamma scl_{\theta}(A_i)$ for each $i \in I$. Thus we have

$$\gamma scl_{\theta}(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} \gamma scl_{\theta}(A_i) = \bigcap_{i \in I} A_i \subseteq \gamma scl_{\theta}(\bigcap_{i \in I} A_i).$$

Therefore, we have $\gamma scl_{\theta}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} A_i$ and hence $\bigcap_{i \in I} A_i$ is γ - θ -semiclosed. Hence the proof.

Theorem 4. For any subset A of a γ -semi-extremally disconnected space X, the following hold:

$$\gamma scl_{\theta}(A) = \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma \cdot \theta \cdot semi \cdot closed\} \\ = \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma \cdot semi \cdot regular \cdot open\}.$$

Proof. Let $x \notin \gamma scl_{\theta}(A)$. Then there is a γ -semi-open set V with $x \in V$ such that $scl_{\gamma}(V) \cap A = \emptyset$. $X - scl_{\gamma}(V)$ is γ -semi-regular-open and hence $X - scl_{\gamma}(V)$ is a γ - θ -semi-closed set containing A and $x \notin X - \gamma scl_{\theta}(V)$. Thus we have $x \notin \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma$ - θ -semi-closed \}.

Conversely, suppose that $x \notin \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma \cdot \theta \text{-semi-closed} \}$. Then there exists a $\gamma \cdot \theta$ -semi-closed set V such that $A \subseteq V$ and $x \notin V$, and so there exists a γ -semi-open set U with $x \in U$ such that $U \subseteq scl_{\gamma}(U) \subseteq X - V$. Thus we have $scl_{\gamma}(U) \cap A \subseteq scl_{\gamma}(U) \cap V = \emptyset$ implies $x \notin \gamma scl_{\theta}(A)$. The proof of the second equation follows similarly.

This completes the proof.

Theorem 5. If X is a γ -semi-extremally disconnected space and $A \subseteq X$. Then the following holds:

(a) $x \in \gamma scl_{\theta}(A)$ if and only if $V \cap A \neq \emptyset$, for each γ -semi-regular-open set V with $x \in V$.

(b) A is γ - θ -semi-open if and only if for each $x \in A$ there exists a γ -semi-regular-open set V with $x \in V$ such that $V \subseteq A$.

(c) A is a γ -semi-regular-open set if and only if A is γ - θ -semi-clopen.

Proof. (a) and (b) follows directly from Theorem 3.

(c) Let A be a γ -semi-regular-open set. Then A is a γ -semi-open set and so $A = scl_{\gamma}(A) = \gamma scl_{\theta}(A)$ and hence A is γ - θ -semi-closed. Since X - A is a γ -semi-regular-open set, by the argument above, X - A is γ - θ -semi-closed and A is γ - θ -semi-open. The converse is obvious. Hence the proof.

It is obvious that γ - θ -semi-open $\Rightarrow \gamma$ -semi-regular-open $\Rightarrow \gamma$ -semi-open. But the converses are not necessarily true as the following example shows.

Example 6. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \begin{cases} A, & \text{if } b \in A, \\ cl(A), & \text{if } b \notin A. \end{cases}$$

Calculations show that $\{a, b\}, \{a, c\}, \{b\}, X, \emptyset$ are γ -semi-open sets, $\{b\}, X, \emptyset$ are γ - θ -semi-open sets and γ -semi-regular-open sets are $\{a, c\}, \{b\}, X, \emptyset$. Then the subset $\{a, c\}$ is γ -semi-regular-open but not γ - θ -open set. Also $\{a, b\}$ is γ -semi-open set which is neither γ - θ -semi-open nor γ -semi-regular-open.

4. γ -s-closed spaces

Definition 12 ([6]). A filterbase Γ in X is said to be γ -SR-converges to $x_0 \in X$, if for each γ -semi-regular-open set A with $x_0 \in A$, there exists $F \in \Gamma$ such that $F \subseteq A$.

Definition 13 ([6]). A filterbase Γ in X is said to be γ -SR-accumulates to $x_0 \in X$, if for each γ -semi-regular-open set A with $x_0 \in A$ and each $F \in \Gamma, F \cap A \neq \phi$.

The following Theorems directly follow from the above definitions.

Theorem 6. If a filterbase Γ in X, γ -SR-converges to $x_0 \in X$, then $\Gamma \gamma$ -SR-accumulates to x_0 .

Theorem 7. If Γ_1 and Γ_2 are filterbases in X such that Γ_2 subordinate to Γ_1 and $\Gamma_2 \gamma$ -SR-accumulates to x_0 , then $\Gamma_1 \gamma$ -SR-accumulates to x_0 .

Theorem 8. If Γ is a maximal filterbase in X, then $\Gamma \gamma$ -SR-accumulates to x_0 if and only if $\Gamma \gamma$ -SR-converges to x_0 .

Definition 14 ([6]). A space X is said to be γ -s-closed, if every cover $\{V_{\alpha} : \alpha \in I\}$ of X by γ -semi-open sets has a finite subset I_0 of I such that $X = \bigcup_{\alpha \in I} scl_{\gamma}(V_{\alpha}).$

Proposition 3. If γ is a semi open operation, Then the following are equivalent:

(a) X is γ -s-closed.

(b) For each family $\{A_{\alpha} : \alpha \in I\}$ of γ -semi-closed subsets of X such that $\bigcap_{\alpha \in I} A_{\alpha} = \phi$, there exists a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} sint_{\gamma}(A_{\alpha}) = \phi$.

(c) For each family $\{A_{\alpha} : \alpha \in I\}$ of γ -semi-closed subsets of X, if $\bigcap_{\alpha \in I_0} sint_{\gamma}(A_{\alpha}) \neq \phi$, for every finite subset I_0 of I, then $\bigcap_{\alpha \in I} A_{\alpha} \neq \phi$.

(d) Every filterbase Γ in X γ -SR-accumulates to $x_0 \in X$.

(e) Every maximal filterbase Γ in X γ -SR-converges to $x_0 \in X$.

Proof. $(b) \Leftrightarrow (c)$. This is obvious.

 $(b) \Rightarrow (a).$ Let $\{A_{\alpha} : \alpha \in I\}$ be a family of γ -semi-open subsets of Xsuch hat $X = \bigcup_{\alpha \in I} A_{\alpha}$. Then each $X - A_{\alpha}$ is a γ -semi-closed subset of Xand $\bigcap_{\alpha \in I} (X - A_{\alpha}) = \emptyset$, and so there exists a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} sint_{\gamma}(X - A_{\alpha}) = \emptyset$, and hence $X = \bigcup_{\alpha \in I_0} (X - sint_{\gamma}(X - A_{\alpha})) = \bigcup_{\alpha \in I_0} scl_{\gamma}(A_{\alpha})$. Therefore X is γ -s-closed, since γ is semi open.

 $(d) \Rightarrow (b).$ Let $\{A_{\alpha} : \alpha \in I\}$ be a family of γ -semi-closed subsets of X such that $\bigcap_{\alpha \in I} A_{\alpha} = \emptyset$. Suppose that for every finite subfamily $\{A_{\alpha_i} : i = 1, 2, \ldots, n\}, \bigcap_{i=1}^n sint_{\gamma}(A_{\alpha_i}) \neq \emptyset$. Then $\bigcap_{i=1}^n (A_{\alpha_i}) \neq \emptyset$ and $\Gamma = \{\bigcap_{i=1}^n A_{\alpha_i} : n \in N, \alpha_i \in I\}$ forms a filterbase in X. By (4), $\Gamma \gamma$ -SR-accumulates to

some $x_0 \in X$. Thus for every γ -semi-open set A with $x_0 \in A$ and every $F \in \Gamma$, $F \cap scl_{\gamma}(A) \neq \emptyset$. Since $\bigcap_{F \in \Gamma} F = \emptyset$, there exists a $F \in \Gamma$ such that $x_0 \notin F$, and so there exists $\alpha_0 \in I$ such that $x_0 \notin A_{\alpha_0}$ and hence $x_0 \in X - A_{\alpha_0}$ and $X - A_{\alpha_0}$ is a γ -semi-open set. Thus $x_0 \notin sint_{\gamma}(A_{\alpha_0})$ and $x_0 \in X - sint_{\gamma}(A_{\alpha_0})$, and hence $F_0 \cap (X - sint_{\gamma}(A_{\alpha_0})) = F_0 \cap scl_{\gamma}(X - A_{\alpha_0}) = \emptyset$, which is a contradiction to our hypothesis.

 $(e) \Rightarrow (d)$. Let Γ be filterbase in X. Then there exists a maximal filterbase ξ in X such that ξ subordinate to Γ . Since $\xi \gamma$ -SR-converges to x_0 , so by Theorems 7 and 8, $\Gamma \gamma$ -SR-accumulate to x_0 .

 $(a) \Rightarrow (e)$. Suppose that $\Gamma = \{F_a : a \in I\}$ is a maximal filterbase in X which does not γ -SR-converge to any point in X. From Theorem 8, Γ does not γ -SR-accumulates at any point in X. Thus for every $x \in X$, there exists a γ -semi-open set A_x containing x and $F_{a_x} \in \Gamma$ such that $F_{a_x} \cap scl_{\gamma}(A_x) = \emptyset$. Since $\{A_x : x \in X\}$ is γ -semi-open cover of X, there exists a finite subfamily $\{A_{x_i} : i = 1, 2, \ldots, n\}$ such that $X = \bigcup_{i=1}^n scl_{\gamma}(A_{x_i})$. Because Γ is a filterbase in X, there exists $F_0 \in \Gamma$ such that $F_0 \subseteq \bigcap_{i=1}^n F_{a_{x_i}}$, and hence $F_0 \cap scl_{\gamma}(A_{x_i})) = \phi$, for all $i = 1, 2, \ldots, n$. Hence we have that, $\emptyset = F_0 \bigcap (\bigcup_{i=1}^n scl_{\gamma}(A_{x_i})) = F_0 \cap X$, and hence $F_0 = \emptyset$.

This is a contradiction. Hence the proof.

Definition 15. A net $(x_i)_{i \in D}$ in a space X is said to be γ -SR-converges to $x \in X$, if for each γ -semi-open set U with $x \in U$, there exists i_0 such that $x_i \in scl_{\gamma}(U)$ for all $i \ge i_0$, where D is a directed set.

Definition 16. A net $(x_i)_{i \in D}$ in a space X is said to be γ -SR-accumulates to $x \in X$, if for each γ -semi-open set U with $x \in U$ and each i, $x_i \in scl_{\gamma}(U)$, where D is a directed set.

The proofs of following Propositions are easy and thus are omitted:

Proposition 4. Let $(x_i)_{i \in D}$ be a net in X. For the filterbase $F((x_i)_{i \in D}) = \{\{x_i : i \leq j\} : j \in D\}$ in X,

(a) $F((x_i)_{i \in D})$ γ -SR-converges to x if and only if $(x_i)_{i \in D}$ γ -SR-converges to x.

(b) $F((x_i)_{i \in D}) \gamma$ -SR-accumulates to x if and only if $(x_i)_{i \in D} \gamma$ -SR-accumulates to x.

Proposition 5. Every filterbase F in X determines a net $(x_i)_{i \in D}$ in X such that

(a) $F\gamma$ -SR-converges to x if and only if $(x_i)_{i \in D} \gamma$ -SR-converges to x.

(b) $F\gamma$ -SR-accumulates to x if and only if $(x_i)_{i\in D} \gamma$ -SR-accumulates to x.

From Propositions 4 and 5, filterbses and nets are equivalent in the sense of γ -SR-converges and γ -SR-accumulates. Thus we have the following Theorem:

Theorem 9. For a space X, the following are equivalent:

- (a) X is γ -s-closed.
- (b) Each net $(x_i)_{i \in D}$ in X has a γ -SR-accumulation point.
- (c) Each universal net in X γ -SR-converges.

Acknowledgement. The authors are thankful to the referee for valuable suggestions towards the improvement of the paper.

References

- AHMAD A., HUSSAIN S., Properties of γ-operations in topological spaces, *Aligarh Bull. Math.*, 22(1)(2003), 45-51.
- [2] AHMAD A., HUSSAIN S., γ-convergence in topological spaces, Southeast Asian Bull. Math., 29(2005), 832-842.
- [3] AHMAD A., HUSSAIN S., γ^* -regular and γ -normal spaces, *Math. Today*, 22(1)(2006), 37-44.
- [4] AHMAD A., HUSSAIN S., γ-semi-open sets in topological spaces-II, Southeast Asian Bull. Math., 34(2010), 997-1008.
- [5] AHMAD A., HUSSAIN S., On γ -s-closed subspaces, Far East Jr. Math. Sci., 31(2)(2008), 279-291.
- [6] HUSSAIN S., AHMAD A., On γ-s-closed spaces, Sci. Magna Jr., 3(4)(2007), 87-93.
- [7] HUSSAIN S., AHMAD A., On γ-s-regular spaces and almost γ-s-continuous functions, *Lobackevskii J. Math.*, 30(4)(2009), 263-268. DOI: 10.1134/519 95080209040039.
- [8] HUSSAIN S., AHMAD A., NOIRI T., γ-semi-open sets in topological spaces, Asian Eur. J. Math., 3(3)(2010), 427-433. DOI: 10.1142/S1793557110000337.
- [9] HUSSAIN S., Applications of some functions in topological spaces, Questions and Answers in General Topology, 29(2011), 143-151.
- [10] KASAHARA S., Operation-compact spaces, Math. Japon., 24(1979), 97-105.
- [11] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [12] MAIO G.D., NOIRI T., On s-closed spaces, Indian Jr. Pure Appl. Math., 18(3)(1987), 226-233.
- [13] OGATA H., Operations on topological spaces and associated topology, Math. Japon., 36(1)(1991), 175-184.

SABIR HUSSAIN DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE QASSIM UNIVERSITY P. O. BOX 6644, BURAYDAH 51482, SAUDI ARABIA *e-mail:* sabiriub@yahoo.com

SABIR HUSSAIN AND ENNIS ROSAS

Ennis Rosas Departament of Matematics Universidad de Oriente Nucleo de Sucre Cumana, Venezuela And Facultad de Ciencias Basicas Universidad del Atlantico Barranquilla, Colombia *e-mail:* ennisrafael@gmail.com

Received on 07.01.2012 and, in revised form, on 10.04.2012.