$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 50}$

A. A. NASEF AND A. I. EL-MAGHRABI

WEAK AND STRONG FORMS OF γ -IRRESOLUTENESS

ABSTRACT. In this paper we consider new weak and strong forms of γ -irresoluteness and γ -closure via the concept of $g\gamma$ -closed sets which we call ap- γ -irresolute, ap- γ -closed and contra- γ -irresolute maps. Moreover, we use ap- γ -irresolute and ap- γ -closed maps to obtain a characterization of $\gamma - T_{\frac{1}{2}}$ -spaces.

KEY WORDS: topological spaces, generalized γ -closed sets, γ -open sets, γ -closed maps, γ -irresolute maps.

(2000) AMS Mathematics Subject Classification: 54B05, 54C08.

1. Introduction and preliminaries

A.A. El-Atik [6] introduced the notion of γ -open sets and γ -continuity in topological spaces. Andrijevic [1] defined and investigated *b*-open sets which are equivalent with γ -open sets. El-Atik [6] introduced a new map called γ -irresolute which is contained in the class of γ -continuous maps. In this paper, we introduce weak and strong forms of γ -irresoluteness called ap- γ -irresoluteness and ap- γ -closedness by using g γ -closed sets and obtain some basic properties of such maps. This definition enables us to obtain conditions under which maps and inverse maps preserve g γ -closed sets. Also, in this paper we present a new generalization of contra γ -continuity due to the present Author and EL-Maghrabi [14, 7] called contra- γ -irresoluteness. We define this last class of maps by the requirement that the inverse of each γ -open set in the codommain is γ -closed in the domain. This notion is a stronger form of ap- γ -irresoluteness. Finally, we characterize the class of $\gamma - T_{\frac{1}{2}}$ spaces in terms of ap- γ -irresolute and ap- γ -closed maps.

Throughout the present paper, (X, τ) and (Y, σ) (or X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of (X, τ) . The subset A of a topological space (X, τ) is called γ -open [6] or b-open [1] or sp-open [5] (resp. α -open [15], semi-open [10]) if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$ (resp. $A \subseteq Int(Cl(Int(A)))$, $A \subseteq Cl(Int(A))$), where Cl(A) and Int(A) denote the closure and the interior of A respectively. The complement of a γ -open (resp. α -open, semiopen) set is called γ -closed (resp. α -closed, semi-closed). The intersection of all γ -closed (resp. α -closed, semi-closed) sets containing A is called the γ -closure (res. α -closure, semi-closure) of A and is denoted by $\gamma Cl(A)$ resp. $\alpha Cl(A)$, sCl((A)). The interior of A is the union of all γ -open sets in X and is denoted by γ -Int(A). The family of all γ -open (resp. γ -closed, α -open, semi-open) sets in X (resp. $\gamma C(X, \tau)$, $\alpha O(X, \tau)$, $SO(X, \tau)$) is denoted by $\gamma O(X, \tau)$. A subset A of (X, τ) is said to be :

(i) generalized closed (briefly, g-closed) [11] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,

(*ii*) generalized α -closed (briefly, $g\alpha$ -closed) [12] set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,

(*iii*) generalized semi-closed (briefly, gs-closed) [2] set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,

(*iv*) semi-generalized closed (briefly, *sg*-closed) [3] set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ,

(v) generalized γ -closed (briefly, $g\gamma$ -closed) [8] (equivalently, gb-closed) [9] set if $\gamma cl(A) \subseteq U$ whenever $A \subseteq U$ and U is γ -open in (X, τ) .

It shoud be noted that this notion is a particular case of the notion of generalized (m_1, m_2) -closed sets introduced by Noiri [16]. A subset *B* is said to be generalized γ -open (breifly, $g\gamma$ -open) in (X, τ) [8] if its complemen $B^c = X - B$ is $g\gamma$ -closed in (X, τ) .

A map $f: (X, \tau) \to (Y, \sigma)$ is called:

(i) γ -irresolute [6] if for each $V \in \gamma O(Y, \sigma), f^{-1}(V) \in \gamma O(X, \tau)$.

(*ii*) pre- γ -closed [6] (resp. pre- γ -open [6]), if for every γ -closed (resp. γ -open) set A of (X, τ) , f(A) is γ -closed (resp. γ -open) in (Y, σ) .

(*iii*) contra- γ -closed [7] if, f(U) is γ -open in Y, for each closed set U of X.

2. Ap- γ -irresolute, ap- γ -closed and contra- γ -irresolute maps

Definition 1. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately γ -irresolute (briefly, ap- γ -irresolute) if $\gamma Cl(A) \subseteq f^{-1}(G)$ whenever G is a γ -open subset of (Y, σ) , A is a $g\gamma$ -closed subset of (X, τ) and $A \subseteq f^{-1}(G)$.

Definition 2. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately γ -closed (briefly, ap- γ -closed) if, $f(A) \subseteq \gamma Int(H)$ whenever H is a $g\gamma$ -open subset of (Y, σ) , A is a γ -closed subset of (X, τ) and $f(A) \subseteq H$.

Theorem 1. (i) $f : (X, \tau) \to (Y, \sigma)$ is ap- γ -irresolute if $f^{-1}(G)$ is γ -closed in (X, τ) , for every $G \in \gamma O(Y, \sigma)$.

(ii) $f : (X, \tau) \to (Y, \sigma)$ is ap- γ -closed if, $f(A) \in \gamma O(Y, \sigma)$, for every γ -closed subset A of (X, τ) .

Proof. (i) Let $A \subseteq f^{-1}(G)$, where $G \in \gamma O(Y, \sigma)$ and A is a $g\gamma$ -closed subset of (X, τ) . Therefore $\gamma Cl(A) \subseteq \gamma Cl(f^{-1}(G)) = f^{-1}(G)$. Thus f is ap- γ -irresolute.

(*ii*) Let $f(A) \subseteq H$, where A is a γ -closed subset of (X, τ) and H is a $g\gamma$ -open subset of (Y, σ) . Therefore $\gamma Int(f(A) \subseteq \gamma Int(H)$. Then $f(A) \subseteq \gamma Int(H)$. Thus f is ap- γ -closed.

Clearly, γ -irresolute maps are ap- γ -irresolute. Also, pre- γ -closed maps are ap- γ -closed. The converse implications do not hold as it is shown in the following example.

Example 1. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\tau = \{X, \phi, \{a\}\}$. Let $f : (X, \tau) \to (X, \tau)$ be defined by f(a) = b and f(b) = a. Since the image of every γ -closed set is γ -open, then f is ap- γ -closed (similarly, since the inverse image of every γ -open set is γ -closed, then f ap- γ -irresolute). However $\{b\}$ is γ -closed in (X, τ) (resp. $\{a\}$ is γ -open), but $f(\{b\})$ is not γ -closed (resp. $f^{-1}(\{a\})$ is not γ -open) in (X, τ) . Therefore f is not pre- γ -closed (resp. f is not γ -irresolute).

Remark 1. Let be (X, τ) a space as defined in Example 1. Then the identity map on (X, τ) is both ap- γ -irresolute and ap- γ -closed. It is clear that the converses of (i) and (ii) in Theorem 1 do not hold.

In the following result, the converses of (i) and (ii) in Theorem 1 are true under certain conditions.

Theorem 2. Let $f : (X, \tau) \to (Y, \sigma)$ be a map from a space (X, τ) to a space (Y, σ) .

(i) Let all subsets of (X, τ) be clopen, then f is ap- γ -irresolute if and only if $f^{-1}(G)$ is γ -closed in (X, τ) , for every $G \in \gamma O(Y, \sigma)$,

(ii) Let all subsets of (Y, σ) be clopen, then f is ap- γ -closed if and only if $f(A) \in \gamma O(Y, \sigma)$, for every γ -closed subset A of (X, τ) .

Proof. (i) The sufficiency is stated in Theorem 1.

Necessity. Assume that f is ap- γ -irresolute. Let A be an arbitrary subset of (X, τ) such that $A \subseteq H$, where $H \in \gamma O(X, \tau)$. Then by hypothesis $\gamma Cl(A) \subseteq \gamma Cl(H) = H$. Therefore all subsets of (X, τ) are $g\gamma$ -closed (hence and all are $g\gamma$ -open). So, for any $G \in \gamma O(Y, \sigma)$, $f^{-1}(G)$ is γ -closed in (X, τ) . Since f is ap- γ -irresolute, $\gamma Cl(f^{-1}(G) \subseteq f^{-1}(G)$. Therefore $\gamma Cl(f^{-1}(G)) =$ $f^{-1}(G)$, i.e., $f^{-1}(G)$ is γ -closed in (X, τ) .

(ii) The sufficiency is clear by Theorem 1.

Necessity. Assume that f is ap- γ -closed. As in (i), we obtain that all subsets of (Y, σ) are $g\gamma$ -open. Therefore for any γ -closed subset A of (X, τ) , f(A) is $g\gamma$ -open in Y. Since f is ap- γ -closed $f(A) \subseteq \gamma Int(f(A))$. Hence $f(A) = \gamma Int(f(A))$, i.e., f(A) is γ -open.

As an immediate consequence of Theorem 2, we have the following.

Corollary 1. Let $f : (X, \tau) \to (Y, \sigma)$ be a map from a topological space (X, τ) to a topological space (Y, σ) .

(i) Let all subsets of (X, τ) be clopen, then f is ap- γ -irresolute if and only if, f is γ -irresolute,

(ii) Let all subsets of (Y, σ) be clopen, then f is ap- γ -closed if and only if, f is pre γ -closed.

Definition 3. A map $f: (X, \tau) \to (Y, \sigma)$ is called:

(i) contra- γ -irresolute if $f^{-1}(G)$ is γ -closed in (X, τ) for each $G \in \gamma O(Y, \sigma)$, (ii) contra-pre- γ -closed if $f(A) \in \gamma O(Y, \sigma)$, for each γ -closed set A of (X, τ) .

Remark 2. In fact, contra- γ -irresoluteness and γ -irresoluteness are independent notions. Example 1 shows that contra- γ -irresoluteness does not imply γ -irresoluteness while the converse is shown in the following example.

Example 2. A γ -irresolute map need not be contra- γ -irresolute. The identity map on the topological space (X, τ) , where $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $X = \{a, b, c\}$ is an example of a γ -irresolute map which is not contra- γ -irresolute.

Recall that a map $f: (X, \tau) \to (Y, \sigma)$ is contra- γ -continuous [7, 14] if, $f^{-1}(G)$ is γ -closed in (X, τ) , for each open set G of (Y, σ) .

Every contra- γ -irresolute map is contra- γ -continuous, but not conversely as the following example shows.

Example 3. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $Y = \{p, q\}, \sigma = \{Y, \phi, \{p\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p and f(b) = f(c) = q. Then f is contra- γ -continuous, but f is not contra- γ -irresolute.

The following result can be easily verifed. Therefore we omitted its proof.

Theorem 3. Let $f : (X, \tau) \to (Y, \sigma)$ be a map. Then the following conditions are equivalent:

(i) f is contra- γ -irresolute,

(ii) The inverse image of each γ -closed set of Y is γ -open in X.

Remark 3. By Theorem 1, we have that every contra- γ -irresolute map is ap- γ -irresolute and every contra- γ -closed map is ap- γ -closed, the converse implications do not hold (see Remak 1).

A map $f: (X, \tau) \to (Y, \sigma)$ is called perfectly contra- γ -irresolute if the inverse of every γ -open set of Y is γ -clopen in X.

Lemma 1. Every perfectly contra- γ -irresolute map is contra- γ -irresolute and γ -irresolute. But the converse may not be true.

Example 4. Remark 2 is an example of a contra- γ -irresolute map which is not perfectly contra- γ -irresolute and Example 3 is an example of a γ -irresolute map which is not perfectly contra- γ -irresolute.

Remark 4. For the definitons of ap-irresolute (resp. ap- α -irresolute), contra-irresolute (resp. contra- α -irresolute), perfectly contra - irresolute (resp. perfectly contra- α -irresolute) and irresolute (resp. α -irresolute) see [3, 4, 13].

 $\begin{aligned} \text{Example 5. Let } X &= \{a, b, c\}, \ \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \ \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}, \ \tau_2 = \{\phi, X, \{c\}, \{a, b\}\} \text{ and } \tau_3 = \{\phi, X\}. \text{ Then,} \\ SO(X, \tau) &= \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} = \gamma O(X, \tau), \\ \alpha O(X, \tau) &= \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \\ SO(X, \tau_1) &= \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\} = \alpha O(X, \tau_1) = \gamma O(X, \tau_1), \\ SO(X, \tau_2) &= \{\phi, X, \{c\}, \{a, b\}\} = \alpha O(X, \tau_2), \\ \gamma O(X, \tau_2) &= \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}. \text{ Then,} \end{aligned}$

(a) Let $f: (X, \tau) \to (X, \tau_2)$ be defined as f(a) = a, f(b) = c and f(c) = b. Then:

(i) f is contra-irresolute (hence, ap-irresolute), but f is not contra- α -irresolute (hence f is not perfectly contra- α -irresolute);

- (*ii*) f is irresolute but f is not γ -irresolute;
- (*iii*) f is irresolute but f is not α -irresolute.
- (b) Let $f: (X, \tau_3) \to (X, \tau)$ be the identity map. Then:

(i) f is γ -irresolute but f is not irresolute;

(*ii*) f is γ -irresolute but f is not α -irresolute.

(c) Let $f: (X, \tau_2) \to (X, \tau_1)$ be the identity map. Then:

(i) f is contra- γ -irresolute but f is not contra-irresolute;

(*ii*) f is contra- γ -irresolute but f is not contra- α -irresolute;

(d) Let $f: (X, \tau_2) \to (X, \tau_2)$ be the identity map. Then:

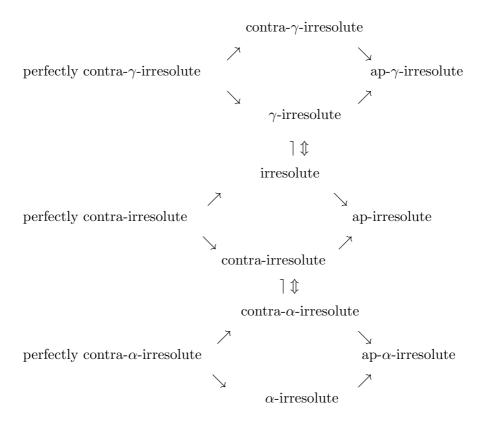
(i) f is perfectly contra- γ -irresolute but f is not perfectly contra-irresolute;

(*ii*) f is perfectly contra- γ -irresolute but f is not perfectly contra- α -irresolute.

Example 6. EL-Atik [6] For any countable set X, the identity maps from an indiscrete space into any other one is γ -irresolute but it is not irresolute.

Example 7. EL-Atik [6] The identity function from a particular point topological space on any countable set with any particular point into an indiscrete one is irresolute but not γ -irresolute.

Clearly, the following diagram holds and none of its implications are reversible:



The following theorem is a decomposition of perfectly contra- γ -irresoluteness.

Theorem 4. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

(i) f is perfectly contra- γ -irresolute,

(ii) f is contra- γ -irresolute and γ -irresolute.

Theorem 5. If a map $f : (X, \tau) \to (Y, \sigma)$ is γ -irresolute and ap- γ -closed, then $f^{-1}(A)$ is $g\gamma$ -closed (resp. $g\gamma$ -open) whenever A is a $g\gamma$ -closed (resp. $g\gamma$ -open) subset of (Y, σ) .

Proof. Let A be a $g\gamma$ -closed subset of (Y, σ) . Suppose that $f^{-1}(A) \subseteq G$ where $G \in \gamma O(X, \tau)$. Taking complements, we obtain $G^c \subseteq f^{-1}(A^c)$ or $f(G^c) \subseteq A^c$. Since f is ap- γ -closed, then $f(G^c) \subseteq \gamma Int(A^c) = (\gamma Cl(A))^c$. It follows that $G^c \subseteq (f^{-1}(\gamma Cl(A)))^c$ and hence $f^{-1}(\gamma Cl(A)) \subseteq G$. Since f is γ -irresolute, $f^{-1}(\gamma Cl(A))$ is γ -closed. Thus we have

$$\gamma Cl(f^{-1}(A)) \subseteq \gamma Cl(f^{-1}(\gamma Cl(A))) = f^{-1}(\gamma Cl(A)) \subseteq G.$$

This implies that $f^{-1}(A)$ is $g\gamma$ -closed in (X, τ) .

A similar argument shows that inverse images of $g\gamma$ -open sets are $g\gamma$ -open.

Theorem 6. If a map $f : (X, \tau) \to (Y, \sigma)$ is ap- γ -irresolute and pre- γ -closed, then for every $g\gamma$ -closed subset V of (X, τ) f(V) is a $g\gamma$ -closed set of (Y, σ) .

Proof. Let V be a $g\gamma$ -closed subset of (X, τ) . Let $f(V) \subseteq G$ where $G \in \gamma O(Y, \sigma)$. Then $V \subseteq f^{-1}(G)$ holds. Since f is ap- γ -irresolute, $\gamma Cl(V) \subseteq (f^{-1}(G))$ and hence $f(\gamma Cl(V)) \subseteq G$. Therefore, we have $\gamma Cl(f(V)) \subseteq \gamma Cl(f(\gamma Cl(V)) = f(\gamma Cl(V)) \subseteq G$. Hence f(V) is $g\gamma$ -closed in (Y, σ) .

It should be noticed that the composition of two contra- γ -irresolute maps need not be contra- γ -irresolute. Let $X = \{a, b\}$ be the Sierpinski space and set $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, X, \{b\}\}$. The identity maps $f : (X, \tau) \rightarrow$ (X, σ) and $g : (X, \sigma) \rightarrow (X, \tau)$ are both contra- γ -irresolute but their composition $g \circ f : (X, \tau) \rightarrow (X, \tau)$ is not contra- γ -irresolute.

However the following theorem holds, the proof is easy and hence omitted.

Theorem 7. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two maps such that $g \circ f : (X, \tau) \to (Z, \eta)$. Then:

(i) $g \circ f$ is contra- γ -irresolute, if g is γ -irresolute and f is contra- γ -irresolute;

(ii) $g \circ f$ is contra- γ -irresolute, if g is contra- γ -irresolute and f is γ -irresolute.

In analogous way, we have the following.

Theorem 8. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two maps such that $g \circ f : (X, \tau) \to (Z, \eta)$. Then:

(i) $g \circ f$ is ap- γ -closed, if g is ap- γ -closed and f is pre- γ -closed;

(*ii*) $g \circ f$ is ap- γ -closed, if g is pre- γ -open, f is ap- γ -closed and g^{-1} preserves $g\gamma$ -open sets;

(iii) $g \circ f$ is ap- γ -irresolute, if g is γ -irresolute and f is ap- γ -irresolute.

Proof. (i) Suppose that A is an arbitrary γ -closed subset of (X, τ) and B is a $g\gamma$ -open subset of (Z, η) for which $(g \circ f)(A) \subseteq B$. Then f(A) is γ -closed in (Y, σ) , because f is pre- γ -closed. Since g is ap- γ -closed, $g(f(A)) \subseteq \gamma - Int(B)$. This implies that $g \circ f$ is ap- γ -closed.

(*ii*) Suppose that A is an arbitrary γ -closed subset of (X, τ) and B is a $g\gamma$ -open subset of (Z, η) for which $(g \circ f)(A) \subseteq B$. Hence $f(A) \subseteq g^{-1}(B)$. Then $f(A) \subseteq \gamma Int(g^{-1}(B))$ because, $g^{-1}(B)$ is $g\gamma$ -open and f is ap- γ -closed. Thus $(g \circ f)(A) = g(f(A)) \subseteq g(\gamma - Int(g^{-1}(B)) \subseteq \gamma Int(gg^{-1}(B)) \subseteq \gamma Int(B)$. This implies that $g \circ f$ is ap- γ -closed.

(*iii*) Suppose that A is an arbitrary $g\gamma$ -closed subset of (X, τ) and $G \in \gamma O(Z, \eta)$ for which $A \subseteq (g \circ f)^{-1}(G)$). Then $g^{-1}(G) \in \gamma O(Y, \sigma)$ because g is γ -irresolute. Since f is ap- γ -irresolute, $\gamma Cl(A) \subseteq f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$. This proves that $g \circ f$ is ap- γ -irresolute.

As a consequence of Theorem 8, we have.

Corollary 2. Let $f_{\alpha} : X \to Y_{\alpha}$ be a map for each $\alpha \in \Omega$ and let $f : X \to \Pi Y_{\alpha}$ be the product map given by $f(x) = (f_{\alpha}(x))$. If, f is ap- γ -irresolute, then f_{α} is ap- γ -irresolute for each α .

Proof. For each γ , let $P_{\gamma} : \Pi Y_{\alpha} \to Y_{\gamma}$ be the projection map. Then $f_{\gamma} = P_{\gamma} \circ f$, where P_{γ} is γ -irresolute. By Theorem 8(*iii*) f_{γ} is ap- γ -irresolute.

Lemma 2. Let A and Y be subsets of a space X. If $A \in \gamma O(Y, \tau_Y)$ and $Y \in \gamma O(X, \tau)$, then $A \in \gamma O(X, \tau)$.

Lemma 3. Let X be a topological space and A, Y be subsets of X such that $A \subseteq Y \subseteq X$ and $Y \in \gamma O(X, \tau)$. Then $\gamma Cl(A) \cap Y = \gamma Cl_Y(A)$, where $\gamma Cl_Y(A)$ denotes the γ -closure of A in the subspace Y.

Regarding the restriction f_A of a map $f: (X, \tau) \to (Y, \sigma)$ to a subset A of X, we have the following.

Theorem 9. (i) If $f : (X, \tau) \to (Y, \sigma)$ is ap- γ -closed and A is a γ -closed set of (X, τ) , then its restriction $f_A : (A, \tau_A) \to (Y, \sigma)$ is ap- γ -closed;

(ii) If, $f : (X, \tau) \to (Y, \sigma)$ is ap- γ -irresolute and A is an open, $g\gamma$ -closed subset of (X, τ) , then its restriction $f_A : (A, \tau_A) \to (Y, \sigma)$ is ap- γ -irresolute.

Proof. (i) Suppose that B is arbitrary γ -closed subset of (A, τ_A) and G is a $g\gamma$ -open subset of (Y, σ) for which $f_A(B) \subseteq G$. By Lemma 2, B is γ -closed subset of (X, τ) . Since A is a γ -closed subset of (X, τ) , then $f_A(B) = f(B) \subseteq G$. Using Definition 2, we have $f_A(B) \subseteq \gamma Int(G)$. Thus f_A is an ap- γ -closed map.

(*ii*) Assume that V is a $g\gamma$ -closed subset relative to A, i.e., V is $g\gamma$ -closed in (A, τ_A) and G is a γ -open subset of (Y, σ) for which $V \subseteq (f_A)^{-1}(G)$. Then $V \subseteq f^{-1}(G) \cap A$.

On the other hand, V is $g\gamma$ -closed in X. Since f is ap- γ -irresolute, then $\gamma Cl(V) \subseteq f^{-1}(G)$. This implies that $\gamma Cl(V) \cap A \subseteq f^{-1}(G) \cap A$. Using the fact that $\gamma Cl(V) \cap A = \gamma Cl_A(V)$ (Lemma 3), we have $\gamma Cl_A(V) \subseteq (f_A)^{-1}(G)$. Thus $f_A : (A, \tau_A) \to (Y, \sigma)$ is ap- γ -irresolute.

3. Characterizations of $\gamma - T_{\frac{1}{2}}$ -spaces

In the following result, we offer a characterization of the class of $\gamma - T_{\frac{1}{2}}$ -spaces by using the concepts of ap- γ -irresolute and ap- γ -closed maps.

Definition 4. A space (X, τ) is said to be $\gamma - T_{\frac{1}{2}}$ -space, if every $g\gamma$ -closed set is γ -closed.

Theorem 10. Let (X, τ) be a space. Then the following statements are equivalent.

- (i) (X,τ) is a $\gamma T_{\frac{1}{2}}$ -space;
- (ii) f is ap- γ -irresolute, for every space (Y, σ) and every map $f: (X, \tau) \to (Y, \sigma)$.

Proof. $(i) \to (ii)$. Let V be a $g\gamma$ -closed subset of (X, τ) and $V \subseteq f^{-1}(G)$, where $G \in \gamma O(Y, \sigma)$. Since (X, τ) is a $\gamma - T_{\frac{1}{2}}$ -space, V is γ -closed (i.e., $V = \gamma Cl(V)$). Therefore $\gamma Cl(V) \subseteq f^{-1}(G)$ and hence f is ap- γ -irresolute.

 $(ii) \to (i)$. Let *B* be a $g\gamma$ -closed subset of (X, τ) and *Y* be the set *X* with the topology $\sigma = \{\phi, Y, B\}$. Finally let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. By the assumption *f* is ap- γ -irresolute. Since *B* is $g\gamma$ -closed in (X, τ) and γ -open in (Y, σ) and $B \subseteq f^{-1}(B)$, it follows that $\gamma Cl(B) \subseteq f^{-1}(B) = B$. Hence *B* is γ -closed in (X, τ) . Therefore (X, τ) is a $\gamma - T_{\frac{1}{2}}$ -space.

Theorem 11. Let (Y, σ) be a space. Then the following statements are equivalent.

- (i) (Y, σ) is a $\gamma T_{\frac{1}{2}}$ -space;
- (ii) f is ap- γ -closed, for every space (X, τ) and every map $f: (X, \tau) \to (Y, \sigma)$.

Proof. This is analogous to the proof of Theorem 10.

References

- [1] ANDRIJEVIC D., On b-open sets, Mat. Vesnik, 48(1)(1996), 59-64.
- [2] ARYA S.P., NOUR T.M., Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21(1990), 717-719.
- [3] BHATTACHARYYA P., LAHIRI B.K., Semi-generalized closed sets in topology, *Indian J. Math.*, 29(1987), 375-382.
- [4] CALDAS M., Weak and strong forms of irresolute maps, Internat. J. Math. Math. Sci., 24(2000), 253-259.
- [5] DONTCHEV J., PRZEMKI M., On the various decompositions of continuous and some weakly continuous functions, *Acta Math. Hungar.*, 71(1-2)(1996), 109-120.
- [6] EL-ATIK A.A., A Study of Some types of Mappings on Topological Spaces, M. Sc. Thesis, Tanta Univ. Egypt, 1997.
- [7] EL-MAGHRABI A.I., Some properties of contra-γ-continuous mappings, Internat. J. of General Topology, 3(1-2)(2010), 55-64.
- [8] EL-MAGHRABI A.I., NASEF A.A., More on γ-closed sets in topology, (preparing).
- [9] KESKIN A., NOIRI T., On bD-sets and associated separation axioms, Bull. of the Iranian Math. Soc., 35(1)(2009), 179-198.
- [10] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

- [11] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [12] MAKI H., DEVI R., BALACHANDRAN K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed., Part III(42)(1993), 13-21.
- [13] MASHESHWARI S.N., THAKUR S.S., On α-irresolute mappings, Tamkang J. Math., 11(1980), 209-214.
- [14] NASEF A.A., Some properties of contra-γ-continuous functions, Chaos Solitons and Fractals, 24(2005), 471-477.
- [15] NJASTAD O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [16] NOIRI T., A unified theory of generalized closed sets, The 6th Meeting on topological spaces theory and its applications, *Yatsushiro College of Technol*ogy, August, 18-19(2001), 27-34.

A. A. NASEF DEPARTMENT OF MATHEMATICS AND PHYSICS FACULTY OF ENGINEERING KAFR EL-SHEIKH UNIVERSITY KAFR EL-SHEIKH, EGYPT *e-mail:* nasef50@yahoo.com

A. I. EL-MAGHRABI

The permenent address: DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KAFR EL-SHEIKH UNIVERSITY KAFR EL-SHEIKH, EGYPT e-mail: aelmaghrabi@yahoo.com

The current address: DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE TAIBAH UNIVERSITY AL-MADINAH AL-MUNAWARAH P. O. BOX, 30002, K.S.A. *e-mail:* amaghrabi@taibahu.edu.sa

Received on 08.02.2011 and, in revised form, on 07.07.2012.