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1. Introduction

Semi-open sets, preopen sets, α-open sets, β-open sets and b-open sets
play an important role in the researches of generalizations of continuity in
topological spaces. By using these sets, several authors introduced and stud-
ied various types of non-continuous functions. Certain of these non-continuous
functions have properties similar to those of continuous functions and they
hold, in many part, parallel to the theory of continuous functions.

In [26] and [27], the present authors introduced and studied the notions
of minimal structures, m-spaces, m-continuity and M -continuity. Quite
recently, in [19], [20] and [22], Min and Kim introduced the notions of
m-semiopen sets, m-preopen sets and αm-open sets which generalize the
notion of m-open sets and also M -semicontinuity, M -precontinuity and
αM -continuity which generalize the notion of M -continuity. Rosas et al.
[30] also introduced the notions of m-semiopen sets and m-preopen sets.
The notion of βm-open sets is introduced by Boonpok [5].

The notions of m-semiopen sets, m-preopen sets, αm-open sets and
βm-open sets are defined by using the m-interior mInt and the m-closure
mCl on anm-space (X,mX). The each family ofm-semiopen sets, m-preopen
sets, αm-open sets or βm-open sets becomes an m-structure with property
B, that is, it is closed under arbitrary union. The purpose of the present
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paper is to obtain the unified theory of M -semicontinuity, M -precontinuity,
αM -continuity, βM -continuity and M -b-continuity.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively. We
recall some generalized open sets in topological spaces.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said
to be

(a) α-open [24] if A ⊂ Int(Cl(Int(A))),
(b) semi-open [11] if A ⊂ Cl(Int(A)),
(c) preopen [16] if A ⊂ Int(Cl(A)),
(d) b-open [4] or γ-open [9] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)),
(e) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).

The family of all α-open (resp. semi-open, preopen, b-open, β-open) sets
in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), BO(X), β(X)).

Definition 2. Let (X, τ) be a topological space. A subset A of X is
said to be α-closed [18] (resp. semi-closed [6], preclosed [16], b-closed [4],
β-closed [1]) if the complement of A is α-open (resp. semi-open, preopen,
b-open, β-open).

Definition 3. Let (X, τ) be a topological space and A a subset of X. The
intersection of all α-closed (resp. semi-closed, preclosed, b-closed, β-closed)
sets of X containing A is called the α-closure [18] (resp. semi-closure [6],
preclosure [10], b-closure [4], β-closure [2]) of A and is denoted by αCl(A)
(resp. sCl(A), pCl(A), bCl(A), βCl(A)).

Definition 4. Let (X, τ) be a topological space and A a subset of X.
The union of all α-open (resp. semi-open, preopen, b-open, β-open) sets
of X contained in A is called the α-interior [18] (resp. semi-interior [6],
preinterior [10], b-interior [4], β-interior [2]) of A and is denoted by αInt(A)
(resp. sInt(A), pInt(A), bInt(A), βInt(A)).

Definition 5. A function f : (X, τ)→ (Y, σ) is said to be irresolute [7]
(resp. preirresolute [29] or M -preirresolute [17], α-irresolute [13] or strongly
feebly continuous [12], γ-irresolute (= b-irresolute) [8], β-irresolute [14]) at
x ∈ X if for each semi-open (resp. preopen, α-open, γ-open, β-open) set V
containing f(x), there exists a semi-open (resp. preopen, α-open, γ-open,
β-open) set U of X containing x such that f(U) ⊂ V . The function f is said
to be irresolute (resp. preirresolute, α-irresolute, γ-irresolute, β-irresolute)
if it has this property at each point x ∈ X.
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3. Minimal structures and M-continuity

Definition 6. Let X be a nonempty set and P(X) the power set of X.
A subfamily mX of P(X) is called a minimal structure (briefly m-structure)
on X [26], [27] if ∅ ∈ mX and X ∈ mX .

By (X,mX), we denote a nonempty set X with an m-structure mX on X
and call it an m-space. Each member of mX is said to be mX-open (briefly
m-open) and the complement of an mX -open set is said to be mX-closed
(briefly m-closed).

Remark 1. Let (X, τ) be a topological space. The families τ , α(X),
SO(X), PO(X), BO(X) and β(X) are all minimal structures on X.

Definition 7. Let X be a nonempty set and mX an m-structure on X.
For a subset A of X, the mX-closure of A and the mX-interior of A are
defined in [15] as follows:

(a) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ mX},
(b) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 2. Let (X, τ) be a topological space and A a subset of X. If
mX = τ (resp. SO(X), PO(X), α(X), BO(X), β(X)), then we have

(a) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), bCl(A), βCl(A)),
(b) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), bInt(A), βInt(A)).

Lemma 1 (Maki et al. [15]). Let X be a nonempty set and mX a minimal
structure on X. For subsets A and B of X, the following properties hold:

(a) mCl(X \A) = X \mInt(A) and mInt(X \A) = X \mCl(A),
(b) If (X\A) ∈ mX , then mCl(A) = A and if A ∈ mX , then mInt(A) = A,
(c) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(d) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(e) A ⊂ mCl(A) and mInt(A) ⊂ A,
(f) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2 (Popa and Noiri [26]). Let (X,mX) be an m-space and A a
subset of X. Then x ∈ mCl(A) if and only if U ∩ A 6= ∅ for each U ∈ mX

containing x.

Definition 8. A minimal structure mX on a nonempty set X is said to
have property B [15] if the union of any family of subsets belonging to mX

belongs to mX .

Remark 3. If (X, τ) is a topological space, then them-structures SO(X),
PO(X), α(X), BO(X) and β(X) have property B.
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Lemma 3 (Popa and Noiri [28]). Let X be a nonempty set and mX an
m-structure on X satisfying property B. For a subset A of X, the following
properties hold:

(a) A ∈ mX if and only if mInt(A) = A,
(b) A is mX-closed if and only if mCl(A) = A,
(c) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 9. A function f : (X,mX)→ (Y,mY ) is said to be M -conti-
nuous at x ∈ X [26] if for each mY -open set V containing f(x), there exists
U ∈ mX containing x such that f(U) ⊂ V . The function f is M -continuous
if it has this property at each x ∈ X.

Theorem 1 (Popa and Noiri [26]). For a function f : (X,mX) →
(Y,mY ), the following properties are equivalent:

(a) f is M -continuous;
(b) f−1(V ) = mInt(f−1(V )) for every m-open set V of Y ;
(c) f−1(F ) = mCl(f−1(F )) for every m-closed set F of Y ;
(d) mCl(f−1(B)) ⊂ f−1(mCl(B)) for every subset B of Y ;
(e) f(mCl(A)) ⊂ mCl(f(A)) for every subset A of X;
(f) f−1(mInt(B)) ⊂ mInt(f−1(B)) for every subset B of Y .

Corollary 1 (Popa and Noiri [26]). For a function f : (X,mX) →
(Y,mY ), where mX has property B, the following properties are equivalent:

(a) f is M -continuous;
(b) f−1(V ) is m-open in X for every m-open set V of Y ;
(c) f−1(F ) is m-closed in X for every m-closed set F of Y .

For a function f : (X,mX)→ (Y,mY ), we define DM (f) as follows:

DM (f) = {x ∈ X : f is not M -continuous at x}.

Theorem 2 (Noiri and Popa [25]). For a function f : (X,mX) →
(Y,mY ), the following properties hold:

DM (f) =
⋃
G∈mY

{f−1(G)-mInt(f−1(G))}
=

⋃
B∈ P (Y ) {f−1(mInt(B))-mInt(f−1(B))}

=
⋃
B∈ P (Y ) {mCl(f−1(B))− f−1(mCl(B))}

=
⋃
A∈ P (X) {mCl(A)− f−1(mCl(f(A)))}

=
⋃
F∈ F {mCl(f−1(F ))− f−1(F )},

where F is the family of m-closed sets of (Y,mY ).
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4. m-Iterate structures and M-iterate continuity

Definition 10. Let (X,mX) be an m-space. A subset A of X is said to
be

(a) αm-open [20] if A ⊂ mInt(mCl(mInt(A))),
b) m-semiopen [19] if A ⊂ mCl(mInt(A)),
(c) m-preopen [22] if A ⊂ mInt(mCl(A)),
(d) βm-open [5] if A ⊂ mCl(mInt(mCl(A))),
(e) m-b-open if A ⊂ mInt(mCl(A)) ∪mCl(mInt(A)).

The family of all αm-open (resp. m-semiopen, m-preopen, βm-open,
m-b-open) sets in (X,mX) is denoted by αm(X) (resp. mSO(X), mPO(X),
βm(X), mBO(X)).

Remark 4. Let (X,mX) be an m-space.
(a) Similar definitions of m-semiopen sets, m-preopen sets, αm-open sets,

βm-open sets are provided in [30].
(b) The families αm(X), mSO(X), mPO(X), βm(X) and mBO(X) are

all minimal structures on X.

Let (X,mX) be an m-space. Then mSO(X), mPO(X), αm(X), βm(X)
and mBO(X) are determined by iterating operators mInt and mCl. Hence,
they are called m-iterate structures and are denoted by mIT(X) (briefly
mIT).

Remark 5. (a) It easily follows from Lemma 3.1(3)(4) that mSO(X),
mPO(X), αm(X), βm(X) and mBO(X) are minimal structures with prop-
erty B. They are also shown in Theorem 3.5 of [19], Theorem 3.4 of [22] and
Theorem 3.4 of [20] for mSO(X), mPO(X) and αm(X), respectively.

(b) Let (X,mX) be an m-space and mIT(X) an m-iterate structure on
X. If mIT(X) = mSO(X) (resp. mPO(X), αm(X), βm(X)), mBO(X)),
then we obtain the following definitions (for mSO(X), mPO(X) and αm(X),
they are provided in [19], [23] and [20], respectively):

mITCl(A) = msCl(A) (resp. mpCl(A), αmCl(A), βmCl(A), mbCl(A)),
mITInt(A) = msInt(A) (resp. mpInt(A), αmInt(A), βmInt(A), mbInt(A)).

Remark 6. (1) By Lemmas 1 and 3, we obtain Theorem 3.9 of [19],
Theorems 2.3 and 2.4 of [23] and Theroems 3.8 and 3.9 of [20].

(b) By Lemma 2, we obtain Theorem 3.10 of [19], Lemma 3.9 of [22] and
Theorem 3.10 of [20].

Definition 11. A function f : (X,mX)→ (Y,mY ) is said to be M-semi-
continuous [19] (resp. M -precontinuous [22], αM -continuous [20], βM -con-
tinuous, M -b-continuous) at x ∈ X if for each m-open set V containing
f(x), there exists m-semiopen set (resp. m-preopen, αm-open, βm-open,
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m-b-open) set U of X containing x such that f(U) ⊂ V . The function f
is said to be M -semicontinuous (resp. M -precontinuous, αM -continuous,
βM -continuous, M -b-continuous) if it has this property at each x ∈ X.

Remark 7. By Definition 11 and Remark 5, it follows that a function f :
(X,mX) → (Y,mY ) is M -semicontinuous if a function f : (X,mSO(X)) →
(Y,mY ) is M -continuous.

Definition 12. A function f : (X,mX) → (Y,mY ) is said to be MIT -
continuous at x ∈ X (on X) if f : (X,mIT (X))→ (Y,mY ) is M -continuous
at x ∈ X (on X).

Remark 8. Let (X,mX) be a minimal space. If mIT(X) = mSO(X)
(resp. mPO(X), αm(X), βm(X), mBO(X)) and f : (X,mX) → (Y,mY )
is MIT -continuous, then f is M -semicontinuous (resp. M -precontinuous,
αM -continuous, βM -continuous, M -b-continuous).

Since mIT(X) has property B, by Theorems 1 and 2 and Corollary 1 we
have the following theorems.

Theorem 3. For a function f : (X,mX) → (Y,mY ), the following
properties are equivalent:

(a) f is MIT -continuous;
(b) f−1(V ) is mIT -open for every m-open set V of Y ;
(c) f−1(F ) is mIT -closed for every m-closed set F of Y ;
(d) mITCl(f−1(B)) ⊂ f−1(mCl(B)) for every subset B of Y ;
(e) f(mITCl(A)) ⊂ mCl(f(A)) for every subset A of X;
(f) f−1(mInt(B)) ⊂ mITInt(f−1(B)) for every subset B of Y .

For a function f : (X,mX)→ (Y,mY ), we define DMIT (f) as follows:

DMIT (f) = {x ∈ X : f is not MIT -continuous at x}.

Theorem 4. For a function f : (X,mX) → (Y,mY ), the following
properties hold:

DMIT (f) =
⋃
G∈mY

{f−1(G)-mITInt(f−1(G))}
=

⋃
B∈ P (Y ) {f−1(mInt(B))-mITInt(f−1(B))}

=
⋃
B∈ P (Y ) {mITCl(f−1(B))− f−1(mCl(B))}

=
⋃
A∈ P (X) {mITCl(A)− f−1(mCl(f(A)))}

=
⋃
F∈ F {mITCl(f−1(F ))− f−1(F )},

where F is the family of m-closed sets of (Y,mY ).

Remark 9. (a) If mIT(X) = mSO(X) (resp. mPO(X), αm(X), βm(X),
mBO(X)) and f : (X,mX) → (Y,mY ) is MIT -continuous, then by Theo-
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rems 3 and 4 we obtain characterizations ofM -semicontinuous (resp. M -pre-
continuous, αM -continuous, βM -continuous, M -b-continuous) functions.

(b) If mIT(X) = mSO(X) (resp. mPO(X), αm(X)), then by Theorem 3
we obtain Theorem 3.15 of [19] (resp. Theorem 3.12 of [22], Theorem 3.14
of [20])).

For example, for mIT(X) = βm(X) and mY = β(Y ), we obtain the
following characterizations.

Corollary 2. For a function f : (X,mX) → (Y,mY ), the following
properties are equivalent:

(a) f is βM -continuous;
(b) f−1(V ) is βm-open for every β-open set V of Y ;
(c) f−1(F ) is βm-closed for every β-closed set F of Y ;
(d) βmCl(f−1(B)) ⊂ f−1(βCl(B)) for every subset B of Y ;
(d) f(βmCl(A)) ⊂ βCl(f(A)) for every subset A of X;
(e) f−1(βInt(B)) ⊂ βmInt(f−1(B)) for every subset B of Y .

5. Some properties of MIT -continuous functions

Since the study of MIT -continuity is reduced from the study of M -conti-
nuity, the properties of MIT -continuous functions follow from the properties
of M -continuous functions in [26].

Definition 13. An m-space (X,mX) is said to be m-T2 [26] if for each
distinct points x, y ∈ X, there exist U, V ∈ mX containing x and y, respec-
tively, such that U ∩ V = ∅.

Definition 14. An m-space (X,mX) is said to be mIT -T2 if the m-space
(X,mIT (X)) is m-T2.

Hence, an m-space (X,mX) is mIT -T2 if for each distinct points x, y ∈ X,
there exist U, V ∈ mIT (X) containing x and y, respectively, such that
U ∩ V = ∅.

Remark 10. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Definition 14 we obtain the definition of m-semi-T2
spaces in [21] (resp. m-pre-T2-spaces in [23]).

Lemma 4 (Popa and Noiri [26]). If f : (X,mX) → (Y,mY ) is an
M-continuous injection and (Y,mY ) is m-T2, then (X,mX) is m-T2.

Theorem 5. If f : (X,mX)→ (Y,mY ) is an MIT -continuous injection
and (Y,mY ) is m-T2, then X is mIT-T2.

Proof. The proof follows from Definition 14 and Lemma 4. �
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Definition 15. An m-space (X,mX) is said to be m-compact [26] if
every cover of X by mX-open sets of X has a finite subcover.

A subset K of an m-space (X,mX) is said to be m-compact [26] if every
cover of K by mX -open sets of X has a finite subcover.

Definition 16. An m-space (X,mX) is said to be mIT -compact if the
m-space (X,mIT (X)) is m-compact.

A subset K of an m-space (X,mX) is said to be mIT -compact if every
cover of K by mIT -open sets of X has a finite subcover.

Remark 11. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Definition 16 we obtain the definition of m-semicompact
spaces in [21] (resp. m-precompact spaces in [23]).

Lemma 5 (Popa and Noiri [26]). Let f : (X,mX) → (Y,mY ) be an
M -continuous function. If K is an m-compact set of X, then f(K) is m-
compact.

Theorem 6. If f : (X,mX)→ (Y,mY ) is an MIT -continuous function
and K is an mIT -compact set of X, then f(K) is m-compact.

Proof. The proof follows from Definition 16 and Lemma 5. �

Definition 17. A function f : (X,mX) → (Y,mY ) is said to have a
strongly m-closed graph (resp. m-closed graph) [26] if for each (x, y) ∈
(X × Y )−G(f), there exist U ∈ mX containing x and V ∈ mY containing
y such that [U ×mCl(V )] ∩G(f) = ∅ (resp. [U × V ] ∩G(f) = ∅).

Definition 18. A function f : (X,mX) → (Y,mY ) is said to have
a strongly mIT -closed graph (resp. mIT -closed graph) if a function f :
(X,mIT (X)) → (Y,mY ) has a strongly m-closed graph (resp. m-closed
graph).

Hence, a function f : (X,mX) → (Y,mY ) has a strongly mIT -closed
graph (resp. mIT -closed graph) if for each (x, y) ∈ (X × Y ) − G(f), there
exist U ∈ mIT (X) containing x and V ∈ mY containing y such that [U ×
mCl(V )] ∩G(f) = ∅ (resp. [U × V ] ∩G(f) = ∅).

Lemma 6 (Popa and Noiri [26]). If f : (X,mX) → (Y,mY ) is an
M -continuous function and (Y,mY ) is m-T2, then f has a strongly m-closed
graph.

Theorem 7. If f : (X,mX)→ (Y,mY ) is an MIT -continuous function
and (Y,mY ) is m-T2, then f has a strongly mIT -closed graph.

Proof. The proof follows from Definition 18 and Lemma 6. �
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Lemma 7 (Popa and Noiri [26]). If f : (X,mX)→ (Y,mY ) is a surjec-
tive function with a strongly m-closed graph, then (Y,mY ) is m-T2.

Theorem 8. If f : (X,mX) → (Y,mY ) is a surjective function with a
strongly mIT -closed graph, then (Y,mY ) is m-T2.

Proof. The proof follows from Definition 18 and Lemma 7. �

Lemma 8 (Popa and Noiri [26]). Let (X,mX) be an m-space and mX

have property B. If f : (X,mX) → (Y,mY ) is an injective M -continuous
function with an m-closed graph, then X is m-T2.

Theorem 9. If f : (X,mX)→ (Y,mY ) is an injective MIT -continuous
function with an mIT -closed graph, then X is mIT -T2.

Proof. The proof follows from Definition 18, Lemma 8 and the fact that
mIT(X) has property B. �

Definition 19. An m-space (X,mX) is said to be m-connected [26] if
X cannot be written as the union of two nonempty sets of mX .

Definition 20. An m-space (X,mX) is said to be mIT -connected if the
m-space (X,mIT (X)) is m-connected.

Hence, the m-space (X,mIT (X)) is m-connected if X cannot be written
as the union of two nonempty sets of mIT (X).

Lemma 9 (Popa and Noiri [26]). Let f : (X,mX) → (Y,mY ) be a
function, where mX has property B. If f is an M -continuous surjection and
(X,mX) is m-connected, then (Y,mY ) is m-connected.

Theorem 10. If f : (X,mX) → (Y,mY ) is an mIT -continuous surjec-
tion and (X,mX) is mIT -connected, then (Y,mY ) is m-connected.

Proof. The proof follows from Definition 20, Lemma 9 and the fact that
mIT (X) has property B. �

Definition 21. Let (X,mX) be an m-space and A a subset of X. The
m-frontier of A, mFr(A), [27] is defined by mFr(A) = mCl(A) ∩mCl(X \
A) = mCl(A) \mInt(A).

Definition 22. Let (X,mX) be an m-space and A a subset of X. The
mIT -frontier of A, mITFr(A), is defined by mITFr(A) = mITCl(A) ∩
mITCl(X \A) = mITCl(A) \mITInt(A).
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Lemma 10 (Popa and Noiri [28]). The set of all points of X at which
a function f : (X,mX) → (Y,mY ) is not M -continuous is identical with
the union of the m-frontier of the inverse images of m-open sets of (Y,mY )
containing f(x).

Theorem 11. The set of all points of X at which a function f : (X,mX)→
(Y,mY ) is not MIT-continuous is identical with the union of the mIT -frontier
of the inverse images of m-open sets of (Y,mY ) containing f(x).

Proof. The proof follows from Definition 22 and Lemma 10. �
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