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Abstract. In this paper, πg-closed sets and πg-open sets are used
to define and investigate a new class of functions called, totally
πg-continuous functions. Relationships between this new class and
other classes of related functions are established.
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1. Introduction and preliminaries

Generalized open sets play a very important role in General Topology
and they are now the research topics of many topologists worldwide. Indeed
a significant theme in General Topology and Real Analysis concerns the
variously modified forms of continuity, separation axioms etc. by utilizing
generalized closed sets. In 1970, Levine [7] initiated the study of so-called
g-closed sets, that is, a subset A of a topological space (X, τ) is g-closed
if the closure of A is included in every open superset of A and defined a
T1/2 space to be one in which the closed sets and the g-closed sets coincide.
Zaitsev [10] defined the concept of π-closed sets and a class of topological
spaces called quasi-normal spaces. Recently, Dontchev and Noiri [2] defined
the notion of πg-closed sets and used this notion to obtain a characterization
and some preservation theorems for quasi-normal spaces. In this paper, we
present a new generalization of total continuity called total πg-continuity.
We define this class of functions by the requirement that the inverse image of
each open set in the codomain is πg-clopen (that is, πg-open and πg-closed)
in the domain. The notion of total πg-continuity is a weaker form of total
continuity [5]. Also we investigate the fundamental properties of totally
πg-continuous functions.

In the present paper, (X, τ) and (Y, σ) represent topological spaces on
which no separation axioms are assumed unless otherwise mentioned. For
a subset A of a space (X, τ), Cl(A), Int(A) and Ac denote the closure of
A, the interior of A and the complement of A in X, respectively. A subset
A of a space (X, τ) is said to be regular open [8] (resp. semiopen [6]) if
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A = Int(Cl(A)) (resp. A ⊂ Cl(Int(A))). A set is said to be δ-open [9]
if it is the union of regular open sets. The complement of a regular open
(resp. δ-open) set is said to be regular closed (resp. δ-closed). The finite
union of regular open sets is said to be π-open [10]. The complement of a
π-open set is said to be π-closed. A subset A of a topological space (X, τ)
is said to be πg-closed [2] if Cl(A) ⊂ U whenever A ⊂ U and U is π-open.
The complement of a πg-closed set is said to be πg-open. The family of all
πg-open (resp. πg-closed, πg-clopen) sets of (X, τ) is denoted by πGO(X)
(resp. πGC(X), πGCO(X)). Let (X, τ) be a topological space and S ⊂ X.
Then the set

⋃
{A : A ⊂ S and A ∈ πGO(X)} is called the πg-interior of S

and is denoted by πg-Int(S) [4]. A function f : (X, τ) → (Y, σ) is said to
be πg-continuous [3] if f−1(V ) is πg-open in X for each open set V of Y . A
function f : (X, τ)→ (Y, σ) is said to be totally continuous [5] if f−1(V ) is
a clopen set in X for each open set V of Y .

2. Totally πg-continuous functions

Definition 1. A function f : (X, τ) → (Y, σ) is said to be totally
πg-continuous if f−1(V ) is πg-clopen in X for every open set V of Y .

Remark 1. It is clear that every totally πg-continuous function is
πg-continuous. But the converse is false.

Example 1. The identity function on the real line with the usual topol-
ogy is continuous and hence πg-continuous. The inverse image of (0,1) is
not πg-closed and the function is not totally πg-continuous.

Remark 2. It is clear that every totally continuous function is totally
πg-continuous. But the converse need not be true as can be seen from the
following example.

Example 2. Let X = {a, b, c}, Y = {p, q}, τ = {∅, {a, b}, X} and
σ = {∅, {p}, Y }. Define a function f : (X, τ) → (Y, σ) such that f(a) = p,
f(b) = f(c) = q. Then, clearly f is totally πg-continuous, but not totally
continuous.

Definition 2. A topological space (X, τ) is said to be πg-connected [3]
if it cannot be written as the union of two nonempty disjoint πg-open sets.

Theorem 1. If f is a totally πg-continuous function from a πg-connected
space X onto any space Y , then Y is an indiscrete space.

Proof. If possible, suppose that Y is not indiscrete. Let A be a proper
non-empty open subset of Y . Then f−1(A) is a proper non-empty πg-clopen
subset of (X, τ), which is contrary to the fact that X is πg-connected. �
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Theorem 2. A topological space (X, τ) is πg-connected if and only if
every totally πg-continuous function from a space (X, τ) into any T0-space
(Y, σ) is constant.

Proof. Suppose that X is πg-connected. Then, every totally πg-continu-
ous function from (X, τ) to a T0-space (Y, σ) is constant. Conversely, sup-
pose that (X, τ) is not πg-connected. Then, there exists a proper non-empty
πg-clopen subset A of X. Let Y = {a, b} and τ = {∅, {a}, {b}, Y } be a
topology for Y . Let f : (X, τ)→ (Y, σ) be a function such that f(A) = {a}
and f(Y \A) = {b}. Then f is nonconstant and totally πg-continuous such
that Y is T0, which is a contradiction. Hence X must be πg-connected. �

Theorem 3. Let f: (X, τ)→ (Y, σ) be a totally πg-continuous function
and Y is a T1-space. If A is a nonempty πg-connected subset of X, then
f(A) is a single point.

Proof. The proof is clear. �

Definition 3. Let (X, τ) be a topological space. We define an equivalence
relation on X by setting x ∼ y if there is a πg-connected subset of X con-
taining both x and y. The equivalence classes are called the πg-separation
of X or πg-component of X.

Theorem 4. Let f: (X, τ)→ (Y, σ) be a totally πg-continuous function
from a topological space (X, τ) into a T1-space Y . Then f is constant on
each πg-component of X.

Proof. The proof follows from Definition 3 and Theorem 3. �

Definition 4 ([3]). A πg-frontier of a subset A of X is πg-fr(A) =
πg-Cl(A) ∩ πg-Cl(X\A).

Theorem 5. The set of all points x ∈ X in which a function f : (X, τ)→
(Y, σ) is not totally πg-continuous is the union of πg-frontiers of the inverse
images of open sets containing f(x).

Proof. Suppose that f is not totally πg-continuous at x ∈ X. Then there
exists a open set V of Y containing f(x) such that f(U) is not contained in
V for each U ∈ πGO(X) containing x and hence x ∈ πg-Cl(X\f−1(V )). On
the other hand, x ∈ f−1(V ) ⊂ πg-Cl(f−1(V )) and hence x ∈ πg-fr(f−1(V )).
Conversely, suppose that f is totally πg-continuous at x ∈ X and let V be
an open set of Y containing f(x). Then there exists U ∈ πGO(X) con-
tainign x such that U ⊂ f−1(V ). Hence x ∈ πg-Int(f−1(V )). Therefore,
x /∈ πg-fr(f−1(V )) for each open set V of Y containing f(x). �
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Theorem 6. Let {Xλ : λ ∈ Λ} be any family of topological spaces. If
f : X → ΠXλ is a totally πg-continuous function, then Prλ ◦ f : X → Xλ

is totally πg-continuous for each λ ∈ Λ, where Prλ is the projection of ΠXλ

onto Xλ.

Proof. We shall consider a fixed λ ∈ Λ. Suppose Uλ is an arbitrary open
set in Xλ. Then P−1

rλ (Uλ) is open in ΠXλ. Since f is totally πg-continuous,
we have f−1(P−1

rλ (Uλ)) = (Prλ ◦ f)−1(Uλ) is πg-clopen in X. Therefore Prλ
is totally πg-continuous. �

Definition 5. A filter base Λ in a space (X, τ) is said to be πg-co-conver-
gent to a point x in X if for any U ∈ πGCO(X) containing x, there exists
B ∈ Λ such that B ⊂ U .

Theorem 7. If a function f : (X, τ) → (Y, σ) is totally πg-continuous,
then for each point x ∈ X and each filter base Λ in X πg-co-converging to
x, the filter base f(Λ) is convergent to f(x).

Proof. Let x ∈ X and Λ be any filter base in X πg-co-converging to x.
Since f is totally πg-continuous, then for any open set V of Y containing
f(x), there exists U ∈ πGCO(X) containing x such that f(U) ⊂ V . Since Λ
is πg-co-converging to x, there exists B ∈ Λ such that B ⊂ U . This means
that f(B) ⊂ V and therefore the filter base f(Λ) is convergent to f(x). �

3. Covering properties

Definition 6. A space (X, τ) is said to be πg-co-compact if every πg-clopen
cover of X has a finite subcover.

A subset A of a space (X, τ) is said to be πg-co-compact relative to X if
every cover of A by πg-clopen sets of X has a finite subcover.

A subset A of a space (X, τ) is said to be πg-compact [4] if the subspace
A is πg-compact.

Theorem 8. If a function f : (X, τ) → (Y, σ) is totally πg-continuous
and A is πg-co-compact relative to X, then f(A) is compact in Y .

Proof. Let {Hα : α ∈ I} be any cover of f(A) by open sets of Y .
For each x ∈ A, there exists αx ∈ I such that f(x) ∈ Hαx and there
exists Ux ∈ πGCO(X) containing x such that f(Ux) ⊂ Hαx . Since the
family {Ux : x ∈ A} is a cover of A by πg-clopen sets of X, there exists
a finite subset A0 of A such that A ⊂

⋃
{Ux : x ∈ A0}. Therefore, we

obtain f(A) ⊂
⋃
{f(Ux) : x ∈ A0} ⊂

⋃
{Hαx : x ∈ A0} and hence f(A) is

compact. �
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Corollary 1. If f : (X, τ)→ (Y, σ) is a totally πg-continuous surjective
function and X is πg-co-compact, then Y is compact.

Definition 7. A space (X, τ) is said to be:
(i) countably πg-co-compact if every countable πg-clopen cover of X has

a finite subcover;
(ii) πg-co-Lindelöf if every πg-clopen cover of X has a countable subcover.

Theorem 9. Let f : (X, τ)→ (Y, σ) be a totally πg-continuous surjective
function. Then the following statements hold:

(i) If X is πg-co-Lindelöf, then Y is Lindelöf;
(ii) If X is countably πg-co-compact, then Y is countably compact.

Proof. (i): Let {Vα : α ∈ I} be an open cover of Y . Since f is totally
πg-continuous, then {f−1(Vα) : α ∈ I} is a πg-clopen cover of X. Since
X is πg-co-Lindelöf, there exists a countable subset I0 of I such that X =⋃
{f−1(Vα) : α ∈ I0}. Thus, Y =

⋃
{Vα : α ∈ I0} and hence Y is Lindelöf.

(ii): Similar to (i). �

Definition 8. A space (X, τ) is said to be πg-co-T2 if for each pair of
distinct points x and y in X, there exist disjoint πg-clopen sets U and V in
X such that x ∈ U and y ∈ V .

Theorem 10. If f : (X, τ)→ (Y, σ) is a totally πg-continuous injective
function and (Y, σ) is a T0 space, then (X, τ) is a πg-co-T2 space.

Proof. Suppose that Y is a T0 space. For any distict points x and y
in X, there exists an open set V or W of Y such that f(x) ∈ V , f(y) /∈ V
or f(x) /∈ W and f(y) ∈ W . We prove the case that there exists an open
set V such that f(x) ∈ V and f(y) /∈ V . Since f is totally πg-continuous,
f−1(V ) is a πg-clopen set of (X, τ) such that x ∈ f−1(V ) and y /∈ f−1(V ).
Therefore, X-f−1(V ) is πg-clopen and y ∈ X-f−1(V ). This shows that
(X, τ) is a πg-co-T2 space. �

Definition 9. A space (X, τ) is said to be πg-co-regular if for each
πg-clopen set F and each point x /∈ F , there exist disjoint open sets U and
V such that F ⊂ U and x ∈ V .

Definition 10. A space (X, τ) is said to be πg-co-normal if for any pair
of disjoint πg-clopen subsets F1 and F2 of X, there exist disjoint open sets
U and V such that F1 ⊂ U and F2 ⊂ V .

Theorem 11. If f is a totally πg-continuous injective open function
from a πg-co-regular space X onto a space Y , then Y is a regular space.

Proof. Let F be a closed set in Y and y /∈ F . Take y = f(x). Since
f is totally πg-continuous, f−1(F ) is a πg-clopen set. Take G = f−1(F ).
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We have x /∈ G. Since X is πg-co-regular, there exist disjoint open sets U
and V such that G ⊂ U and x ∈ V . We obtain that F = f(G) ⊂ f(U)
and y = f(x) ∈ f(V ) such that f(U) and f(V ) are disjoint open sets. This
shows that (Y, σ) is regular. �

Theorem 12. If f is a totally πg-continuous injective open function
from a πg-co-normal space (X, τ) onto a space (Y, σ), then (Y, σ) is normal.

Proof. Let F1 and F2 be disjoint closed subsets of Y . Since f is totally
πg-continuous, f−1(F1) and f−1(F2) are πg-clopen sets. Take U = f−1(F1)
and V = f−1(F2). We have U ∩ V = ∅. Since X is πg-co-normal, there
exist disjoint open sets A and B such that U ⊂ A and V ⊂ B. We obtain
that F1 = f(U) ⊂ f(A) and F2 = f(V ) ⊂ f(B) such that f(A) and f(B)
are disjoint open sets. Thus, (Y, σ) is normal. �

Recall that for a function f : (X, τ)→ (Y, σ), the subset {(x, f(x)) : x ∈
X} ⊂ X × Y is called the graph of f and is denoted by G(f).

Definition 11. A graph G(f) of a function f : (X, τ) → (Y, σ) is said
to be strongly πg-co-closed if for each (x, y) ∈ (X × Y )\G(f), there exists
U ∈ πGCO(X) containing x and an open set V of Y containing y such that
(U × V ) ∩ G(f) = ∅.

Lemma 1. A graph G(f) of a function f : (X, τ) → (Y, σ) is strongly
πg-co-closed in X×Y if and only if for each (x, y) ∈ (X×Y ) \ G(f), there
exist U ∈ πGCO(X) containing x and an open set V of Y containing y such
that f(U) ∩ V = ∅.

Proof. It is an immediate consequence of Definition 11. �

Theorem 13. Let f : (X, τ)→ (Y, σ) have a strongly πg-co-closed graph
G(f). If f is injective, then X is πg-co-T2.

Proof. Let x and y be any two distinct points of X. Then, we have
(x, f(y)) ∈ (X × Y )\G(f). By Lemma 1, there exist a πg-clopen set U of
X and an open set V of Y such that (x, f(y)) ∈ U × V and f(U) ∩ V = ∅.
Hence U ∩f−1(V ) = ∅ and y ∈ X-U ∈ πGCO(X). This implies that (X, τ)
is πg-co-T2. �

Theorem 14. If f : (X, τ)→ (Y, σ) is a totally πg-continuous function
and (Y, σ) is T2, then G(f) is strongly πg-co-closed in the product space
X × Y .

Proof. Let (x, y) ∈ (X × Y )\G(f). Then y 6= f(x) and there exist open
sets V1 and V2 of Y such that f(x) ∈ V1, y ∈ V2, and V1 ∩ V2 = ∅. From
hypothesis there exists U ∈ πGCO(X,x) such that f(U) ⊂ V1. Therefore,
we obtain f(U) ∩ V2 = ∅. �
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Definition 12. A function f : (X, τ)→ (Y, σ) is said to be:
(a) totally πg-irresolute if the preimage of a πg-clopen subset of Y is a

πg-clopen subset of X.
(b) totally pre-πg-clopen if the image of every πg-clopen subset of X is

πg-clopen.

Theorem 15. Let f : (X, τ)→ (Y, σ) be surjective totally πg-irresolute
and totally pre-πg-clopen and g: (Y, σ) → (Z, η) be any function. Then
g ◦ f : (X, τ) → (Z, η) is totally πg-continuous if and only if g is totally
πg-continuous.

Proof. The ’if ’ part is obvious. To prove the ’only if ’ part, let g ◦ f :
(X, τ) → (Z, η) be totally πg-continuous and let V be an open subset of
Z. Then (g ◦ f)−1 (V ) is a πg-clopen subset of X, that is f−1(g−1(V )) is
πg-clopen. Since f is totally pre-πg-clopen, f(f−1(g−1(V ))) is a πg-clopen
subset of Y . So g−1(V ) is πg-clopen in Y . Hence g is totally πg-continuous. �

Theorem 16. Let f : (X, τ)→ (Y, σ) have a strongly πg-co-closed graph
G(f). If f is a surjective totally pre πg-clopen function, then (Y, σ) is a
πg-co-T2 space.

Proof. Let y1 and y2 be any distinct points of Y . Since f is surjective,
f(x) = y1 for some x ∈ X and (x, y2) ∈ (X × Y )\G(f). By Lemma 1, there
exist a πg-clopen set U of X and an open set V of Y such that (x, y2) ∈ U×V
and f(U)∩V = ∅. Since f is totally pre πg-clopen, then f(U) is πg-clopen
such that f(x) = y1 ∈ f(U). This implies that (Y, σ) is πg-co-T2. �
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