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1. Introduction

In recent years, many researchers introduced different forms of contin-
uous functions. El-Atik et al. [1] presented y-open sets and 7-continuity.
Hatir and Noiri et al. [5] has introduced J-3-open sets and d0-/3-continuity.
Raychaudhurim and Mukherjee et al. [10] investigated d-preopen sets and
d-almost continuity. Noiri et al. [12] not only studied J-semi-sets and o-
semi-continuity but also discussed the relationship between J-3-continuity
and d-semi-continuity. In 2008, Ekici et al. [3] introduced the concept of
e-open sets and investigated e-continuity. The purpose of this paper is to
study further e-continuity. We will give characterizations and properties
of e-continuity. We also discuss the relationship between e-continuity and
other forms of continuity. In addition, Urysohn’s Lemma on e-normal spaces
is proved.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces with no
separation properties assumed, and maps are onto. If X is a space and
A C X, then the interior and the closure of A in X are denoted by ¢4, cA,
respectively.

Let f; : 2% — 2% be a operator (i = 1,2,...,n) and A C X. We define

fufe- - fnA = fi(fa(o - (fa(A)) ).
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Let X be a space, A C X and x € X. A is called regular open (resp.
regular closed) if A = icA (resp. A = ciA). z is called a d-cluster point of
A if ANicU # ) for each open set U containing z. The set of all d-cluster
points of A is called the d-closure [7] of A and is denoted by csA. A is called
d-closed if csA = A and the complements are called é-open. The union of
all d-open sets contained in A is called the d-interior [7] of A and is denoted
by isA. Obviously, A is J-open if and only if A = isA.

Let (X, 7) be a space and € X. Then 7(z) means the family of all open
neighborhoods of x. Put

s ={A: Ais d-open in X}.

It is not difficult that 75 forms a topology on X and 75 C 7.

Definition 1. Let X be a space and A C X. Then A is called
(a) e-open [3] if A C icsAUcisA.
(b) 6-preopen [10] if A C icsA.
(c) 0-semiopen [6] if A C cisA.
(d) 6-B-open [4] if A C cicsA.
(e) b-open [2] (or v-open [1]) if A CicAUciA.

The family of all e-open (resp. d-preopen, d-semiopen, d-3-open, b-open)
subsets of X is denoted by FO(X) (resp. dPO(X), 65SO(X), 680(X),
BO(X)).

Definition 2. The complement of a e-open (resp. d-preopen, §-semiopen,
d-B-open, b-open) set is called e-closed [3] (resp. d-preclosed [10], §-semiclo-
sed [6], §-B-closed [4], b-closed [2]).

Definition 3. The union of all e-open (resp. J-preopen, §-semiopen,
0-B-open, b-open) subsets of X contained in A is called the e-interior [3]
(resp. d-preinterior [10], §-semi-interior [12], 6-B-interior [4], b-interior
[2]) of A and is denoted by i.A (resp. pisA, sisA, gisA, ipA).

Definition 4. The intersection of all e-closed (resp. d-preclosed, §-semi-
closed, §-f-closed, b-closed) sets of X containing A is called the e-closure [3]
(resp. 0-preclosure [10], 0-semiclosure [12], 0-F-closure [4], b-closure [2]) of
A and is denoted by c.A (resp. pcsA, scsA, gesA, o A).

Lemma 1 ([4]). Let X be a space and A C X. Then
(a) pisA = ANicsA; pcsA=AUcisA.

(D) sisA=ANcisgA; scsA=AUicsA.

(C) 5i5A = ANcicsA; 56514 = AUicigA.

Proposition 1 ([3]). Let X be a space and A C X. Then A is e-open
in X if and only if A =pisAUisA.
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Theorem 1 ([3]). Let X be a space and A C X. Then
(a) ieA = AN (icsAUcisA).

(b) ceA =AU (cisANicsA).

() ie(X — A) = X — c.A.

(d) z € iA if and only if U C A for some U € EO(X) containing x.
(e) A is e-open in X if and only if A =i.A.

Theorem 2 ([3]). Let X be a space. Then

(a) The union of any family of e-open subsets of X is e-open.

(b) The intersection of any family of e-closed subsets of X is e-closed.

Proposition 2. Let X be a space. Then the intersection of an open
subset and a e-open subset is e-open in X.

Proof. Suppose A € EO(X) and B € 7. By Proposition 1, then ANB =
(pi(;AUsi(gA) NnB= (pigA N B) U (si(;A N B) = (p’i(;A N iB) U (Si(;A N iB) C
(pisANpisB) U (sisANsisB) = (ANicsANBNicsB)U(ANcisANBNcisB) C
(icsANicsgB) U (cisA N cigB) = ics(AN B) Ucis(AN B). Hence AN B is
e-open in X. |

Definition 5. A function f : X — Y is called §-continuous [11] if
f~Y(V) is regular open in X for each V€ RO(Y).

Definition 6. A function f : X — Y is called 6-B-continuous [5]
(resp. vy-continuous [1], d-almost continuous [10], d-semi-continuous [12])
if f~1(V) is §-B-open (resp. b-open, §-preopen, §-semiopen) in X for each
open set' V in'Y.

Lemma 2 ([9]). If f: X = Y is a function, A C X and B C Y, then
f7Y(B)Cc Aifand only if BCY — f(X — A).

3. e-continuous functions
Definition 7 ([3]). A function f: (X,7) = (Y, 0) is called e-continuous
if f~Y(V) is e-open in X for each V € o.

Every §-almost continuous and §-semi-continuous is e-continuous but the
converse is not true. Every e-continuous is J-3-continuous but the converse
is also not true, as shown by the following Example 4.4 [3], Example 4.5 [3]
and Example 1.

Example 1. Let X =¥ = {z,5,}, 7 = {0, {z}, {4}, {z,}, X} and
o={0,{z,z},Y}.

Let f: X — Y be the identity function.
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Since 7(x) = {{z},{z,y}, X}, 7(y) = {{y},{z,y}, X} and 7(z) = {X},
then cs{z, 2} = {z, z} and is{x, z} = 0. Thus we have cics{x, z} = ci{z, 2z} =
c{z} = {z, 2z} and cis{z,z} Uics{z, 2z} = 0 U {z} = {z}. Therefore for each
open subset {x, z} € o, then f~1({z,2}) = {z,2} C cicsf 1 ({x,2}) = {x, 2}
and f~1({x, z}) is 0-B-open in X. Hence f is §-3-continuous.

But f~1({z,2}) = {x, 2} & cisf 1 ({z,2}) Uicsf({x,2}) = 0U {2} =

{z} is not e-open in X. Hence f is not e-continuous.
The following Theorem 3 gives some characterizations of e-continuity.

Theorem 3. Let f : X — Y be a function. Then the following are
equivalent.
(a) f is e-continuous;
(b) For each x € X and each open neighborhood V' of f(x), there exists
Ue EO(X) containing x such that f(U) C V;
(c) 7YV ) is e-closed in X for each closed subset V of Y;
(d) cisf~1(B) Nicsf~1(B) C f~(cB) for each B C Y
(e) f(cisANicsA) C cf(A) for each A C X
(f) f71(GB) Cicf Y(B) for each BCY.
Proof. (a) < (b), (a) < (c) are obvious.
(¢) = (d). Let B C Y. By (3), then we obtain f~!(cB) is e-closed subset
of X. Hence cigf~1(B) Nicsf~H(B) C cisf *(cB) Nicsf 1 (cB) C f~1(cB).
(d) = (c¢). For any closed subset V' C Y. By (4), then we have
cisfX(V) Nicsf~H(V) € f~(eV) = f7YV). Hence f~1(V) is e-closed
in X.

(d) = (e). Put B = f(A). By (4), then we obtain cisf 1(f(4)) N
icsfH(f(A ))) “(cf(A)) and cigANicsA C f~1(cf(A)). Hence f(cigAN
icsA) C c

f(A
(e) = (d) is obvious.

(¢) = (f). Let BCY, then Y —iB is closed subset in Y. By (3), then
we have f~1(Y —iB) € EC(X) and cisgf (Y —iB) Nicsf~Y(Y —iB) C
f (Y iB). Thus, we obtain (X — (cisf~'(iB))) N (X — (icsf~1(iB))) C

f7YiB) and X — (cigf1(iB) Uicsf~1(iB)) € X — f~(iB). Hence
f ( B) C cisf~1(iB)Uics f~1(iB) C cisf Y(B)Uicsf~'(B) and f~1(iB) C
ief 1(B).
(f) = (c) is obvious. [

Theorem 4. Let f: X =Y be a function. If if(A) C f(icA) for each
A C X, then f is e-continuous.

Proof. Suppose that z € X and V is an open neighborhood of f(z).
Since if(A) C f(icA), then V =iV = if(f~1(V)) C f(ief 1 (V)). Thus,
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we have f~1(V) Ciof~H(V). Set U = f~1(V), then U € EO(X) containing
xz and f(U) C V. By Theorem 3, then we obtain f is e-continuous. |

4. Properties of e-continuous functions

Theorem 5. Let X and Y be two spaces and A be an open subset of X.
If f: X =Y is e-continuous, then fla: A —Y is also e-continuous.

Proof. Let V be open in Y. Since f is e-continuous, then (f|4)~ (V) =
(fla)" YV n fA) = FAVn f(A) = fFY(V)N A € EO(X). Therefore

f|a is e-continuous. [ |

Definition 8. Let X be a space. Let {xo,a € N} be a net in X and
x € X. Then {zq,a € A} is called e-converges to x in X, we denote
To —C x, if for every e-open set U containing x there exists a ag € \ such
that xo € U for every o > .

Lemma 3. Let X be a space and x € X, A C X. Then x € c.A if and
only if there exists a net consisting of elements of A and converging to x.

Proof. Necessity. Suppose x € c. A and we denote by U(x) the set of all
e-open set containing = directed by the relation D, i.e., define that Uy < Us
if Uy D Us. Thus, we can easily check that xy —¢ x for each xyy € U N A.

Sufficiency. Let z, —¢ x in A. For every e-open set U containing x
there exists a ag € A such that z, € U for every a > «ag. Thus, we have
UNA#(. Hence x € c A. [ |

Theorem 6. A function f : X — Y is e-continuous if and only if
for any x € X, the net {zq,a € N} e-converges to x in X, then the net
{f(zq),a € N} converges to f(z) inY.

Proof. Necessity. Suppose a net {z,,a € A} e-converges to x € X and
a open subset V of Y containing f(z). Then there exists a ap € A such
that z, € U for every a > ag. Since f is e-continuous, then there exists a
U € EO(X) containing = such that f(U) C V with Theorem 3. Thus, we
have f(z,) € V for a > ap. Hence {f(z4),a € A} converges to f(x) in Y.

Sufficiency. By Theorem 3, we have f(c.A) C ¢f(A). By Lemma 3, then
there exists a net converging to x in A for every x € c.A. By hypothesis,
then there exists a net converges to f(x) in f(A). This implies the net
e-converges to f(x). Again by Lemma 3, we obtain f(z) € c.f(A). Hence
f is e-continuous. n
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Theorem 7. Let f,g: X — Y be two functions and let h: X - Y xY
be a function, defined by h(x) = (f(z),g(z)) for each x € X. Then f and g

are e-continuous if and only if h is e-continuous.

Proof. Necessity. Let a net {zq,o0 € A} e-converges to z for every
x € X. For every open neighborhood W of h(z) there exist open subsets
U and V in Y such that (f(z),g(z)) = h(z) € U x V. C W. Thus, we
have f(z) € U and g(z) € V. Since f is e-continuous, then there exists a
ay € A such that f(zy) € U for every a > a; with Theorem 6. Similarly,
there exists a ag € A such that g(z,) € V for every a > ag. Set ap =
max{ay, o}, then f(z,) € U and g(z,) € V for every a > ag. Thus, we
obtain h(zq) = (f(za),9(za)) € U x V.C W. Hence h is e-continuous.

Sufficiency. Suppose py : Y XY — Y be the natural projections and
f = pyoh. Let U is a open subset of Y. Then f~1(V) = h=(py! (V)). Since
py is continuous, then p;l(V) is open set in Y X Y. Since h is e-continuous,
then h~'(py! (V) is e-open set in X. Hence f is e-continuous. Similarly, we
can prove that g is e-continuous. |

Definition 9. Let F be a filter base in a space X and x € X. Then
F is called e-converges to x, we denote F —¢ x, if for every e-open set U
containing x, there exists a F' € F such that F C U.

Theorem 8. A function f : X — Y is e-continuous if and only if the
filter base f(F) = {f(A) : A € F} converges to f(x) in'Y for every filter
base F e-converges to x in X.

Proof. Necessity. Suppose x € X and V' be an open set containing f(x)
in Y. Since f be e-continuous, then there exists a U € FO(X) containing
x such that f(U) C V with Theorem 3. Let F —¢ x, then there exists a
F € F such that F' C U for every U € EO(X) containing x. Thus, we have
f(x) e f(F) C f(U) c VinY forevery f(F) € f(F). Hence filter base
f(F) converges to f(x).

Sufficiency. Suppose z € X and V be an open set containing f(z) in
Y. Let filter base U(x) be the set of all e-open set U containing = in X,
then U(z) —¢ x. By hypothesis, then f(U(x)) converges to f(x). Thus, we
have F' C V for some a F € f(U(x)) and there exists a U € U(zx) such that
f(U) C V. Hence f is e-continuous. [ |

Theorem 9. If f : X — Y is e-continuous and g : Y — Z is continuous,
then the composition go f : X — Z is e-continuous.

Proof. Suppose x € X and V be an open neighborhood of g(f(x)).
Since g is continuous, then there exists a g~ (V) open in Y containing f(z).
Since f is e-continuous, then there exists a U € FO(X) containing = such
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that f(U) € g~ (V). Thus, we have (go f)(U) C (gog~')(V) C V. Hence
g o f is e-continuous. |

Definition 10. A function f: X — Y is called e-irresolute if f~1(V) €
EO(X) for each V € EO(Y).

Definition 11. A function f : X — Y is called e-open if the image of
every e-open subset is e-open.

Every e-irresolute function is e-continuous but the converse is not true,
and e-irresolute and openness are not relate to each other, as shown by the
following Example 2 and Example 3.

Example 2. Let X =Y = {z,y,2},7 = {0, {z}, {y}, {z,y}, X} and

0= {@, {:Ev y}a Y}

Let f: X — Y be the identity function.

Since 7(z) = {{x}7{x7y}7X}7T(y) = {{y},{m,y},X} and 7(z) = {X},
then cs{z,y} = {X} and is{z,y} = 0. Thus we have cig{x,y} Uics{z,y} =
{X} U0 = {X}. Therefore for each open set {z,y} € o, then f~'({x,y}) =
{e,y} Cisf({y}) Uicsf({z,y}) = {X} and = ({z, y}) is e-open in
X. Hence f is e-continuous.

Since o(z) = o(y) = {{z,y},Y} and o(2) = {Y}, then cs{x,z} = {YV}
and ig{z,z} = 0. Therefore {z,z} C ics{z, 2} U cig{z,z} = {Y} and
{x,z} is e-open set in Y. But f~'({x,2}) = {z,2} ¢ cisf({z,z}) U
icsf1({r,2}) = O U {x} = {z} is not e-open in X. Hence f is not
e-irresolute.

Example 3. Let X =Y = {z,y,2},7 = {0, {z}, {z, 2}, X} and

0= {(07 {:L'}a {y}a {:L‘a y}v {ya Z}, Y}

Let f: X — Y be the identity function.

Since 7(z) = {{z},{z, 2}, X},7(y) = {Y} and 7(2) = {{z, 2}, X}, then
cs{z,yt = csly, 2} = cs{z} = cs{y} = {X} and is{z,y} = is{y, 2} =
is{z} = is{y} = 0. Thus we have cis{z,y} Uics{z,y} = {X} UD =
{X}a Ci&{yvz} U iC(S{y?Z} = {X} up = {X}a C’L'(S{Z} UiC(;{Z} = {X} U
) = {X} and cig{y} Uics{y} = {X} U = {X}. Hence EO(X) =
U (o) {2}, (o (21},

Since o(x) = {{z},{z,y},Y},0(y) = {{y}. {z,y}, {y, 2}, Y} and o(2) =
{{y, z},Y} then cs{z, 2z} = {Y}, cs{z} = {y, 2} and is{x, 2z} = is{z} = 0.
Thus we have cig{x, 2} Uics{z, 2} ={Y} U0 = {Y} and cis{z} Uics{z} =
{y,2} U D ={y, z}. Hence {z,z},{z} € EO(Y).
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Because f({z}) = {z} € o, f({y}) = {v} € 0, F({z}) = {2} € EO(Y),
fHa,y}) = Az y}y € 0, f({y,2}) = {y,2} € o and f({z,2}) = {z,2} €
EO(Y). Thus f is e-irresolute.

Let {x,z} € 7, then f({z,2}) = {z,2} € 0. Hence f is not open.

From Example 1, Example 2, Example 3, Example 4.4 [3] and Exam-
ple 4.5 [3], we have the following relationships:

é-almost continuity
-~

v

Y e-conlinuity *———=—— c-irresolute —>“—*e-open

A

d-semi-continuity -~
!

!

v

o-f-continuity

Theorem 10. Let f : X — Y be e-open and g : Y — Z be a function.
If gof:X — Z is e-continuous, then g is e-continuous.

Proof. Suppose B is open in Z. Since g o f is e-continuous, then (g o

f)~Y(B) = f~1(g71(B)) is e-open. Since f is e-open, then f(f~(g~1(B)))
g~ 1(B) is e-open. Hence g is e-continuous.

Theorem 11. Let f : X — Y be e-open and g : Y — Z be a function.
If go f : X — Z is e-continuous, then g is e-continuous.

Proof. Suppose y € Y and V is an open neighborhood of g(y). Then there
exists a € X such that f(z) = y. Since g o f is e-continuous, then there
exists a U € FO(X) containing z such that g(f(U)) = (go f)(U) C V.
Since f is e-open, then f(U) € EO(Y). Hence g is e-continuous. [

Let {(Xa,7Ta) : @ € A} and {(Ya,04) : @ € A} be two families of
pairwise disjoint spaces, i.e., Xo N Xy = Yo NYy = 0 for a # o and let
fa 1 (Xay7a) = (Yo, 04) be a function for each o € A.

Denote the product space [[ {(Xa,7):a € A}of [[ {(Xa,7a): €A}

aeN a€A
by [] Xo and [] fo : [] Xa — ][] Ya denote the product function
aeA aEN ae/ ae/
defined by f({za}) = {f(za)} for each {zo} € [] Xo- Let Po: [ Xo —
ae aeN
Xo and Q4 ¢ [[ Yo — Yo, be the natural projections.
046/\

Theorem 12. The product function [[ fo @ [] Xa — [] Ya is
aEN aeN aeN

e-continuous if and only if fo : Xo — Yo is e-continuous for every o € \.
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Proof. Denote X = [[ Xo,Y = [] Yaand f = [] fa
aceN aeN aceN
Necessity. Suppose f is e-continuous and @, is continuous for any a € A.

By Theorem 10, then f,oP, = Q.o f is e-continuous. Since P, is continuous
surjection, then f, is e-continuous with Theorem 11.

Sufficiency. Let © = {z,} € X and V be an open subset of Y containing
f(z), then there exists a basic open set [[ W, such that f(z) € [[ W, C

aEN aeA
n
Vand [[ Wo = [] Waix [] Ya where W, be an open subset of Y for each
ae 1=1 aFai

a € {a;: 1 <i<n}. Since f, is e-continuous, then there exists a e-open set
Uy such that fo(Uy) € W, for each z,; € X,; and for each W,; be an open
subset of Y, containing f(z4;). Put U = [[ Uni X [[ Xa, then U is e-open

ien aFai
in X and f(z) € fa({za}) € f(U) C le_[ Jai(Uai) % I;I‘Ya- Let {ya} =y €

I1 fai(Uai) X T[] Ya, then there exists a x, € Uy; such that ya; = fo(z3;)

€N aFai

for every yai € [ fai(Uai). Set z* = {af}, then 2* € [[ Uni x ] Xa-
i€n €N aFai

If @ # «i, then there exists yo, € Y, = f(Xa) and z, € X, such that

Yo = fa(zl). Thus, we have {yo} =y € [[ Was X [] Ya C f(U) XY C
i=1 aFai
fu)cv.

Hence f is e-continuous. |

Denote the topological sum ( | Xa,7) of {(Xa,7a) : @ € A} by P Xa
aeN aeN
and the topological sum ( | Yy, o) of {(Ya,04) : @« € A} by @ Y, where
ae aEN

T={ACX:ANX, €, foreveryae/\},

and
c={BCY:BNY, €0, foreveryae/\},

A function @ fo: @B Xo — @ Ya, called a sum function of {f, : a €
aeN aE aeN
A}, is defined as follows: for every z € |J Xa,
aeN
(D fa)(x) = fa(x) if there exists unique S € A such that x € Xg.
aeN

Theorem 13. The sum function @ fo: P Xo — P Ya is e-continu-
aeN aeN aeN
ous if and only if fo : (Xa,Ta) = (Yo, 04) is e-continuous for every a € ).

Proof. Denote f= P fo, X = P Xo, Y = P Y,
aEN a€EN aEN
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Necessity. Suppose f is e-continuous. Then f|x, = fa is e-continuous
with Theorem 5.

Sufficiency. Let V be an open subset of Y. Then V NY, € o, for every
a€ . Let z € f~Y(V)N X,, then f(x) € V and f(x) € Y,. This implies
that f(z) € fa(z). Thus, we have f,(z) € V and fuo(z) € V NY,. Hence
r € f,1(VNYy). Conversely, f51(VNY,) C f~1(V)N X,. Thus, we obtain
FYV)NX, = f7H(VNY,) for every a € . Since f, is e-continuous, then
f~H(V)N X, is e-open in X,. Thus, we have f~1(V) is e-open in X. Hence
f is e-continuous. |

5. Separation axioms and graph properties

Definition 12. A space X is called

(a) Urysohn [8] if for each pair of distinct points x and y in X, there
exist open subsets U and V such that x € U, y € V and cU NcV = 0.

(b) e-Th if for each pair of distinct points = and y in X, there exist
e-open subsets U and V' containing x and y, respectively, such that y & U
andx € V.

(c) e-Ty if for each pair of distinct points  and y in X, there exist e-open
subsets U and V such that x € Uy € V and UNV = ().

Theorem 14. Let f : X — Y be a e-continuous injection. Then the
following hold.

(a) If Y is a Ty -space, then X is e-T7.

(b) If Y is a Ta-space, then X is e-Th.

(¢) If Y is Urysohn, then X is e-T5.

Proof. (a) Let z and y be any distinct points in X. Since Y is a T;-space,
then there exist open subsets U and V of Y such that f(x) € U, f(y) ¢ U and
f(z) € V, f(y) € V. Since f is e-continuous, then f~}(U) and f~1(V) are
e-open in X such that z € f~Y(U),y & f{(U)and z & f~1(V),y € f~L(V).
Hence X is e-Tj.

(b) Let = and y be any distinct points in X. Since Y is a Ty-space,
then there exist open subsets U and V containing f(z) and f(y) in Y,
respectively, such that U NV = (). Since f is e-continuous, then there exist
e-open subsets A and B containing = and y, respectively, such that f(A) C U
and f(B) C V. This implies that AN B = (). Hence X is e-T5.

(c) Let  and y be any distinct points in X. Since Y is Urysohn, then
there exist open subsets U and V in Y such that f(x) € U, f(y) € V and
cU NcV = (). Since f is e-continuous, then there exist e-open subsets A
and B containing = and y, respectively, such that f(A) C U C ¢U and
f(B) C V C ¢V. This implies that AN B = (. Hence X is e-T5. |
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Theorem 15. Let f,g: X — Y be two functions. If f is continuous, g
is e-continuous and Y is e-Ty, then {x € X : f(z) = g(z)} is e-closed in X.

Proof. Denote A = {x € X : f(x) = g(x)}. Let x € X — A. Then
f(x) # g(x). Since Y is an e-T, space, then there exist e-open subsets U
and V containing f(x) and g(x) in Y, respectively, such that UNV = (.
Since f is continuous and g is e-continuous, then f~!(U) is open and g~*(V)
is e-open in X. This implies that = € f~*(U) and z € g~}(V). Put W =
Y U)Ng= 1 (V), then W is e-open in X with Proposition 2. Thus, we have
FW)Ng(W) c UNV = (). This implies that WNA =@ andz € W C X —A.
Hence X — A is e-open and A is e-closed in X. |

Definition 13. A space X is called e-regular if for each e-closed subset
F and each point x € F, there exist disjoint open subsets U and V' such that
ze€Uand FCV.

Theorem 16. Let a function f: X — Y be a e-irresolute surjection. If
X s e-regular, then 'Y 1is e-regular.

Proof. Suppose y € Y and F' is e-closed in Y such that y ¢ F. Since f
is e-irresolute surjection, then there exists a € X such that y = f(z) and
f~Y(F) is e-closed in X such that ¢ f~1(F). Since X is e-regular, then
there exist disjoint open subsets U and V such that z € U and f~}(F) C V.
This implies y = f(z) € f(U) C Y — f(X —U). By Lemma 2, F C
Y — f(X — V). Note that Y — f(X —U) and Y — f(X — V) are disjoint
open subsets of Y. Hence Y is e-regular. |

Definition 14. A space X is called e-normal if for every pair of disjoint
e-closed subsets A and B, there exist disjoint open subsets U and V such
that ACU and BC V.

Theorem 17. Let a function f : X — Y be e-irresolute. If X is
e-normal, then Y 1is also e-normal.

Proof. Let A and B be disjoint e-closed subsets of Y. Since f is
e-irresolute, then f~'(A) and f~!(B) are disjoint e-closed subsets of X.
Since X is e-normal, then there exist disjoint open subsets U and V in X
such that f~1(4A) CU and f~1(B) C V. By Lemma 2, ACY — f(X — U)
and BCY — f(X —V). Note that Y — f(X —U) and Y — f(X — V) are
disjoint open subsets of Y. Hence Y is e-normal. |

Lemma 4. A space X is e-normal if and only if for each e-closed subset
F and e-open subset U containing F', there exists an open set V' such that
FcVceVcCU.
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Proof. Necessity. Let F be a e-closed set and U be a e-open set con-
taining F. Then we have X — U is e-closed and F N (X —U) = (). Since X
is an e-normal space, then there exist disjoint open subsets Uy, V; such that
F c U; and X —U C V;. This implies that X —V; € U. Since Ui NV; = 0,
then we obtain c,U; C X — V;. Set V = Uy, then c,U; C X —V; C U.
Therefore, FCV CecVCX -V, CU.

Sufficiency. The proof is obvious. |

Below we give Urysohn’s Lemma on e-normal spaces.

Theorem 18. A space X is e-normal if and only if for each pair of
disjoint e-closed subsets A and B of X, there exists a continuous map f :
X — [0,1] such that f(A) = {0} and f(B) = {1}.

Proof. Sufficiency. Suppose that for each pair of disjoint e-closed subsets
A and B of X, there exists a continuous map f : X — [0,1] such that
f(A) = {0} and f(B) = {1}. Put U = f~1([0,1/2)), V = f~1((1/2,1]),
then U and V' are disjoint open subsets of X such that A C U and B C V.
Hence X is e-normal.

Necessity. Suppose X is e-normal. For each pair of disjoint e-closed
subsets A and B of X, A C X — B, where A is e-closed in X and X — B is
e-open in X, by Lemma 4, there exists an open subset Uy /5 of X such that

AC U1/2 - CeUl/Q c X —B.

Since A C Uy, A is e-closed in X and U, is e-open in X, then there
exists an open subset U; 4 of X such that A C Uy C cUyyy C Uy by
Lemma 4. Since c.U;; C X — B, cUyjp is e-closed in X and X — B is
e-open in X, then there exists an open subset Us /4 of X such that c.U; /o C
Usjy C ceUzyy C X — B by Lemma 4. Thus, there exist two open subsets
Uy /2 and Uy of X such that

AC U1/4 C CeU1/4 C U1/2 - CeUl/Q C U3/4 C CeU3/4 c X —-B.

We get a family {U,,/9n : 1 < m < 2",n € N} of open subsets of X,
denotes {Uy,jon : 1 <m < 2",mn € N} by {Uy : a« € T'}. {Uy : a €T}
satisfies the following condition:

(a) AcU,CclU,CX—B,

(b) if a < o, then c.U, C Uy.

We define f: X — [0,1] as follows:

o) = inf{fa el :ze€U,}, if z €U, for some a €T,
= 1, if ¢ U, for any a €T.

For each x € A, z € U, for any ae € " by (1), so f(z) =inf{la e T :z €
Ua} = infT = 0. Thus, f(A) = {0}.
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For each z € B, x ¢ X — B implies « ¢ U, for any a € T by (1), so
f(z) =1. Thus, f(B) = {1}.

We have to show f is continuous.

For z € X and a € T', we have the following Claim:

Claim 1: if f(z) < o, then x € U,.

Suppose f(x) < a, then inf{aw € T' : z € Uy} < a, so there exists
a; € {a €' x € Uy} such that oy < a. By (2), c.Us, C U,. Notice that
z € Uy,. Hence xz € U,,.

Claim 2: if f(z) > «, then = & c.U,.

Suppose f(x) > «, then there exists oy € I such that o < oy < f(x).
Notice that oy € {a € ' : & € Uy} implies ay > inf{a € T': z € U, } = f(x).
Thus, oy € {a € T : & € Uy}. So x & Uy,. By (2), ccUy C U,,. Hence
x & ceUg.

Claim 3: if x & c.U,, then f(z) > «.

Suppose z & c.U,, we claim that o <  for any 8 € {a € ' : x € U,}.
Otherwise, there exists 8 € {a € T : © € Uy} such that o > 8. z & c.U,
implies « € {a € ' : x € Uy }. So o # B. Thus a > 3. By (2), c.Usg C U,.
So x ¢ (3, contridiction. Therefore o < § for any 8 € {a € T' : x € U,}.
Hence a < inf{a € T': z € U,} = f(x).

For zp € X, if f(x0) € (0,1), suppose V is an open neighborhood of f(x¢)
in [0, 1], then there exists e > 0 such that (f(xz¢) —¢, f(zo) +€) C V[(0,1).
Pick o/, a” € T such that

0< f(mg) —e<d < flzo) <a” < f(zo) +e< 1.

By Claim 1 and Claim 2, zg € U,”, 2o & cU,. Put U = U,” — c.UJ,
then U is an open neighborhood of zp in X.

We will prove that f(U) C (f(xo) — €, f(zo) +€). if y € f(U), then
y = f(x) for some x € U. z € U implies that z € U,” and z & c.U,.
Since z € U,”, then o” € {a € I' : v € Uy}. Thus, o” > inf{a el : x €
Ua} = f(z). Notice that o” < f(xo) + €. Therefore f(x) < f(zo)+ €. Since
x & c.Ul, then f(x) > o by Claim 3. Notice that f(z¢) —e < o’. Therefore
F(x) > f(r0) — €. Hence, f(U) C (f(r0) — €, f(xo) + ).

Therefore, f(U) C V. This implies f is continuous at zo. If f(zg) = 0,
or 1, the proof that f is continuous at g is similar. |

Theorem 19. Let f: X — Y be a function and G : X — X XY be the
graph function of f, defined by G(z) = (x, f(x)) for each x € X. Then f is
e-continuous if and only if G is e-continuous.

Proof. Necessity. Let x € X and V be an open subset in X x Y
containing G(z). Then there exist open subsets Uy € X and W C Y
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such that G(z) = (x, f(z)) C Uy x W C V. Since f is e-continuous, then
there exists a Uy € EO(X) such that f(Uz) C W. Set U = U; N Uz, then
U € FO(X) with Proposition 2. Thus, we have G(U) C V. Hence G is
e-continuous.

Sufficiency. Let = € X and V be an open subset of Y containing f(z).
Then X x V' is an open subset containing G(x). Since G is e-continuous,
then there exists U € EO(X) such that G(U) C X x V. Thus, we have
f(U) C V. Hence f is e-continuous. [

Definition 15. A graph G(f) of a function f : X — Y is called strongly
e-closed if for each (x,y) € (X x YY)\ G(f), there exists a U € EO(X)
containing x and an open subset V' of Y containing y such that (U x V)N

G(f)=0.

Theorem 20. Let f : X — Y be e-continuous and Y be e-15. Then
G(f) s e-strongly closed.

Proof. Let (z,y) € (X xY)\ G(f). Then f(xz) # y. Since Y is e-Th,
then there exist disjoint e-open subsets V and W of Y such that f(z) € V
and y € W. Since f is e-continuous, then there exists a U € FEO(X) such
that f(U) C V. Thus, we have f(U)N (W) = 0. Hence (UxW)NG(f) =0
and G(f) is strongly e-closed. [ |

Theorem 21. Let f : X — Y be a e-continuous and injective. If G(f)
1s strongly e-closed, then X is e-T5.

Proof. Let z, y € X such that  # y. Since f is injective, then f(z) #
f(y) and (z, f(y)) € G(f). Since G(f) is strongly e-closed, there exists a
U € EO(X) and an open subset W of Y such that (x, f(y)) € U x W and
(UxW)NG(f) = 0. Thus, we have f(U)NW = (). Since f is e-continuous,
then there exists ay € V € EO(X) such that f(V) C W. This implies that
FO)Nf(V)=0. Hence UNV = and X is e-T5. [ |

6. e-connectedness and covering properties

Definition 16. A space X is called e-connected if X is not the union of
two disjoint nonempty e-open subsets.

Theorem 22. Let f : X — Y be e-continuous. If X is e-connected, then
Y is connected.

Proof. Suppose Y is not a connected space. Then there exist nonempty
disjoint open subsets A and B such that Y = AUB. Since f is e-continuous,
then f~1(A) and f~!(B) are e-open subsets of X. Thus, we obtain f~!(A)
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and f~1(B) are nonempty disjoint subsets and X = f~'(A)u f~(B). This
is contrary to the hypothesis that X is a e-connected space. Hence Y is
connected. |

Corollary 1. Let f : X — Y be e-irresolute. If X is e-connected, then
Y is e-connected.

Definition 17. A space X is called e-Lindelof (resp. e-compact) if every
e-open cover of X has a countable (resp. finite) subcover.

Theorem 23. Let f : X =Y be e-continuous. If X is e-Lindelof, then
Y is Lindelof.

Proof. Let {Uy : @ € A} is an open cover of Y. Since f is an
e-continuous function, then f~1({U, : @ € A}) is an e-open cover of X.
Since X is e-Lindeldf, then there exists a countable subcover f=1({U,; :
Uni € {Ua},1 < i< o0, € A})in X. Thus, we have {Uy; : Uni € {Ua},1 <
i < oo, € A} is a countable subcover of Y. Hence Y is Lindeldf. [ |

Similarly, we can prove the following Theorem 24.

Theorem 24. Let f : X — Y be e-continuous. If X is e-compact, then
Y s compact.
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