$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 50}$

TUSHENG XIE AND HAINING LI

ON *e*-CONTINUOUS FUNCTIONS AND RELATED RESULTS

ABSTRACT. In this paper, characterizations and properties of *e*-continuous functions are given. Moreover, Urysohn's Lemma on *e*-normal spaces is proved.

KEY WORDS: *e*-open and *e*-closed subsets; *e*-continuous function; e-irresolute function; *e*-normal spaces; Urysohn's lemma.

AMS Mathematics Subject Classification: 54A05, 54D15.

1. Introduction

In recent years, many researchers introduced different forms of continuous functions. El-Atik et al. [1] presented γ -open sets and γ -continuity. Hatir and Noiri et al. [5] has introduced δ - β -open sets and δ - β -continuity. Raychaudhurim and Mukherjee et al. [10] investigated δ -preopen sets and δ -almost continuity. Noiri et al. [12] not only studied δ -semi-sets and δ semi-continuity but also discussed the relationship between δ - β -continuity and δ -semi-continuity. In 2008, Ekici et al. [3] introduced the concept of e-open sets and investigated e-continuity. The purpose of this paper is to study further e-continuity. We will give characterizations and properties of e-continuity. We also discuss the relationship between e-continuity and other forms of continuity. In addition, Urysohn's Lemma on e-normal spaces is proved.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces with no separation properties assumed, and maps are onto. If X is a space and $A \subset X$, then the interior and the closure of A in X are denoted by iA, cA, respectively.

Let $f_i: 2^X \longrightarrow 2^X$ be a operator (i = 1, 2, ..., n) and $A \subset X$. We define

$$f_1 f_2 \cdots f_n A = f_1(f_2(\dots(f_n(A))\dots)).$$

Let X be a space, $A \subset X$ and $x \in X$. A is called regular open (resp. regular closed) if A = icA (resp. A = ciA). x is called a δ -cluster point of A if $A \cap icU \neq \emptyset$ for each open set U containing x. The set of all δ -cluster points of A is called the δ -closure [7] of A and is denoted by $c_{\delta}A$. A is called δ -closed if $c_{\delta}A = A$ and the complements are called δ -open. The union of all δ -open sets contained in A is called the δ -interior [7] of A and is denoted by $i_{\delta}A$. Obviously, A is δ -open if and only if $A = i_{\delta}A$.

Let (X, τ) be a space and $x \in X$. Then $\tau(x)$ means the family of all open neighborhoods of x. Put

$$\tau_{\delta} = \{A : A \text{ is } \delta \text{-open in } X\}.$$

It is not difficult that τ_{δ} forms a topology on X and $\tau_{\delta} \subset \tau$.

Definition 1. Let X be a space and $A \subset X$. Then A is called

(a) e-open [3] if $A \subset ic_{\delta}A \cup ci_{\delta}A$.

(b) δ -preopen [10] if $A \subset ic_{\delta}A$.

(c) δ -semiopen [6] if $A \subset ci_{\delta}A$.

(d) δ - β -open [4] if $A \subset cic_{\delta}A$.

(e) b-open [2] (or γ -open [1]) if $A \subset icA \cup ciA$.

The family of all *e*-open (resp. δ -preopen, δ -semiopen, δ - β -open, *b*-open) subsets of X is denoted by EO(X) (resp. $\delta PO(X)$, $\delta SO(X)$, $\delta \beta O(X)$, BO(X)).

Definition 2. The complement of a e-open (resp. δ -preopen, δ -semiopen, δ - β -open, b-open) set is called e-closed [3] (resp. δ -preclosed [10], δ -semiclosed [6], δ - β -closed [4], b-closed [2]).

Definition 3. The union of all e-open (resp. δ -preopen, δ -semiopen, δ - β -open, b-open) subsets of X contained in A is called the e-interior [3] (resp. δ -preinterior [10], δ -semi-interior [12], δ - β -interior [4], b-interior [2]) of A and is denoted by i_eA (resp. $_{pi\delta}A$, $_{si\delta}A$, $_{\betai\delta}A$, $_{ib}A$).

Definition 4. The intersection of all e-closed (resp. δ -preclosed, δ -semiclosed, δ - β -closed, b-closed) sets of X containing A is called the e-closure [3] (resp. δ -preclosure [10], δ -semiclosure [12], δ - β -closure [4], b-closure [2]) of A and is denoted by c_eA (resp. ${}_{p}c_{\delta}A, {}_{s}c_{\delta}A, {}_{c}bA$).

Lemma 1 ([4]). Let X be a space and $A \subset X$. Then

(a) $_{p}i_{\delta}A = A \cap ic_{\delta}A; \ _{p}c_{\delta}A = A \cup ci_{\delta}A.$

(b) ${}_{s}i_{\delta}A = A \cap ci_{\delta}A; {}_{s}c_{\delta}A = A \cup ic_{\delta}A.$

(c) $_{\beta}i_{\delta}A = A \cap cic_{\delta}A; \ _{\beta}c_{\delta}A = A \cup ici_{\delta}A.$

Proposition 1 ([3]). Let X be a space and $A \subset X$. Then A is e-open in X if and only if $A =_{p} i_{\delta} A \cup_{s} i_{\delta} A$. **Theorem 1** ([3]). Let X be a space and $A \subset X$. Then (a) $i_e A = A \cap (ic_{\delta}A \cup ci_{\delta}A)$. (b) $c_e A = A \cup (ci_{\delta}A \cap ic_{\delta}A)$. (c) $i_e(X - A) = X - c_e A$. (d) $x \in i_e A$ if and only if $U \subset A$ for some $U \in EO(X)$ containing x. (e) A is e-open in X if and only if $A = i_e A$.

Theorem 2 ([3]). Let X be a space. Then

(a) The union of any family of e-open subsets of X is e-open.

(b) The intersection of any family of e-closed subsets of X is e-closed.

Proposition 2. Let X be a space. Then the intersection of an open subset and a e-open subset is e-open in X.

Proof. Suppose $A \in EO(X)$ and $B \in \tau$. By Proposition 1, then $A \cap B = (pi_{\delta}A \cup si_{\delta}A) \cap B = (pi_{\delta}A \cap B) \cup (si_{\delta}A \cap B) = (pi_{\delta}A \cap iB) \cup (si_{\delta}A \cap iB) \subset (pi_{\delta}A \cap pi_{\delta}B) \cup (si_{\delta}A \cap si_{\delta}B) = (A \cap ic_{\delta}A \cap B \cap ic_{\delta}B) \cup (A \cap ci_{\delta}A \cap B \cap ci_{\delta}B) \subset (ic_{\delta}A \cap ic_{\delta}B) \cup (ci_{\delta}A \cap ci_{\delta}B) = ic_{\delta}(A \cap B) \cup ci_{\delta}(A \cap B)$. Hence $A \cap B$ is *e*-open in *X*.

Definition 5. A function $f : X \to Y$ is called δ -continuous [11] if $f^{-1}(V)$ is regular open in X for each $V \in RO(Y)$.

Definition 6. A function $f : X \to Y$ is called δ - β -continuous [5] (resp. γ -continuous [1], δ -almost continuous [10], δ -semi-continuous [12]) if $f^{-1}(V)$ is δ - β -open (resp. b-open, δ -preopen, δ -semiopen) in X for each open set V in Y.

Lemma 2 ([9]). If $f : X \to Y$ is a function, $A \subset X$ and $B \subset Y$, then $f^{-1}(B) \subset A$ if and only if $B \subset Y - f(X - A)$.

3. *e*-continuous functions

Definition 7 ([3]). A function $f : (X, \tau) \to (Y, \sigma)$ is called *e*-continuous if $f^{-1}(V)$ is *e*-open in X for each $V \in \sigma$.

Every δ -almost continuous and δ -semi-continuous is *e*-continuous but the converse is not true. Every *e*-continuous is δ - β -continuous but the converse is also not true, as shown by the following Example 4.4 [3], Example 4.5 [3] and Example 1.

Example 1. Let
$$X = Y = \{x, y, z\}, \tau = \{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$$
 and
 $\sigma = \{\emptyset, \{x, z\}, Y\}.$

Let $f: X \to Y$ be the identity function.

Since $\tau(x) = \{\{x\}, \{x, y\}, X\}, \tau(y) = \{\{y\}, \{x, y\}, X\} \text{ and } \tau(z) = \{X\},$ then $c_{\delta}\{x, z\} = \{x, z\}$ and $i_{\delta}\{x, z\} = \emptyset$. Thus we have $cic_{\delta}\{x, z\} = ci\{x, z\} = c\{x\} = \{x, z\}$ and $ci_{\delta}\{x, z\} \cup ic_{\delta}\{x, z\} = \emptyset \cup \{x\} = \{x\}$. Therefore for each open subset $\{x, z\} \in \sigma$, then $f^{-1}(\{x, z\}) = \{x, z\} \subset cic_{\delta}f^{-1}(\{x, z\}) = \{x, z\}$ and $f^{-1}(\{x, z\})$ is δ - β -open in X. Hence f is δ - β -continuous.

But $f^{-1}(\{x,z\}) = \{x,z\} \not\subset ci_{\delta}f^{-1}(\{x,z\}) \cup ic_{\delta}f^{-1}(\{x,z\}) = \emptyset \cup \{x\} = \{x\}$ is not *e*-open in X. Hence f is not *e*-continuous.

The following Theorem 3 gives some characterizations of *e*-continuity.

Theorem 3. Let $f : X \to Y$ be a function. Then the following are equivalent.

(a) f is e-continuous;

(b) For each $x \in X$ and each open neighborhood V of f(x), there exists $U \in EO(X)$ containing x such that $f(U) \subset V$;

(c) $f^{-1}(V)$ is e-closed in X for each closed subset V of Y;

(d) $ci_{\delta}f^{-1}(B) \cap ic_{\delta}f^{-1}(B) \subset f^{-1}(cB)$ for each $B \subset Y$;

(e) $f(ci_{\delta}A \cap ic_{\delta}A) \subset cf(A)$ for each $A \subset X$;

(f) $f^{-1}(iB) \subset i_e f^{-1}(B)$ for each $B \subset Y$.

Proof. $(a) \Leftrightarrow (b), (a) \Leftrightarrow (c)$ are obvious.

 $(c) \Rightarrow (d)$. Let $B \subset Y$. By (3), then we obtain $f^{-1}(cB)$ is *e*-closed subset of X. Hence $ci_{\delta}f^{-1}(B) \cap ic_{\delta}f^{-1}(B) \subset ci_{\delta}f^{-1}(cB) \cap ic_{\delta}f^{-1}(cB) \subset f^{-1}(cB)$.

 $(d) \Rightarrow (c)$. For any closed subset $V \subset Y$. By (4), then we have $ci_{\delta}f^{-1}(V) \cap ic_{\delta}f^{-1}(V) \subset f^{-1}(cV) = f^{-1}(V)$. Hence $f^{-1}(V)$ is *e*-closed in X.

 $(d) \Rightarrow (e)$. Put B = f(A). By (4), then we obtain $ci_{\delta}f^{-1}(f(A)) \cap ic_{\delta}f^{-1}(f(A)) \subset f^{-1}(cf(A))$ and $ci_{\delta}A \cap ic_{\delta}A \subset f^{-1}(cf(A))$. Hence $f(ci_{\delta}A \cap ic_{\delta}A) \subset cf(A)$.

 $(e) \Rightarrow (d)$ is obvious.

 $(c) \Rightarrow (f)$. Let $B \subset Y$, then Y - iB is closed subset in Y. By (3), then we have $f^{-1}(Y - iB) \in EC(X)$ and $ci_{\delta}f^{-1}(Y - iB) \cap ic_{\delta}f^{-1}(Y - iB) \subset f^{-1}(Y - iB)$. Thus, we obtain $(X - (ci_{\delta}f^{-1}(iB))) \cap (X - (ic_{\delta}f^{-1}(iB))) \subset X - f^{-1}(iB)$ and $X - (ci_{\delta}f^{-1}(iB) \cup ic_{\delta}f^{-1}(iB)) \subset X - f^{-1}(iB)$. Hence $f^{-1}(iB) \subset ci_{\delta}f^{-1}(iB) \cup ic_{\delta}f^{-1}(iB) \subset ci_{\delta}f^{-1}(B)$ and $f^{-1}(iB) \subset ie_{\delta}f^{-1}(B)$.

 $(f) \Rightarrow (c)$ is obvious.

Theorem 4. Let $f : X \to Y$ be a function. If $if(A) \subset f(i_e A)$ for each $A \subset X$, then f is e-continuous.

Proof. Suppose that $x \in X$ and V is an open neighborhood of f(x). Since $if(A) \subset f(i_eA)$, then $V = iV = if(f^{-1}(V)) \subset f(i_ef^{-1}(V))$. Thus,

we have $f^{-1}(V) \subset i_e f^{-1}(V)$. Set $U = f^{-1}(V)$, then $U \in EO(X)$ containing x and $f(U) \subset V$. By Theorem 3, then we obtain f is e-continuous.

4. Properties of *e*-continuous functions

Theorem 5. Let X and Y be two spaces and A be an open subset of X. If $f: X \to Y$ is e-continuous, then $f|_A: A \to Y$ is also e-continuous.

Proof. Let V be open in Y. Since f is e-continuous, then $(f|_A)^{-1}(V) = (f|_A)^{-1}(V \cap f(A)) = f^{-1}(V \cap f(A)) = f^{-1}(V) \cap A \in EO(X)$. Therefore $f|_A$ is e-continuous.

Definition 8. Let X be a space. Let $\{x_{\alpha}, \alpha \in \Lambda\}$ be a net in X and $x \in X$. Then $\{x_{\alpha}, \alpha \in \Lambda\}$ is called e-converges to x in X, we denote $x_{\alpha} \to^{e} x$, if for every e-open set U containing x there exists a $\alpha_{0} \in \Lambda$ such that $x_{\alpha} \in U$ for every $\alpha \geq \alpha_{0}$.

Lemma 3. Let X be a space and $x \in X, A \subset X$. Then $x \in c_eA$ if and only if there exists a net consisting of elements of A and converging to x.

Proof. Necessity. Suppose $x \in c_e A$ and we denote by $\mathcal{U}(x)$ the set of all *e*-open set containing x directed by the relation \supset , i.e., define that $U_1 \leq U_2$ if $U_1 \supset U_2$. Thus, we can easily check that $x_U \rightarrow^e x$ for each $x_U \in U \cap A$.

Sufficiency. Let $x_{\alpha} \to^{e} x$ in A. For every e-open set U containing x there exists a $\alpha_{0} \in \bigwedge$ such that $x_{\alpha} \in U$ for every $\alpha \geq \alpha_{0}$. Thus, we have $U \cap A \neq \emptyset$. Hence $x \in c_{e}A$.

Theorem 6. A function $f : X \to Y$ is e-continuous if and only if for any $x \in X$, the net $\{x_{\alpha}, \alpha \in \Lambda\}$ e-converges to x in X, then the net $\{f(x_{\alpha}), \alpha \in \Lambda\}$ converges to f(x) in Y.

Proof. Necessity. Suppose a net $\{x_{\alpha}, \alpha \in \Lambda\}$ *e*-converges to $x \in X$ and a open subset V of Y containing f(x). Then there exists a $\alpha_0 \in \Lambda$ such that $x_{\alpha} \in U$ for every $\alpha \geq \alpha_0$. Since f is *e*-continuous, then there exists a $U \in EO(X)$ containing x such that $f(U) \subset V$ with Theorem 3. Thus, we have $f(x_{\alpha}) \in V$ for $\alpha \geq \alpha_0$. Hence $\{f(x_{\alpha}), \alpha \in \Lambda\}$ converges to f(x) in Y.

Sufficiency. By Theorem 3, we have $f(c_e A) \subset cf(A)$. By Lemma 3, then there exists a net converging to x in A for every $x \in c_e A$. By hypothesis, then there exists a net converges to f(x) in f(A). This implies the net e-converges to f(x). Again by Lemma 3, we obtain $f(x) \in c_e f(A)$. Hence f is e-continuous. **Theorem 7.** Let $f, g: X \to Y$ be two functions and let $h: X \to Y \times Y$ be a function, defined by h(x) = (f(x), g(x)) for each $x \in X$. Then f and gare e-continuous if and only if h is e-continuous.

Proof. Necessity. Let a net $\{x_{\alpha}, \alpha \in \Lambda\}$ *e*-converges to x for every $x \in X$. For every open neighborhood W of h(x) there exist open subsets U and V in Y such that $(f(x), g(x)) = h(x) \in U \times V \subset W$. Thus, we have $f(x) \in U$ and $g(x) \in V$. Since f is *e*-continuous, then there exists a $\alpha_1 \in \Lambda$ such that $f(x_{\alpha}) \in U$ for every $\alpha \ge \alpha_1$ with Theorem 6. Similarly, there exists a $\alpha_2 \in \Lambda$ such that $g(x_{\alpha}) \in V$ for every $\alpha \ge \alpha_2$. Set $\alpha_0 = \max\{\alpha_1, \alpha_2\}$, then $f(x_{\alpha}) \in U$ and $g(x_{\alpha}) \in V$ for every $\alpha \ge \alpha_0$. Thus, we obtain $h(x_{\alpha}) = (f(x_{\alpha}), g(x_{\alpha})) \in U \times V \subset W$. Hence h is *e*-continuous.

Sufficiency. Suppose $p_Y : Y \times Y \to Y$ be the natural projections and $f = p_Y \circ h$. Let U is a open subset of Y. Then $f^{-1}(V) = h^{-1}(p_Y^{-1}(V))$. Since p_Y is continuous, then $p_Y^{-1}(V)$ is open set in $Y \times Y$. Since h is *e*-continuous, then $h^{-1}(p_Y^{-1}(V))$ is *e*-open set in X. Hence f is *e*-continuous. Similarly, we can prove that g is *e*-continuous.

Definition 9. Let \mathcal{F} be a filter base in a space X and $x \in X$. Then \mathcal{F} is called e-converges to x, we denote $\mathcal{F} \to^e x$, if for every e-open set U containing x, there exists a $F \in \mathcal{F}$ such that $F \subset U$.

Theorem 8. A function $f : X \to Y$ is e-continuous if and only if the filter base $f(\mathcal{F}) = \{f(A) : A \in \mathcal{F}\}$ converges to f(x) in Y for every filter base \mathcal{F} e-converges to x in X.

Proof. Necessity. Suppose $x \in X$ and V be an open set containing f(x) in Y. Since f be e-continuous, then there exists a $U \in EO(X)$ containing x such that $f(U) \subset V$ with Theorem 3. Let $\mathcal{F} \to^e x$, then there exists a $F \in \mathcal{F}$ such that $F \subset U$ for every $U \in EO(X)$ containing x. Thus, we have $f(x) \in f(F) \subset f(U) \subset V$ in Y for every $f(F) \in f(\mathcal{F})$. Hence filter base $f(\mathcal{F})$ converges to f(x).

Sufficiency. Suppose $x \in X$ and V be an open set containing f(x) in Y. Let filter base $\mathcal{U}(x)$ be the set of all e-open set U containing x in X, then $\mathcal{U}(x) \to^e x$. By hypothesis, then $f(\mathcal{U}(x))$ converges to f(x). Thus, we have $F \subset V$ for some a $F \in f(\mathcal{U}(x))$ and there exists a $U \in \mathcal{U}(x)$ such that $f(U) \subset V$. Hence f is e-continuous.

Theorem 9. If $f : X \to Y$ is e-continuous and $g : Y \to Z$ is continuous, then the composition $g \circ f : X \to Z$ is e-continuous.

Proof. Suppose $x \in X$ and V be an open neighborhood of g(f(x)). Since g is continuous, then there exists a $g^{-1}(V)$ open in Y containing f(x). Since f is e-continuous, then there exists a $U \in EO(X)$ containing x such that $f(U) \subset g^{-1}(V)$. Thus, we have $(g \circ f)(U) \subset (g \circ g^{-1})(V) \subset V$. Hence $g \circ f$ is *e*-continuous.

Definition 10. A function $f : X \to Y$ is called *e*-irresolute if $f^{-1}(V) \in EO(X)$ for each $V \in EO(Y)$.

Definition 11. A function $f : X \to Y$ is called e-open if the image of every e-open subset is e-open.

Every *e*-irresolute function is *e*-continuous but the converse is not true, and *e*-irresolute and openness are not relate to each other, as shown by the following Example 2 and Example 3.

Example 2. Let $X = Y = \{x, y, z\}, \tau = \{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$ and

$$\sigma = \{\emptyset, \{x, y\}, Y\}.$$

Let $f: X \to Y$ be the identity function.

Since $\tau(x) = \{\{x\}, \{x, y\}, X\}, \tau(y) = \{\{y\}, \{x, y\}, X\} \text{ and } \tau(z) = \{X\},$ then $c_{\delta}\{x, y\} = \{X\}$ and $i_{\delta}\{x, y\} = \emptyset$. Thus we have $ci_{\delta}\{x, y\} \cup ic_{\delta}\{x, y\} = \{X\} \cup \emptyset = \{X\}.$ Therefore for each open set $\{x, y\} \in \sigma$, then $f^{-1}(\{x, y\}) = \{x, y\} \subset i_{\delta}f^{-1}(\{x, y\}) \cup ic_{\delta}f^{-1}(\{x, y\}) = \{X\}$ and $f^{-1}(\{x, y\})$ is *e*-open in *X*. Hence *f* is *e*-continuous.

Since $\sigma(x) = \sigma(y) = \{\{x, y\}, Y\}$ and $\sigma(z) = \{Y\}$, then $c_{\delta}\{x, z\} = \{Y\}$ and $i_{\delta}\{x, z\} = \emptyset$. Therefore $\{x, z\} \subset ic_{\delta}\{x, z\} \cup ci_{\delta}\{x, z\} = \{Y\}$ and $\{x, z\}$ is e-open set in Y. But $f^{-1}(\{x, z\}) = \{x, z\} \not\subset ci_{\delta}f^{-1}(\{x, z\}) \cup ic_{\delta}f^{-1}(\{x, z\}) = \emptyset \cup \{x\} = \{x\}$ is not e-open in X. Hence f is not e-irresolute.

Example 3. Let $X = Y = \{x, y, z\}, \tau = \{\emptyset, \{x\}, \{x, z\}, X\}$ and

$$\sigma = \{\emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, Y\}.$$

Let $f: X \to Y$ be the identity function.

Since $\tau(x) = \{\{x\}, \{x, z\}, X\}, \tau(y) = \{Y\}$ and $\tau(z) = \{\{x, z\}, X\}$, then $c_{\delta}\{x, y\} = c_{\delta}\{y, z\} = c_{\delta}\{z\} = c_{\delta}\{y\} = \{X\}$ and $i_{\delta}\{x, y\} = i_{\delta}\{y, z\} = i_{\delta}\{y\} = \emptyset$. Thus we have $ci_{\delta}\{x, y\} \cup ic_{\delta}\{x, y\} = \{X\} \cup \emptyset = \{X\}, ci_{\delta}\{y, z\} \cup ic_{\delta}\{y, z\} = \{X\} \cup \emptyset = \{X\}, ci_{\delta}\{z\} \cup ic_{\delta}\{z\} = \{X\} \cup \emptyset = \{X\}$ and $ci_{\delta}\{y\} \cup ic_{\delta}\{y\} = \{X\} \cup \emptyset = \{X\}$. Hence $EO(X) = \tau \cup \{\{x, y\}, \{y, z\}, \{y\}, \{z\}\}$.

Since $\sigma(x) = \{\{x\}, \{x, y\}, Y\}, \sigma(y) = \{\{y\}, \{x, y\}, \{y, z\}, Y\}$ and $\sigma(z) = \{\{y, z\}, Y\}$ then $c_{\delta}\{x, z\} = \{Y\}, c_{\delta}\{z\} = \{y, z\}$ and $i_{\delta}\{x, z\} = i_{\delta}\{z\} = \emptyset$. Thus we have $ci_{\delta}\{x, z\} \cup ic_{\delta}\{x, z\} = \{Y\} \cup \emptyset = \{Y\}$ and $ci_{\delta}\{z\} \cup ic_{\delta}\{z\} = \{y, z\} \cup \emptyset = \{y, z\}$. Hence $\{x, z\}, \{z\} \in EO(Y)$. Because $f(\{x\}) = \{x\} \in \sigma$, $f(\{y\}) = \{y\} \in \sigma$, $f(\{z\}) = \{z\} \in EO(Y)$, $f(\{x,y\}) = \{x,y\} \in \sigma$, $f(\{y,z\}) = \{y,z\} \in \sigma$ and $f(\{x,z\}) = \{x,z\} \in EO(Y)$. Thus f is e-irresolute.

Let $\{x, z\} \in \tau$, then $f(\{x, z\}) = \{x, z\} \notin \sigma$. Hence f is not open.

From Example 1, Example 2, Example 3, Example 4.4 [3] and Example 4.5 [3], we have the following relationships:

Theorem 10. Let $f : X \to Y$ be e-open and $g : Y \to Z$ be a function. If $g \circ f : X \to Z$ is e-continuous, then g is e-continuous.

Proof. Suppose *B* is open in *Z*. Since $g \circ f$ is *e*-continuous, then $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ is *e*-open. Since *f* is *e*-open, then $f(f^{-1}(g^{-1}(B))) = g^{-1}(B)$ is *e*-open. Hence *g* is *e*-continuous.

Theorem 11. Let $f : X \to Y$ be e-open and $g : Y \to Z$ be a function. If $g \circ f : X \to Z$ is e-continuous, then g is e-continuous.

Proof. Suppose $y \in Y$ and V is an open neighborhood of g(y). Then there exists a $x \in X$ such that f(x) = y. Since $g \circ f$ is *e*-continuous, then there exists a $U \in EO(X)$ containing x such that $g(f(U)) = (g \circ f)(U) \subset V$. Since f is *e*-open, then $f(U) \in EO(Y)$. Hence g is *e*-continuous.

Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ and $\{(Y_{\alpha}, \sigma_{\alpha}) : \alpha \in \Lambda\}$ be two families of pairwise disjoint spaces, i.e., $X_{\alpha} \cap X_{\alpha'} = Y_{\alpha} \cap Y_{\alpha'} = \emptyset$ for $\alpha \neq \alpha'$ and let $f_{\alpha} : (X_{\alpha}, \tau_{\alpha}) \to (Y_{\alpha}, \sigma_{\alpha})$ be a function for each $\alpha \in \Lambda$.

Denote the product space $\prod_{\alpha \in \Lambda} \{(X_{\alpha}, \tau) : \alpha \in \Lambda\}$ of $\prod_{\alpha \in \Lambda} \{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ by $\prod_{\alpha \in \Lambda} X_{\alpha}$ and $\prod_{\alpha \in \Lambda} f_{\alpha} : \prod_{\alpha \in \Lambda} X_{\alpha} \to \prod_{\alpha \in \Lambda} Y_{\alpha}$ denote the product function defined by $f(\{x_{\alpha}\}) = \{f(x_{\alpha})\}$ for each $\{x_{\alpha}\} \in \prod_{\alpha \in \Lambda} X_{\alpha}$. Let $P_{\alpha} : \prod_{\alpha \in \Lambda} X_{\alpha} \to X_{\alpha}$ and $Q_{\alpha} : \prod_{\alpha \in \Lambda} Y_{\alpha} \to Y_{\alpha}$ be the natural projections.

Theorem 12. The product function $\prod_{\alpha \in \Lambda} f_{\alpha} : \prod_{\alpha \in \Lambda} X_{\alpha} \to \prod_{\alpha \in \Lambda} Y_{\alpha}$ is *e-continuous if and only if* $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ *is e-continuous for every* $\alpha \in \Lambda$.

Proof. Denote $X = \prod_{\alpha \in \Lambda} X_{\alpha}, Y = \prod_{\alpha \in \Lambda} Y_{\alpha}$ and $f = \prod_{\alpha \in \Lambda} f_{\alpha}$.

Necessity. Suppose f is e-continuous and Q_{α} is continuous for any $\alpha \in \Lambda$. By Theorem 10, then $f_{\alpha} \circ P_{\alpha} = Q_{\alpha} \circ f$ is e-continuous. Since P_{α} is continuous surjection, then f_{α} is e-continuous with Theorem 11.

Sufficiency. Let $x = \{x_{\alpha}\} \in X$ and V be an open subset of Y containing f(x), then there exists a basic open set $\prod_{\alpha \in \Lambda} W_{\alpha}$ such that $f(x) \in \prod_{\alpha \in \Lambda} W_{\alpha} \subset W_{\alpha}$

 $V \text{ and } \prod_{\alpha \in \bigwedge} W_{\alpha} = \prod_{i=1}^{n} W_{\alpha i} \times \prod_{\alpha \neq \alpha i} Y_{\alpha} \text{ where } W_{\alpha} \text{ be an open subset of } Y \text{ for each } \alpha \in \{\alpha_{i} : 1 < i < n\}. \text{ Since } f_{\alpha} \text{ is } e\text{-continuous, then there exists a } e\text{-open set } U_{\alpha i} \text{ such that } f_{\alpha}(U_{\alpha}) \in W_{\alpha} \text{ for each } x_{\alpha i} \in X_{\alpha i} \text{ and for each } W_{\alpha i} \text{ be an open subset of } Y_{\alpha} \text{ containing } f(x_{\alpha i}). \text{ Put } U = \prod_{i \in n} U_{\alpha i} \times \prod_{\alpha \neq \alpha i} X_{\alpha}, \text{ then } U \text{ is } e\text{-open } \text{ in } X \text{ and } f(x) \in f_{\alpha}(\{x_{\alpha}\}) \in f(U) \subset \prod_{i \in n} f_{\alpha i}(U_{\alpha i}) \times \prod_{\alpha \neq \alpha i} Y_{\alpha}. \text{ Let } \{y_{\alpha}\} = y \in \prod_{i \in n} f_{\alpha i}(U_{\alpha i}) \times \prod_{\alpha \neq \alpha i} Y_{\alpha}, \text{ then there exists a } x_{\alpha i}^{*} \in U_{\alpha i} \text{ such that } y_{\alpha i} = f_{\alpha}(x_{\alpha i}^{*}) \text{ for every } y_{\alpha i} \in \prod_{i \in n} f_{\alpha i}(U_{\alpha i}). \text{ Set } x^{*} = \{x_{\alpha}^{*}\}, \text{ then } x^{*} \in \prod_{i \in n} U_{\alpha i} \times \prod_{\alpha \neq \alpha i} X_{\alpha}. \text{ If } \alpha \neq \alpha i, \text{ then there exists } y_{\alpha} \in Y_{\alpha} = f(X_{\alpha}) \text{ and } x_{\alpha}^{*} \in X_{\alpha} \text{ such that } y_{\alpha} = f_{\alpha}(x_{\alpha}^{*}). \text{ Thus, we have } \{y_{\alpha}\} = y \in \prod_{i=1}^{n} W_{\alpha i} \times \prod_{\alpha \neq \alpha i} Y_{\alpha} \subset f(U) \times Y \subset f(U) \subset V.$

Hence f is e-continuous.

Denote the topological sum $(\bigcup_{\alpha \in \Lambda} X_{\alpha}, \tau)$ of $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ by $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ and the topological sum $(\bigcup_{\alpha \in \Lambda} Y_{\alpha}, \sigma)$ of $\{(Y_{\alpha}, \sigma_{\alpha}) : \alpha \in \Lambda\}$ by $\bigoplus_{\alpha \in \Lambda} Y_{\alpha}$, where

$$\tau = \{ A \subset X : A \cap X_{\alpha} \in \tau_{\alpha} \text{ for every } \alpha \in \bigwedge \},\$$

and

$$\sigma = \{ B \subset Y : B \cap Y_{\alpha} \in \sigma_{\alpha} \text{ for every } \alpha \in \bigwedge \},\$$

A function $\bigoplus_{\alpha \in \Lambda} f_{\alpha} : \bigoplus_{\alpha \in \Lambda} X_{\alpha} \to \bigoplus_{\alpha \in \Lambda} Y_{\alpha}$, called a sum function of $\{f_{\alpha} : \alpha \in \Lambda\}$, is defined as follows: for every $x \in \bigcup_{\alpha \in \Lambda} X_{\alpha}$, $(\bigoplus_{\alpha \in \Lambda} f_{\alpha})(x) = f_{\alpha}(x)$ if there write unique $\beta \in \Lambda$ such that $x \in X$.

 $(\bigoplus_{\alpha \in \bigwedge} f_{\alpha})(x) = f_{\beta}(x) \text{ if there exists unique } \beta \in \bigwedge \text{ such that } x \in X_{\beta}.$

Theorem 13. The sum function $\bigoplus_{\alpha \in \Lambda} f_{\alpha} : \bigoplus_{\alpha \in \Lambda} X_{\alpha} \to \bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ is e-continuous if and only if $f_{\alpha} : (X_{\alpha}, \tau_{\alpha}) \to (Y_{\alpha}, \sigma_{\alpha})$ is e-continuous for every $\alpha \in \Lambda$.

Proof. Denote $f = \bigoplus_{\alpha \in \bigwedge} f_{\alpha}, X = \bigoplus_{\alpha \in \bigwedge} X_{\alpha}, Y = \bigoplus_{\alpha \in \bigwedge} Y_{\alpha}.$

Necessity. Suppose f is e-continuous. Then $f|_{X_{\alpha}} = f_{\alpha}$ is e-continuous with Theorem 5.

Sufficiency. Let V be an open subset of Y. Then $V \cap Y_{\alpha} \in \sigma_{\alpha}$ for every $\alpha \in \bigwedge$. Let $x \in f^{-1}(V) \cap X_{\alpha}$, then $f(x) \in V$ and $f(x) \in Y_{\alpha}$. This implies that $f(x) \in f_{\alpha}(x)$. Thus, we have $f_{\alpha}(x) \in V$ and $f_{\alpha}(x) \in V \cap Y_{\alpha}$. Hence $x \in f_{\alpha}^{-1}(V \cap Y_{\alpha})$. Conversely, $f_{\alpha}^{-1}(V \cap Y_{\alpha}) \subset f^{-1}(V) \cap X_{\alpha}$. Thus, we obtain $f^{-1}(V) \cap X_{\alpha} = f_{\alpha}^{-1}(V \cap Y_{\alpha})$ for every $\alpha \in \bigwedge$. Since f_{α} is *e*-continuous, then $f^{-1}(V) \cap X_{\alpha}$ is *e*-open in X_{α} . Thus, we have $f^{-1}(V)$ is *e*-open in X. Hence *f* is *e*-continuous.

5. Separation axioms and graph properties

Definition 12. A space X is called

(a) Urysohn [8] if for each pair of distinct points x and y in X, there exist open subsets U and V such that $x \in U$, $y \in V$ and $cU \cap cV = \emptyset$.

(b) e-T₁ if for each pair of distinct points x and y in X, there exist e-open subsets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

(c) $e - T_2$ if for each pair of distinct points x and y in X, there exist e-open subsets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Theorem 14. Let $f : X \to Y$ be a *e*-continuous injection. Then the following hold.

(a) If Y is a T_1 -space, then X is e- T_1 .

(b) If Y is a T_2 -space, then X is e- T_2 .

(c) If Y is Urysohn, then X is $e-T_2$.

Proof. (a) Let x and y be any distinct points in X. Since Y is a T_1 -space, then there exist open subsets U and V of Y such that $f(x) \in U, f(y) \notin U$ and $f(x) \in V, f(y) \notin V$. Since f is e-continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are e-open in X such that $x \in f^{-1}(U), y \notin f^{-1}(U)$ and $x \notin f^{-1}(V), y \in f^{-1}(V)$. Hence X is e- T_1 .

(b) Let x and y be any distinct points in X. Since Y is a T_2 -space, then there exist open subsets U and V containing f(x) and f(y) in Y, respectively, such that $U \cap V = \emptyset$. Since f is e-continuous, then there exist e-open subsets A and B containing x and y, respectively, such that $f(A) \subset U$ and $f(B) \subset V$. This implies that $A \cap B = \emptyset$. Hence X is $e-T_2$.

(c) Let x and y be any distinct points in X. Since Y is Urysohn, then there exist open subsets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $cU \cap cV = \emptyset$. Since f is e-continuous, then there exist e-open subsets A and B containing x and y, respectively, such that $f(A) \subset U \subset cU$ and $f(B) \subset V \subset cV$. This implies that $A \cap B = \emptyset$. Hence X is $e \cdot T_2$. **Theorem 15.** Let $f, g: X \to Y$ be two functions. If f is continuous, g is e-continuous and Y is e- T_2 , then $\{x \in X : f(x) = g(x)\}$ is e-closed in X.

Proof. Denote $A = \{x \in X : f(x) = g(x)\}$. Let $x \in X - A$. Then $f(x) \neq g(x)$. Since Y is an e- T_2 space, then there exist e-open subsets U and V containing f(x) and g(x) in Y, respectively, such that $U \cap V = \emptyset$. Since f is continuous and g is e-continuous, then $f^{-1}(U)$ is open and $g^{-1}(V)$ is e-open in X. This implies that $x \in f^{-1}(U)$ and $x \in g^{-1}(V)$. Put $W = f^{-1}(U) \cap g^{-1}(V)$, then W is e-open in X with Proposition 2. Thus, we have $f(W) \cap g(W) \subset U \cap V = \emptyset$. This implies that $W \cap A = \emptyset$ and $x \in W \subset X - A$. Hence X - A is e-open and A is e-closed in X.

Definition 13. A space X is called e-regular if for each e-closed subset F and each point $x \notin F$, there exist disjoint open subsets U and V such that $x \in U$ and $F \subset V$.

Theorem 16. Let a function $f : X \to Y$ be a *e*-irresolute surjection. If X is *e*-regular, then Y is *e*-regular.

Proof. Suppose $y \in Y$ and F is e-closed in Y such that $y \notin F$. Since f is e-irresolute surjection, then there exists a $x \in X$ such that y = f(x) and $f^{-1}(F)$ is e-closed in X such that $x \notin f^{-1}(F)$. Since X is e-regular, then there exist disjoint open subsets U and V such that $x \in U$ and $f^{-1}(F) \subset V$. This implies $y = f(x) \in f(U) \subset Y - f(X - U)$. By Lemma 2, $F \subset Y - f(X - V)$. Note that Y - f(X - U) and Y - f(X - V) are disjoint open subsets of Y. Hence Y is e-regular.

Definition 14. A space X is called e-normal if for every pair of disjoint e-closed subsets A and B, there exist disjoint open subsets U and V such that $A \subset U$ and $B \subset V$.

Theorem 17. Let a function $f : X \to Y$ be e-irresolute. If X is e-normal, then Y is also e-normal.

Proof. Let A and B be disjoint e-closed subsets of Y. Since f is e-irresolute, then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint e-closed subsets of X. Since X is e-normal, then there exist disjoint open subsets U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By Lemma 2, $A \subset Y - f(X - U)$ and $B \subset Y - f(X - V)$. Note that Y - f(X - U) and Y - f(X - V) are disjoint open subsets of Y. Hence Y is e-normal.

Lemma 4. A space X is e-normal if and only if for each e-closed subset F and e-open subset U containing F, there exists an open set V such that $F \subset V \subset c_e V \subset U$.

Proof. Necessity. Let F be a e-closed set and U be a e-open set containing F. Then we have X - U is e-closed and $F \cap (X - U) = \emptyset$. Since X is an e-normal space, then there exist disjoint open subsets U_1, V_1 such that $F \subset U_1$ and $X - U \subset V_1$. This implies that $X - V_1 \subset U$. Since $U_1 \cap V_1 = \emptyset$, then we obtain $c_e U_1 \subset X - V_1$. Set $V = U_1$, then $c_e U_1 \subset X - V_1 \subset U$. Therefore, $F \subset V \subset c_e V \subset X - V_1 \subset U$.

Sufficiency. The proof is obvious.

Below we give Urysohn's Lemma on *e*-normal spaces.

Theorem 18. A space X is e-normal if and only if for each pair of disjoint e-closed subsets A and B of X, there exists a continuous map f: $X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

Proof. Sufficiency. Suppose that for each pair of disjoint *e*-closed subsets A and B of X, there exists a continuous map $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. Put $U = f^{-1}([0, 1/2)), V = f^{-1}((1/2, 1]),$ then U and V are disjoint open subsets of X such that $A \subset U$ and $B \subset V$. Hence X is e-normal.

Necessity. Suppose X is e-normal. For each pair of disjoint e-closed subsets A and B of X, $A \subset X - B$, where A is e-closed in X and X - B is e-open in X, by Lemma 4, there exists an open subset $U_{1/2}$ of X such that

$$A \subset U_{1/2} \subset c_e U_{1/2} \subset X - B.$$

Since $A \subset U_{1/2}$, A is e-closed in X and $U_{1/2}$ is e-open in X, then there exists an open subset $U_{1/4}$ of X such that $A \subset U_{1/4} \subset c_e U_{1/4} \subset U_{1/2}$ by Lemma 4. Since $c_e U_{1/2} \subset X - B$, $c_e U_{1/2}$ is e-closed in X and X - B is e-open in X, then there exists an open subset $U_{3/4}$ of X such that $c_e U_{1/2} \subset$ $U_{3/4} \subset c_e U_{3/4} \subset X - B$ by Lemma 4. Thus, there exist two open subsets $U_{1/2}$ and $U_{3/4}$ of X such that

$$A \subset U_{1/4} \subset c_e U_{1/4} \subset U_{1/2} \subset c_e U_{1/2} \subset U_{3/4} \subset c_e U_{3/4} \subset X - B.$$

We get a family $\{U_{m/2^n} : 1 \leq m < 2^n, n \in N\}$ of open subsets of X, denotes $\{U_{m/2^n} : 1 \leq m < 2^n, n \in N\}$ by $\{U_\alpha : \alpha \in \Gamma\}$. $\{U_\alpha : \alpha \in \Gamma\}$ satisfies the following condition:

- (a) $A \subset U_{\alpha} \subset c_e U_{\alpha} \subset X B$,
- (b) if $\alpha < \alpha'$, then $c_e U_\alpha \subset U_{\alpha'}$.

We define $f: X \to [0, 1]$ as follows:

$$f(x) = \begin{cases} \inf\{\alpha \in \Gamma : x \in U_{\alpha}\}, & \text{if } x \in U_{\alpha} \text{ for some } \alpha \in \Gamma, \\ 1, & \text{if } x \notin U_{\alpha} \text{ for any } \alpha \in \Gamma. \end{cases}$$

For each $x \in A$, $x \in U_{\alpha}$ for any $\alpha \in \Gamma$ by (1), so $f(x) = \inf\{\alpha \in \Gamma : x \in I\}$ U_{α} = inf Γ = 0. Thus, $f(A) = \{0\}$.

For each $x \in B$, $x \notin X - B$ implies $x \notin U_{\alpha}$ for any $\alpha \in \Gamma$ by (1), so f(x) = 1. Thus, $f(B) = \{1\}$.

We have to show f is continuous.

For $x \in X$ and $\alpha \in \Gamma$, we have the following Claim:

Claim 1: if $f(x) < \alpha$, then $x \in U_{\alpha}$.

Suppose $f(x) < \alpha$, then $\inf\{\alpha \in \Gamma : x \in U_{\alpha}\} < \alpha$, so there exists $\alpha_1 \in \{\alpha \in \Gamma : x \in U_{\alpha}\}$ such that $\alpha_1 < \alpha$. By (2), $c_e U_{\alpha_1} \subset U_{\alpha}$. Notice that $x \in U_{\alpha_1}$. Hence $x \in U_{\alpha}$.

Claim 2: if $f(x) > \alpha$, then $x \notin c_e U_\alpha$.

Suppose $f(x) > \alpha$, then there exists $\alpha_1 \in \Gamma$ such that $\alpha < \alpha_1 < f(x)$. Notice that $\alpha_1 \in \{\alpha \in \Gamma : x \in U_\alpha\}$ implies $\alpha_1 \ge \inf\{\alpha \in \Gamma : x \in U_\alpha\} = f(x)$. Thus, $\alpha_1 \notin \{\alpha \in \Gamma : x \in U_\alpha\}$. So $x \notin U_{\alpha_1}$. By (2), $c_e U_\alpha \subset U_{\alpha_1}$. Hence $x \notin c_e U_\alpha$.

Claim 3: if $x \notin c_e U_\alpha$, then $f(x) \geq \alpha$.

Suppose $x \notin c_e U_\alpha$, we claim that $\alpha < \beta$ for any $\beta \in \{\alpha \in \Gamma : x \in U_\alpha\}$. Otherwise, there exists $\beta \in \{\alpha \in \Gamma : x \in U_\alpha\}$ such that $\alpha \geq \beta$. $x \notin c_e U_\alpha$ implies $\alpha \notin \{\alpha \in \Gamma : x \in U_\alpha\}$. So $\alpha \neq \beta$. Thus $\alpha > \beta$. By (2), $c_e U_\beta \subset U_\alpha$. So $x \notin \beta$, contridiction. Therefore $\alpha < \beta$ for any $\beta \in \{\alpha \in \Gamma : x \in U_\alpha\}$. Hence $\alpha \leq \inf\{\alpha \in \Gamma : x \in U_\alpha\} = f(x)$.

For $x_0 \in X$, if $f(x_0) \in (0, 1)$, suppose V is an open neighborhood of $f(x_0)$ in [0, 1], then there exists $\varepsilon > 0$ such that $(f(x_0) - \epsilon, f(x_0) + \epsilon) \subset V \cap (0, 1)$. Pick $\alpha', \alpha'' \in \Gamma$ such that

$$0 < f(x_0) - \epsilon < \alpha' < f(x_0) < \alpha'' < f(x_0) + \epsilon < 1.$$

By Claim 1 and Claim 2, $x_0 \in U_{\alpha}^{"}$, $x_0 \notin c_e U'_{\alpha}$. Put $U = U_{\alpha}^{"} - c_e U'_{\alpha}$, then U is an open neighborhood of x_0 in X.

We will prove that $f(U) \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$. if $y \in f(U)$, then y = f(x) for some $x \in U$. $x \in U$ implies that $x \in U_{\alpha}$ " and $x \notin c_e U'_{\alpha}$. Since $x \in U_{\alpha}$ ", then α " $\in \{\alpha \in \Gamma : x \in U_{\alpha}\}$. Thus, α " $\geq inf\{\alpha \in \Gamma : x \in U_{\alpha}\}$ = f(x). Notice that α " $< f(x_0) + \epsilon$. Therefore $f(x) < f(x_0) + \epsilon$. Since $x \notin c_e U'_{\alpha}$, then $f(x) \geq \alpha'$ by Claim 3. Notice that $f(x_0) - \epsilon < \alpha'$. Therefore $f(x) > f(x_0) - \epsilon$. Hence, $f(U) \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$.

Therefore, $f(U) \subset V$. This implies f is continuous at x_0 . If $f(x_0) = 0$, or 1, the proof that f is continuous at x_0 is similar.

Theorem 19. Let $f : X \to Y$ be a function and $G : X \to X \times Y$ be the graph function of f, defined by G(x) = (x, f(x)) for each $x \in X$. Then f is *e-continuous if and only if* G *is e-continuous.*

Proof. Necessity. Let $x \in X$ and V be an open subset in $X \times Y$ containing G(x). Then there exist open subsets $U_1 \subset X$ and $W \subset Y$

such that $G(x) = (x, f(x)) \subset U_1 \times W \subset V$. Since f is e-continuous, then there exists a $U_2 \in EO(X)$ such that $f(U_2) \subset W$. Set $U = U_1 \cap U_2$, then $U \in EO(X)$ with Proposition 2. Thus, we have $G(U) \subset V$. Hence G is e-continuous.

Sufficiency. Let $x \in X$ and V be an open subset of Y containing f(x). Then $X \times V$ is an open subset containing G(x). Since G is *e*-continuous, then there exists $U \in EO(X)$ such that $G(U) \subset X \times V$. Thus, we have $f(U) \subset V$. Hence f is *e*-continuous.

Definition 15. A graph G(f) of a function $f : X \to Y$ is called strongly e-closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists a $U \in EO(X)$ containing x and an open subset V of Y containing y such that $(U \times V) \cap$ $G(f) = \emptyset$.

Theorem 20. Let $f : X \to Y$ be e-continuous and Y be $e-T_2$. Then G(f) is e-strongly closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $f(x) \neq y$. Since Y is e- T_2 , then there exist disjoint e-open subsets V and W of Y such that $f(x) \in V$ and $y \in W$. Since f is e-continuous, then there exists a $U \in EO(X)$ such that $f(U) \subset V$. Thus, we have $f(U) \cap (W) = \emptyset$. Hence $(U \times W) \cap G(f) = \emptyset$ and G(f) is strongly e-closed.

Theorem 21. Let $f : X \to Y$ be a *e*-continuous and injective. If G(f) is strongly *e*-closed, then X is *e*-T₂.

Proof. Let $x, y \in X$ such that $x \neq y$. Since f is injective, then $f(x) \neq f(y)$ and $(x, f(y)) \notin G(f)$. Since G(f) is strongly *e*-closed, there exists a $U \in EO(X)$ and an open subset W of Y such that $(x, f(y)) \in U \times W$ and $(U \times W) \cap G(f) = \emptyset$. Thus, we have $f(U) \cap W = \emptyset$. Since f is *e*-continuous, then there exists a $y \in V \in EO(X)$ such that $f(V) \subset W$. This implies that $f(U) \cap f(V) = \emptyset$. Hence $U \cap V = \emptyset$ and X is $e \cdot T_2$.

6. *e*-connectedness and covering properties

Definition 16. A space X is called e-connected if X is not the union of two disjoint nonempty e-open subsets.

Theorem 22. Let $f : X \to Y$ be e-continuous. If X is e-connected, then Y is connected.

Proof. Suppose Y is not a connected space. Then there exist nonempty disjoint open subsets A and B such that $Y = A \cup B$. Since f is e-continuous, then $f^{-1}(A)$ and $f^{-1}(B)$ are e-open subsets of X. Thus, we obtain $f^{-1}(A)$

and $f^{-1}(B)$ are nonempty disjoint subsets and $X = f^{-1}(A) \cup f^{-1}(B)$. This is contrary to the hypothesis that X is a *e*-connected space. Hence Y is connected.

Corollary 1. Let $f : X \to Y$ be e-irresolute. If X is e-connected, then Y is e-connected.

Definition 17. A space X is called e-Lindelöf (resp. e-compact) if every e-open cover of X has a countable (resp. finite) subcover.

Theorem 23. Let $f : X \to Y$ be e-continuous. If X is e-Lindelöf, then Y is Lindelöf.

Proof. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ is an open cover of Y. Since f is an e-continuous function, then $f^{-1}(\{U_{\alpha} : \alpha \in \Lambda\})$ is an e-open cover of X. Since X is e-Lindelöf, then there exists a countable subcover $f^{-1}(\{U_{\alpha i} : U_{\alpha i} \in \{U_{\alpha}\}, 1 < i < \infty, \alpha \in \Lambda\})$ in X. Thus, we have $\{U_{\alpha i} : U_{\alpha i} \in \{U_{\alpha}\}, 1 < i < \infty, \alpha \in \Lambda\}$ is a countable subcover of Y. Hence Y is Lindelöf.

Similarly, we can prove the following Theorem 24.

Theorem 24. Let $f : X \to Y$ be e-continuous. If X is e-compact, then Y is compact.

Acknowledgement. This paper is supported by the Innovation Project of Guangxi University for Nationalities (No. gxun-chx2011081).

References

- EL-ATIK A.A., A Study on some Types of Mappings on Topological Spaces, M. Sci. Thesis, Tanta Univ., Egypt, 1997.
- [2] ANDRIJEVIC D., On *b*-open sets, *Math. Vesnik*, 48(1996), 59-64.
- [3] EKICI E., On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arab. J. Sci. Eng. Sect., 2(2008), 269-282.
- [4] HATIR E., NOIRI T., Decompositions of continuity and complete continuity, Acta. Math. Hungary, 113(4)(2006), 281-287.
- [5] HATIR E., NOIRI T., On δ-β-continuous functions, Chaos, Solitons and Fractals, 42(2009), 205-211.
- [6] PARK J.H., LEE Y., SON M.J., On δ-semiopen sets in topological space, J. Indian Acad. Math., 19(1997), 59-67.
- [7] VELIČKO N.V., H-closed topological spaces, Am. Math. Soc. Transl., 2(78) (1968), 103-118.
- [8] ENGELKING R., General Topology, Państwowe Wyd. Nauk., Warszawa, 1977.
- [9] LIN S., Metric Spaces and Topology of Function Spaces, *Chinese Scientific Publications*, Beijing, 2004.
- [10] RAYCHAUDHURIM S., MUKHERJEE M.N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.

- [11] NOIRI T., On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161-166.
- [12] NOIRI T., Remarks on δ-semiopen sets and δ-preopen sets, Demonstratio Math., 36(2003), 1007-1020.

Tusheng Xie College of Mathematics and Information Science Guangxi University Nanning, Guangxi 530004, P.R. China *e-mail:* tushengxie@126.com

HAINING LI COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE GUANGXI UNIVERSITY FOR NATIONALITIES NANNING, GUANGXI 530006, P.R. CHINA *e-mail:* hning100@126.com

Received on 07.11.2011 and, in revised form, on 23.03.2012.