F A S C I C U L I M A T H E M A T I C I
 Nr 50

Tusheng Xie and Haining Li

ON e-CONTINUOUS FUNCTIONS AND RELATED RESULTS

Abstract

In this paper, characterizations and properties of e-continuous functions are given. Moreover, Urysohn's Lemma on e-normal spaces is proved. KEY WORDS: e-open and e-closed subsets; e-continuous function; e-irresolute function; e-normal spaces; Urysohn's lemma.

AMS Mathematics Subject Classification: 54A05, 54D15.

1. Introduction

In recent years, many researchers introduced different forms of continuous functions. El-Atik et al. [1] presented γ-open sets and γ-continuity. Hatir and Noiri et al. [5] has introduced δ - β-open sets and δ - β-continuity. Raychaudhurim and Mukherjee et al. [10] investigated δ-preopen sets and δ-almost continuity. Noiri et al. [12] not only studied δ-semi-sets and δ -semi-continuity but also discussed the relationship between δ - β-continuity and δ-semi-continuity. In 2008, Ekici et al. [3] introduced the concept of e-open sets and investigated e-continuity. The purpose of this paper is to study further e-continuity. We will give characterizations and properties of e-continuity. We also discuss the relationship between e-continuity and other forms of continuity. In addition, Urysohn's Lemma on e-normal spaces is proved.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces with no separation properties assumed, and maps are onto. If X is a space and $A \subset X$, then the interior and the closure of A in X are denoted by $i A, c A$, respectively.

Let $f_{i}: 2^{X} \longrightarrow 2^{X}$ be a operator $(i=1,2, \ldots, n)$ and $A \subset X$. We define

$$
f_{1} f_{2} \cdots f_{n} A=f_{1}\left(f_{2}\left(\ldots\left(f_{n}(A)\right) \ldots\right)\right)
$$

Let X be a space, $A \subset X$ and $x \in X . A$ is called regular open (resp. regular closed) if $A=i c A$ (resp. $A=c i A$). x is called a δ-cluster point of A if $A \cap i c U \neq \emptyset$ for each open set U containing x. The set of all δ-cluster points of A is called the δ-closure [7] of A and is denoted by $c_{\delta} A$. A is called δ-closed if $c_{\delta} A=A$ and the complements are called δ-open. The union of all δ-open sets contained in A is called the δ-interior [7] of A and is denoted by $i_{\delta} A$. Obviously, A is δ-open if and only if $A=i_{\delta} A$.

Let (X, τ) be a space and $x \in X$. Then $\tau(x)$ means the family of all open neighborhoods of x. Put

$$
\tau_{\delta}=\{A: A \text { is } \delta \text {-open in } X\}
$$

It is not difficult that τ_{δ} forms a topology on X and $\tau_{\delta} \subset \tau$.
Definition 1. Let X be a space and $A \subset X$. Then A is called
(a) e-open [3] if $A \subset i c_{\delta} A \cup c i_{\delta} A$.
(b) δ-preopen [10] if $A \subset i c_{\delta} A$.
(c) δ-semiopen [6] if $A \subset c i_{\delta} A$.
(d) δ - β-open [4] if $A \subset \operatorname{cic}_{\delta} A$.
(e) b-open [2] (or γ-open [1]) if $A \subset i c A \cup c i A$.

The family of all e-open (resp. δ-preopen, δ-semiopen, δ - β-open, b-open) subsets of X is denoted by $E O(X)$ (resp. $\delta P O(X), \delta S O(X), \delta \beta O(X)$, $B O(X))$.

Definition 2. The complement of a e-open (resp. δ-preopen, δ-semiopen, δ - β-open, b-open) set is called e-closed [3] (resp. δ-preclosed [10], δ-semiclosed [6], δ - β-closed [4], b-closed [2]).

Definition 3. The union of all e-open (resp. δ-preopen, δ-semiopen, δ - β-open, b-open) subsets of X contained in A is called the e-interior [3] (resp. δ-preinterior [10], δ-semi-interior [12], δ - β-interior [4], b-interior [2]) of A and is denoted by $i_{e} A\left(r e s p .{ }_{p} i_{\delta} A,{ }_{s} i_{\delta} A,{ }_{\beta} i_{\delta} A, i_{b} A\right)$.

Definition 4. The intersection of all e-closed (resp. δ-preclosed, δ-semiclosed, δ - β-closed, b-closed) sets of X containing A is called the e-closure [3] (resp. δ-preclosure [10], δ-semiclosure [12], δ - β-closure [4], b-closure [2]) of A and is denoted by $c_{e} A$ (resp. $\left.{ }_{p} c_{\delta} A,{ }_{s} c_{\delta} A,{ }_{\beta} c_{\delta} A, c_{b} A\right)$.

Lemma 1 ([4]). Let X be a space and $A \subset X$. Then
(a) ${ }_{p} i_{\delta} A=A \cap i_{\delta} A ;{ }_{p} c_{\delta} A=A \cup c i_{\delta} A$.
(b) ${ }_{s} i_{\delta} A=A \cap c i_{\delta} A ;{ }_{s} c_{\delta} A=A \cup i c_{\delta} A$.
(c) ${ }_{\beta} i_{\delta} A=A \cap \operatorname{cic} c_{\delta} A ;{ }_{\beta} c_{\delta} A=A \cup i c i_{\delta} A$.

Proposition 1 ([3]). Let X be a space and $A \subset X$. Then A is e-open in X if and only if $A={ }_{p} i_{\delta} A \cup_{s} i_{\delta} A$.

Theorem 1 ([3]). Let X be a space and $A \subset X$. Then
(a) $i_{e} A=A \cap\left(i c_{\delta} A \cup c i_{\delta} A\right)$.
(b) $c_{e} A=A \cup\left(c i_{\delta} A \cap i c_{\delta} A\right)$.
(c) $i_{e}(X-A)=X-c_{e} A$.
(d) $x \in i_{e} A$ if and only if $U \subset A$ for some $U \in E O(X)$ containing x.
(e) A is e-open in X if and only if $A=i_{e} A$.

Theorem 2 ([3]). Let X be a space. Then
(a) The union of any family of e-open subsets of X is e-open.
(b) The intersection of any family of e-closed subsets of X is e-closed.

Proposition 2. Let X be a space. Then the intersection of an open subset and a e-open subset is e-open in X.

Proof. Suppose $A \in E O(X)$ and $B \in \tau$. By Proposition 1, then $A \cap B=$ $\left({ }_{p} i_{\delta} A \cup{ }_{s} i_{\delta} A\right) \cap B=\left({ }_{p} i_{\delta} A \cap B\right) \cup\left({ }_{s} i_{\delta} A \cap B\right)=\left({ }_{p} i_{\delta} A \cap i B\right) \cup\left({ }_{s} i_{\delta} A \cap i B\right) \subset$ $\left({ }_{p} i_{\delta} A \cap_{p} i_{\delta} B\right) \cup\left({ }_{s} i_{\delta} A \cap_{s} i_{\delta} B\right)=\left(A \cap i c_{\delta} A \cap B \cap i c_{\delta} B\right) \cup\left(A \cap c i_{\delta} A \cap B \cap c i_{\delta} B\right) \subset$ $\left(i c_{\delta} A \cap i c_{\delta} B\right) \cup\left(c i_{\delta} A \cap c i_{\delta} B\right)=i c_{\delta}(A \cap B) \cup c i_{\delta}(A \cap B)$. Hence $A \cap B$ is e-open in X.

Definition 5. A function $f: X \rightarrow Y$ is called δ-continuous [11] if $f^{-1}(V)$ is regular open in X for each $V \in R O(Y)$.

Definition 6. A function $f: X \rightarrow Y$ is called δ - β-continuous [5] (resp. γ-continuous [1], δ-almost continuous [10], δ-semi-continuous [12]) if $f^{-1}(V)$ is δ - β-open (resp. b-open, δ-preopen, δ-semiopen) in X for each open set V in Y.

Lemma 2 ([9]). If $f: X \rightarrow Y$ is a function, $A \subset X$ and $B \subset Y$, then $f^{-1}(B) \subset A$ if and only if $B \subset Y-f(X-A)$.

3. e-continuous functions

Definition 7 ([3]). A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called e-continuous if $f^{-1}(V)$ is e-open in X for each $V \in \sigma$.

Every δ-almost continuous and δ-semi-continuous is e-continuous but the converse is not true. Every e-continuous is δ - β-continuous but the converse is also not true, as shown by the following Example 4.4 [3], Example 4.5 [3] and Example 1.

Example 1. Let $X=Y=\{x, y, z\}, \tau=\{\emptyset,\{x\},\{y\},\{x, y\}, X\}$ and

$$
\sigma=\{\emptyset,\{x, z\}, Y\}
$$

Let $f: X \rightarrow Y$ be the identity function.

Since $\tau(x)=\{\{x\},\{x, y\}, X\}, \tau(y)=\{\{y\},\{x, y\}, X\}$ and $\tau(z)=\{X\}$, then $c_{\delta}\{x, z\}=\{x, z\}$ and $i_{\delta}\{x, z\}=\emptyset$. Thus we have $\operatorname{cic}_{\delta}\{x, z\}=\operatorname{ci}\{x, z\}=$ $c\{x\}=\{x, z\}$ and $c i_{\delta}\{x, z\} \cup i c_{\delta}\{x, z\}=\emptyset \cup\{x\}=\{x\}$. Therefore for each open subset $\{x, z\} \in \sigma$, then $f^{-1}(\{x, z\})=\{x, z\} \subset \operatorname{cic}_{\delta} f^{-1}(\{x, z\})=\{x, z\}$ and $f^{-1}(\{x, z\})$ is δ - β-open in X. Hence f is δ - β-continuous.

But $f^{-1}(\{x, z\})=\{x, z\} \not \subset c i_{\delta} f^{-1}(\{x, z\}) \cup i c_{\delta} f^{-1}(\{x, z\})=\emptyset \cup\{x\}=$ $\{x\}$ is not e-open in X. Hence f is not e-continuous.

The following Theorem 3 gives some characterizations of e-continuity.
Theorem 3. Let $f: X \rightarrow Y$ be a function. Then the following are equivalent.
(a) f is e-continuous;
(b) For each $x \in X$ and each open neighborhood V of $f(x)$, there exists $U \in E O(X)$ containing x such that $f(U) \subset V$;
(c) $f^{-1}(V)$ is e-closed in X for each closed subset V of Y;
(d) $c i_{\delta} f^{-1}(B) \cap i c_{\delta} f^{-1}(B) \subset f^{-1}(c B)$ for each $B \subset Y$;
(e) $f\left(c i_{\delta} A \cap i c_{\delta} A\right) \subset c f(A)$ for each $A \subset X$;
$(f) f^{-1}(i B) \subset i_{e} f^{-1}(B)$ for each $B \subset Y$.
Proof. $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c)$ are obvious.
$(c) \Rightarrow(d)$. Let $B \subset Y$. By (3), then we obtain $f^{-1}(c B)$ is e-closed subset of X. Hence $c i_{\delta} f^{-1}(B) \cap i c_{\delta} f^{-1}(B) \subset c i_{\delta} f^{-1}(c B) \cap i c_{\delta} f^{-1}(c B) \subset f^{-1}(c B)$.
$(d) \Rightarrow(c)$. For any closed subset $V \subset Y$. By (4), then we have $c i_{\delta} f^{-1}(V) \cap i c_{\delta} f^{-1}(V) \subset f^{-1}(c V)=f^{-1}(V)$. Hence $f^{-1}(V)$ is e-closed in X.
$(d) \Rightarrow(e)$. Put $B=f(A)$. By (4), then we obtain $c i_{\delta} f^{-1}(f(A)) \cap$ $i c_{\delta} f^{-1}(f(A)) \subset f^{-1}(c f(A))$ and $c i_{\delta} A \cap i c_{\delta} A \subset f^{-1}(c f(A))$. Hence $f\left(c i_{\delta} A \cap\right.$ $\left.i c_{\delta} A\right) \subset c f(A)$.
$(e) \Rightarrow(d)$ is obvious.
$(c) \Rightarrow(f)$. Let $B \subset Y$, then $Y-i B$ is closed subset in Y. By (3), then we have $f^{-1}(Y-i B) \in E C(X)$ and $c i_{\delta} f^{-1}(Y-i B) \cap i c_{\delta} f^{-1}(Y-i B) \subset$ $f^{-1}(Y-i B)$. Thus, we obtain $\left(X-\left(c i_{\delta} f^{-1}(i B)\right)\right) \cap\left(X-\left(i c_{\delta} f^{-1}(i B)\right)\right) \subset$ $X-f^{-1}(i B)$ and $X-\left(c i_{\delta} f^{-1}(i B) \cup i c_{\delta} f^{-1}(i B)\right) \subset X-f^{-1}(i B)$. Hence $f^{-1}(i B) \subset c i_{\delta} f^{-1}(i B) \cup i c_{\delta} f^{-1}(i B) \subset c i_{\delta} f^{-1}(B) \cup i c_{\delta} f^{-1}(B)$ and $f^{-1}(i B) \subset$ $i_{e} f^{-1}(B)$.
$(f) \Rightarrow(c)$ is obvious.

Theorem 4. Let $f: X \rightarrow Y$ be a function. If $i f(A) \subset f\left(i_{e} A\right)$ for each $A \subset X$, then f is e-continuous.

Proof. Suppose that $x \in X$ and V is an open neighborhood of $f(x)$. Since $i f(A) \subset f\left(i_{e} A\right)$, then $V=i V=i f\left(f^{-1}(V)\right) \subset f\left(i_{e} f^{-1}(V)\right)$. Thus,
we have $f^{-1}(V) \subset i_{e} f^{-1}(V)$. Set $U=f^{-1}(V)$, then $U \in E O(X)$ containing x and $f(U) \subset V$. By Theorem 3, then we obtain f is e-continuous.

4. Properties of e-continuous functions

Theorem 5. Let X and Y be two spaces and A be an open subset of X. If $f: X \rightarrow Y$ is e-continuous, then $\left.f\right|_{A}: A \rightarrow Y$ is also e-continuous.

Proof. Let V be open in Y. Since f is e-continuous, then $\left(\left.f\right|_{A}\right)^{-1}(V)=$ $\left(\left.f\right|_{A}\right)^{-1}(V \cap f(A))=f^{-1}(V \cap f(A))=f^{-1}(V) \cap A \in E O(X)$. Therefore $\left.f\right|_{A}$ is e-continuous.

Definition 8. Let X be a space. Let $\left\{x_{\alpha}, \alpha \in \bigwedge\right\}$ be a net in X and $x \in X$. Then $\left\{x_{\alpha}, \alpha \in \Lambda\right\}$ is called e-converges to x in X, we denote $x_{\alpha} \rightarrow^{e} x$, if for every e-open set U containing x there exists a $\alpha_{0} \in \Lambda$ such that $x_{\alpha} \in U$ for every $\alpha \geq \alpha_{0}$.

Lemma 3. Let X be a space and $x \in X, A \subset X$. Then $x \in c_{e} A$ if and only if there exists a net consisting of elements of A and converging to x.

Proof. Necessity. Suppose $x \in c_{e} A$ and we denote by $\mathcal{U}(x)$ the set of all e-open set containing x directed by the relation \supset, i.e., define that $U_{1} \leq U_{2}$ if $U_{1} \supset U_{2}$. Thus, we can easily check that $x_{U} \rightarrow^{e} x$ for each $x_{U} \in U \cap A$.

Sufficiency. Let $x_{\alpha} \rightarrow^{e} x$ in A. For every e-open set U containing x there exists a $\alpha_{0} \in \bigwedge$ such that $x_{\alpha} \in U$ for every $\alpha \geq \alpha_{0}$. Thus, we have $U \cap A \neq \emptyset$. Hence $x \in c_{e} A$.

Theorem 6. A function $f: X \rightarrow Y$ is e-continuous if and only if for any $x \in X$, the net $\left\{x_{\alpha}, \alpha \in \Lambda\right\}$ e-converges to x in X, then the net $\left\{f\left(x_{\alpha}\right), \alpha \in \bigwedge\right\}$ converges to $f(x)$ in Y.

Proof. Necessity. Suppose a net $\left\{x_{\alpha}, \alpha \in \bigwedge\right\} e$-converges to $x \in X$ and a open subset V of Y containing $f(x)$. Then there exists a $\alpha_{0} \in \Lambda$ such that $x_{\alpha} \in U$ for every $\alpha \geq \alpha_{0}$. Since f is e-continuous, then there exists a $U \in E O(X)$ containing x such that $f(U) \subset V$ with Theorem 3. Thus, we have $f\left(x_{\alpha}\right) \in V$ for $\alpha \geq \alpha_{0}$. Hence $\left\{f\left(x_{\alpha}\right), \alpha \in \bigwedge\right\}$ converges to $f(x)$ in Y.

Sufficiency. By Theorem 3, we have $f\left(c_{e} A\right) \subset c f(A)$. By Lemma 3, then there exists a net converging to x in A for every $x \in c_{e} A$. By hypothesis, then there exists a net converges to $f(x)$ in $f(A)$. This implies the net e-converges to $f(x)$. Again by Lemma 3, we obtain $f(x) \in c_{e} f(A)$. Hence f is e-continuous.

Theorem 7. Let $f, g: X \rightarrow Y$ be two functions and let $h: X \rightarrow Y \times Y$ be a function, defined by $h(x)=(f(x), g(x))$ for each $x \in X$. Then f and g are e-continuous if and only if h is e-continuous.

Proof. Necessity. Let a net $\left\{x_{\alpha}, \alpha \in \bigwedge\right\} e$-converges to x for every $x \in X$. For every open neighborhood W of $h(x)$ there exist open subsets U and V in Y such that $(f(x), g(x))=h(x) \in U \times V \subset W$. Thus, we have $f(x) \in U$ and $g(x) \in V$. Since f is e-continuous, then there exists a $\alpha_{1} \in \Lambda$ such that $f\left(x_{\alpha}\right) \in U$ for every $\alpha \geq \alpha_{1}$ with Theorem 6. Similarly, there exists a $\alpha_{2} \in \bigwedge$ such that $g\left(x_{\alpha}\right) \in V$ for every $\alpha \geq \alpha_{2}$. Set $\alpha_{0}=$ $\max \left\{\alpha_{1}, \alpha_{2}\right\}$, then $f\left(x_{\alpha}\right) \in U$ and $g\left(x_{\alpha}\right) \in V$ for every $\alpha \geq \alpha_{0}$. Thus, we obtain $h\left(x_{\alpha}\right)=\left(f\left(x_{\alpha}\right), g\left(x_{\alpha}\right)\right) \in U \times V \subset W$. Hence h is e-continuous.

Sufficiency. Suppose $p_{Y}: Y \times Y \rightarrow Y$ be the natural projections and $f=p_{Y} \circ h$. Let U is a open subset of Y. Then $f^{-1}(V)=h^{-1}\left(p_{Y}^{-1}(V)\right)$. Since p_{Y} is continuous, then $p_{Y}^{-1}(V)$ is open set in $Y \times Y$. Since h is e-continuous, then $h^{-1}\left(p_{Y}^{-1}(V)\right.$ is e-open set in X. Hence f is e-continuous. Similarly, we can prove that g is e-continuous.

Definition 9. Let \mathcal{F} be a filter base in a space X and $x \in X$. Then \mathcal{F} is called e-converges to x, we denote $\mathcal{F} \rightarrow^{e} x$, if for every e-open set U containing x, there exists a $F \in \mathcal{F}$ such that $F \subset U$.

Theorem 8. A function $f: X \rightarrow Y$ is e-continuous if and only if the filter base $f(\mathcal{F})=\{f(A): A \in \mathcal{F}\}$ converges to $f(x)$ in Y for every filter base \mathcal{F} e-converges to x in X.

Proof. Necessity. Suppose $x \in X$ and V be an open set containing $f(x)$ in Y. Since f be e-continuous, then there exists a $U \in E O(X)$ containing x such that $f(U) \subset V$ with Theorem 3. Let $\mathcal{F} \rightarrow^{e} x$, then there exists a $F \in \mathcal{F}$ such that $F \subset U$ for every $U \in E O(X)$ containing x. Thus, we have $f(x) \in f(F) \subset f(U) \subset V$ in Y for every $f(F) \in f(\mathcal{F})$. Hence filter base $f(\mathcal{F})$ converges to $f(x)$.

Sufficiency. Suppose $x \in X$ and V be an open set containing $f(x)$ in Y. Let filter base $\mathcal{U}(x)$ be the set of all e-open set U containing x in X, then $\mathcal{U}(x) \rightarrow^{e} x$. By hypothesis, then $f(\mathcal{U}(x))$ converges to $f(x)$. Thus, we have $F \subset V$ for some a $F \in f(\mathcal{U}(x))$ and there exists a $U \in \mathcal{U}(x)$ such that $f(U) \subset V$. Hence f is e-continuous.

Theorem 9. If $f: X \rightarrow Y$ is e-continuous and $g: Y \rightarrow Z$ is continuous, then the composition $g \circ f: X \rightarrow Z$ is e-continuous.

Proof. Suppose $x \in X$ and V be an open neighborhood of $g(f(x))$. Since g is continuous, then there exists a $g^{-1}(V)$ open in Y containing $f(x)$. Since f is e-continuous, then there exists a $U \in E O(X)$ containing x such
that $f(U) \subset g^{-1}(V)$. Thus, we have $(g \circ f)(U) \subset\left(g \circ g^{-1}\right)(V) \subset V$. Hence $g \circ f$ is e-continuous.

Definition 10. A function $f: X \rightarrow Y$ is called e-irresolute if $f^{-1}(V) \in$ $E O(X)$ for each $V \in E O(Y)$.

Definition 11. A function $f: X \rightarrow Y$ is called e-open if the image of every e-open subset is e-open.

Every e-irresolute function is e-continuous but the converse is not true, and e-irresolute and openness are not relate to each other, as shown by the following Example 2 and Example 3.

Example 2. Let $X=Y=\{x, y, z\}, \tau=\{\emptyset,\{x\},\{y\},\{x, y\}, X\}$ and

$$
\sigma=\{\emptyset,\{x, y\}, Y\}
$$

Let $f: X \rightarrow Y$ be the identity function.
Since $\tau(x)=\{\{x\},\{x, y\}, X\}, \tau(y)=\{\{y\},\{x, y\}, X\}$ and $\tau(z)=\{X\}$, then $c_{\delta}\{x, y\}=\{X\}$ and $i_{\delta}\{x, y\}=\emptyset$. Thus we have $c i_{\delta}\{x, y\} \cup i_{\delta}\{x, y\}=$ $\{X\} \cup \emptyset=\{X\}$. Therefore for each open set $\{x, y\} \in \sigma$, then $f^{-1}(\{x, y\})=$ $\{x, y\} \subset i_{\delta} f^{-1}(\{x, y\}) \cup i c_{\delta} f^{-1}(\{x, y\})=\{X\}$ and $f^{-1}(\{x, y\})$ is e-open in X. Hence f is e-continuous.

Since $\sigma(x)=\sigma(y)=\{\{x, y\}, Y\}$ and $\sigma(z)=\{Y\}$, then $c_{\delta}\{x, z\}=\{Y\}$ and $i_{\delta}\{x, z\}=\emptyset$. Therefore $\{x, z\} \subset i c_{\delta}\{x, z\} \cup \operatorname{ci}_{\delta}\{x, z\}=\{Y\}$ and $\{x, z\}$ is e-open set in Y. But $f^{-1}(\{x, z\})=\{x, z\} \not \subset c i_{\delta} f^{-1}(\{x, z\}) \cup$ $i c_{\delta} f^{-1}(\{x, z\})=\emptyset \cup\{x\}=\{x\}$ is not e-open in X. Hence f is not e-irresolute.

Example 3. Let $X=Y=\{x, y, z\}, \tau=\{\emptyset,\{x\},\{x, z\}, X\}$ and

$$
\sigma=\{\emptyset,\{x\},\{y\},\{x, y\},\{y, z\}, Y\}
$$

Let $f: X \rightarrow Y$ be the identity function.
Since $\tau(x)=\{\{x\},\{x, z\}, X\}, \tau(y)=\{Y\}$ and $\tau(z)=\{\{x, z\}, X\}$, then $c_{\delta}\{x, y\}=c_{\delta}\{y, z\}=c_{\delta}\{z\}=c_{\delta}\{y\}=\{X\}$ and $i_{\delta}\{x, y\}=i_{\delta}\{y, z\}=$ $i_{\delta}\{z\}=i_{\delta}\{y\}=\emptyset$. Thus we have $i_{\delta}\{x, y\} \cup i c_{\delta}\{x, y\}=\{X\} \cup \emptyset=$ $\{X\}, c i_{\delta}\{y, z\} \cup i_{\delta}\{y, z\}=\{X\} \cup \emptyset=\{X\}, c i_{\delta}\{z\} \cup i c_{\delta}\{z\}=\{X\} \cup$ $\emptyset=\{X\}$ and $\operatorname{ci}_{\delta}\{y\} \cup i_{\delta}\{y\}=\{X\} \cup \emptyset=\{X\}$. Hence $E O(X)=$ $\tau \cup\{\{x, y\},\{y, z\},\{y\},\{z\}\}$.

Since $\sigma(x)=\{\{x\},\{x, y\}, Y\}, \sigma(y)=\{\{y\},\{x, y\},\{y, z\}, Y\}$ and $\sigma(z)=$ $\{\{y, z\}, Y\}$ then $c_{\delta}\{x, z\}=\{Y\}, c_{\delta}\{z\}=\{y, z\}$ and $i_{\delta}\{x, z\}=i_{\delta}\{z\}=\emptyset$. Thus we have $c i_{\delta}\{x, z\} \cup i_{\delta}\{x, z\}=\{Y\} \cup \emptyset=\{Y\}$ and $c i_{\delta}\{z\} \cup i c_{\delta}\{z\}=$ $\{y, z\} \cup \emptyset=\{y, z\}$. Hence $\{x, z\},\{z\} \in E O(Y)$.

Because $f(\{x\})=\{x\} \in \sigma, f(\{y\})=\{y\} \in \sigma, f(\{z\})=\{z\} \in E O(Y)$, $f(\{x, y\})=\{x, y\} \in \sigma, f(\{y, z\})=\{y, z\} \in \sigma$ and $f(\{x, z\})=\{x, z\} \in$ $E O(Y)$. Thus f is e-irresolute.

Let $\{x, z\} \in \tau$, then $f(\{x, z\})=\{x, z\} \notin \sigma$. Hence f is not open.
From Example 1, Example 2, Example 3, Example 4.4 [3] and Example 4.5 [3], we have the following relationships:

Theorem 10. Let $f: X \rightarrow Y$ be e-open and $g: Y \rightarrow Z$ be a function. If $g \circ f: X \rightarrow Z$ is e-continuous, then g is e-continuous.
Proof. Suppose B is open in Z. Since $g \circ f$ is e-continuous, then $(g \circ$ $f)^{-1}(B)=f^{-1}\left(g^{-1}(B)\right)$ is e-open. Since f is e-open, then $f\left(f^{-1}\left(g^{-1}(B)\right)\right)=$ $g^{-1}(B)$ is e-open. Hence g is e-continuous.

Theorem 11. Let $f: X \rightarrow Y$ be e-open and $g: Y \rightarrow Z$ be a function. If $g \circ f: X \rightarrow Z$ is e-continuous, then g is e-continuous.
Proof. Suppose $y \in Y$ and V is an open neighborhood of $g(y)$. Then there exists a $x \in X$ such that $f(x)=y$. Since $g \circ f$ is e-continuous, then there exists a $U \in E O(X)$ containing x such that $g(f(U))=(g \circ f)(U) \subset V$. Since f is e-open, then $f(U) \in E O(Y)$. Hence g is e-continuous.

Let $\left\{\left(X_{\alpha}, \tau_{\alpha}\right): \alpha \in \Lambda\right\}$ and $\left\{\left(Y_{\alpha}, \sigma_{\alpha}\right): \alpha \in \Lambda\right\}$ be two families of pairwise disjoint spaces, i.e., $X_{\alpha} \cap X_{\alpha^{\prime}}=Y_{\alpha} \cap Y_{\alpha^{\prime}}=\emptyset$ for $\alpha \neq \alpha^{\prime}$ and let $f_{\alpha}:\left(X_{\alpha}, \tau_{\alpha}\right) \rightarrow\left(Y_{\alpha}, \sigma_{\alpha}\right)$ be a function for each $\alpha \in \Lambda$.

Denote the product space $\prod_{\alpha \in \Lambda}\left\{\left(X_{\alpha}, \tau\right): \alpha \in \Lambda\right\}$ of $\prod_{\alpha \in \Lambda}\left\{\left(X_{\alpha}, \tau_{\alpha}\right): \alpha \in \Lambda\right\}$ by $\prod_{\alpha \in \Lambda} X_{\alpha}$ and $\prod_{\alpha \in \Lambda} f_{\alpha}: \prod_{\alpha \in \Lambda} X_{\alpha} \rightarrow \prod_{\alpha \in \Lambda} Y_{\alpha}$ denote the product function defined by $f\left(\left\{x_{\alpha}\right\}\right)=\left\{f\left(x_{\alpha}\right)\right\}$ for each $\left\{x_{\alpha}\right\} \in \prod_{\alpha \in \Lambda} X_{\alpha}$. Let $P_{\alpha}: \prod_{\alpha \in \Lambda} X_{\alpha} \rightarrow$ X_{α} and $Q_{\alpha}: \prod_{\alpha \in \Lambda} Y_{\alpha} \rightarrow Y_{\alpha}$ be the natural projections.

Theorem 12. The product function $\prod_{\alpha \in \Lambda} f_{\alpha}: \prod_{\alpha \in \Lambda} X_{\alpha} \rightarrow \prod_{\alpha \in \Lambda} Y_{\alpha}$ is e-continuous if and only if $f_{\alpha}: X_{\alpha} \rightarrow Y_{\alpha}$ is e-continuous for every $\alpha \in \Lambda$.

Proof. Denote $X=\prod_{\alpha \in \Lambda} X_{\alpha}, Y=\prod_{\alpha \in \Lambda} Y_{\alpha}$ and $f=\prod_{\alpha \in \Lambda} f_{\alpha}$.
Necessity. Suppose f is e-continuous and Q_{α} is continuous for any $\alpha \in \Lambda$. By Theorem 10, then $f_{\alpha} \circ P_{\alpha}=Q_{\alpha} \circ f$ is e-continuous. Since P_{α} is continuous surjection, then f_{α} is e-continuous with Theorem 11.

Sufficiency. Let $x=\left\{x_{\alpha}\right\} \in X$ and V be an open subset of Y containing $f(x)$, then there exists a basic open set $\prod_{\alpha \in \Lambda} W_{\alpha}$ such that $f(x) \in \prod_{\alpha \in \Lambda} W_{\alpha} \subset$ V and $\prod_{\alpha \in \bigwedge} W_{\alpha}=\prod_{i=1}^{n} W_{\alpha i} \times \prod_{\alpha \neq \alpha i} Y_{\alpha}$ where W_{α} be an open subset of Y for each $\alpha \in\left\{\alpha_{i}: 1<i<n\right\}$. Since f_{α} is e-continuous, then there exists a e-open set $U_{\alpha i}$ such that $f_{\alpha}\left(U_{\alpha}\right) \in W_{\alpha}$ for each $x_{\alpha i} \in X_{\alpha i}$ and for each $W_{\alpha i}$ be an open subset of Y_{α} containing $f\left(x_{\alpha i}\right)$. Put $U=\prod_{i \in n} U_{\alpha i} \times \prod_{\alpha \neq \alpha i} X_{\alpha}$, then U is e-open in X and $f(x) \in f_{\alpha}\left(\left\{x_{\alpha}\right\}\right) \in f(U) \subset \prod_{i \in n} f_{\alpha i}\left(U_{\alpha i}\right) \times \prod_{\alpha \neq \alpha i} Y_{\alpha}$. Let $\left\{y_{\alpha}\right\}=y \in$ $\prod_{i \in n} f_{\alpha i}\left(U_{\alpha i}\right) \times \prod_{\alpha \neq \alpha i} Y_{\alpha}$, then there exists a $x_{\alpha i}^{*} \in U_{\alpha i}$ such that $y_{\alpha i}=f_{\alpha}\left(x_{\alpha i}^{*}\right)$ for every $y_{\alpha i} \in \prod_{i \in n} f_{\alpha i}\left(U_{\alpha i}\right)$. Set $x^{*}=\left\{x_{\alpha}^{*}\right\}$, then $x^{*} \in \prod_{i \in n} U_{\alpha i} \times \prod_{\alpha \neq \alpha i} X_{\alpha}$. If $\alpha \neq \alpha i$, then there exists $y_{\alpha} \in Y_{\alpha}=f\left(X_{\alpha}\right)$ and $x_{\alpha}^{*} \in X_{\alpha}$ such that $y_{\alpha}=f_{\alpha}\left(x_{\alpha}^{*}\right)$. Thus, we have $\left\{y_{\alpha}\right\}=y \in \prod_{i=1}^{n} W_{\alpha i} \times \prod_{\alpha \neq \alpha i} Y_{\alpha} \subset f(U) \times Y \subset$ $f(U) \subset V$.

Hence f is e-continuous.
Denote the topological sum $\left(\bigcup X_{\alpha}, \tau\right)$ of $\left\{\left(X_{\alpha}, \tau_{\alpha}\right): \alpha \in \Lambda\right\}$ by $\bigoplus X_{\alpha}$ $\bigcup_{\alpha \in \Lambda}$
$\alpha \in \Lambda$ and the topological sum $\left(\bigcup_{\alpha \in \Lambda} Y_{\alpha}, \sigma\right)$ of $\left\{\left(Y_{\alpha}, \sigma_{\alpha}\right): \alpha \in \Lambda\right\}$ by $\bigoplus_{\alpha \in \Lambda} Y_{\alpha}$, where

$$
\tau=\left\{A \subset X: A \cap X_{\alpha} \in \tau_{\alpha} \text { for every } \alpha \in \bigwedge\right\}
$$

and

$$
\sigma=\left\{B \subset Y: B \cap Y_{\alpha} \in \sigma_{\alpha} \text { for every } \alpha \in \bigwedge\right\}
$$

A function $\bigoplus_{\alpha \in \Lambda} f_{\alpha}: \bigoplus_{\alpha \in \Lambda} X_{\alpha} \rightarrow \bigoplus_{\alpha \in \Lambda} Y_{\alpha}$, called a sum function of $\left\{f_{\alpha}: \alpha \in\right.$ $\Lambda\}$, is defined as follows: for every $x \in \bigcup_{\alpha \in \Lambda} X_{\alpha}$,

$$
\left(\bigoplus_{\alpha \in \Lambda} f_{\alpha}\right)(x)=f_{\beta}(x) \text { if there exists unique } \beta \in \bigwedge \text { such that } x \in X_{\beta}
$$

Theorem 13. The sum function $\bigoplus_{\alpha \in \Lambda} f_{\alpha}: \bigoplus_{\alpha \in \Lambda} X_{\alpha} \rightarrow \bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ is e-continuous if and only if $f_{\alpha}:\left(X_{\alpha}, \tau_{\alpha}\right) \rightarrow\left(Y_{\alpha}, \sigma_{\alpha}\right)$ is e-continuous for every $\alpha \in \Lambda$.

Proof. Denote $f=\bigoplus_{\alpha \in \Lambda} f_{\alpha}, X=\bigoplus_{\alpha \in \Lambda} X_{\alpha}, Y=\bigoplus_{\alpha \in \Lambda} Y_{\alpha}$.

Necessity. Suppose f is e-continuous. Then $\left.f\right|_{X_{\alpha}}=f_{\alpha}$ is e-continuous with Theorem 5.

Sufficiency. Let V be an open subset of Y. Then $V \cap Y_{\alpha} \in \sigma_{\alpha}$ for every $\alpha \in \bigwedge$. Let $x \in f^{-1}(V) \cap X_{\alpha}$, then $f(x) \in V$ and $f(x) \in Y_{\alpha}$. This implies that $f(x) \in f_{\alpha}(x)$. Thus, we have $f_{\alpha}(x) \in V$ and $f_{\alpha}(x) \in V \cap Y_{\alpha}$. Hence $x \in f_{\alpha}^{-1}\left(V \cap Y_{\alpha}\right)$. Conversely, $f_{\alpha}^{-1}\left(V \cap Y_{\alpha}\right) \subset f^{-1}(V) \cap X_{\alpha}$. Thus, we obtain $f^{-1}(V) \cap X_{\alpha}=f_{\alpha}^{-1}\left(V \cap Y_{\alpha}\right)$ for every $\alpha \in \bigwedge$. Since f_{α} is e-continuous, then $f^{-1}(V) \cap X_{\alpha}$ is e-open in X_{α}. Thus, we have $f^{-1}(V)$ is e-open in X. Hence f is e-continuous.

5. Separation axioms and graph properties

Definition 12. A space X is called
(a) Urysohn [8] if for each pair of distinct points x and y in X, there exist open subsets U and V such that $x \in U, y \in V$ and $c U \cap c V=\emptyset$.
(b) e- T_{1} if for each pair of distinct points x and y in X, there exist e-open subsets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.
(c) e-T T_{2} if for each pair of distinct points x and y in X, there exist e-open subsets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$.

Theorem 14. Let $f: X \rightarrow Y$ be a e-continuous injection. Then the following hold.
(a) If Y is a T_{1}-space, then X is $e-T_{1}$.
(b) If Y is a T_{2}-space, then X is $e-T_{2}$.
(c) If Y is Urysohn, then X is $e-T_{2}$.

Proof. (a) Let x and y be any distinct points in X. Since Y is a T_{1}-space, then there exist open subsets U and V of Y such that $f(x) \in U, f(y) \notin U$ and $f(x) \in V, f(y) \notin V$. Since f is e-continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are e-open in X such that $x \in f^{-1}(U), y \notin f^{-1}(U)$ and $x \notin f^{-1}(V), y \in f^{-1}(V)$. Hence X is $e-T_{1}$.
(b) Let x and y be any distinct points in X. Since Y is a T_{2}-space, then there exist open subsets U and V containing $f(x)$ and $f(y)$ in Y, respectively, such that $U \cap V=\emptyset$. Since f is e-continuous, then there exist e-open subsets A and B containing x and y, respectively, such that $f(A) \subset U$ and $f(B) \subset V$. This implies that $A \cap B=\emptyset$. Hence X is $e-T_{2}$.
(c) Let x and y be any distinct points in X. Since Y is Urysohn, then there exist open subsets U and V in Y such that $f(x) \in U, f(y) \in V$ and $c U \cap c V=\emptyset$. Since f is e-continuous, then there exist e-open subsets A and B containing x and y, respectively, such that $f(A) \subset U \subset c U$ and $f(B) \subset V \subset c V$. This implies that $A \cap B=\emptyset$. Hence X is $e-T_{2}$.

Theorem 15. Let $f, g: X \rightarrow Y$ be two functions. If f is continuous, g is e-continuous and Y is $e-T_{2}$, then $\{x \in X: f(x)=g(x)\}$ is e-closed in X.

Proof. Denote $A=\{x \in X: f(x)=g(x)\}$. Let $x \in X-A$. Then $f(x) \neq g(x)$. Since Y is an $e-T_{2}$ space, then there exist e-open subsets U and V containing $f(x)$ and $g(x)$ in Y, respectively, such that $U \cap V=\emptyset$. Since f is continuous and g is e-continuous, then $f^{-1}(U)$ is open and $g^{-1}(V)$ is e-open in X. This implies that $x \in f^{-1}(U)$ and $x \in g^{-1}(V)$. Put $W=$ $f^{-1}(U) \cap g^{-1}(V)$, then W is e-open in X with Proposition 2. Thus, we have $f(W) \cap g(W) \subset U \cap V=\emptyset$. This implies that $W \cap A=\emptyset$ and $x \in W \subset X-A$. Hence $X-A$ is e-open and A is e-closed in X.

Definition 13. A space X is called e-regular if for each e-closed subset F and each point $x \notin F$, there exist disjoint open subsets U and V such that $x \in U$ and $F \subset V$.

Theorem 16. Let a function $f: X \rightarrow Y$ be a e-irresolute surjection. If X is e-regular, then Y is e-regular.

Proof. Suppose $y \in Y$ and F is e-closed in Y such that $y \notin F$. Since f is e-irresolute surjection, then there exists a $x \in X$ such that $y=f(x)$ and $f^{-1}(F)$ is e-closed in X such that $x \notin f^{-1}(F)$. Since X is e-regular, then there exist disjoint open subsets U and V such that $x \in U$ and $f^{-1}(F) \subset V$. This implies $y=f(x) \in f(U) \subset Y-f(X-U)$. By Lemma 2, $F \subset$ $Y-f(X-V)$. Note that $Y-f(X-U)$ and $Y-f(X-V)$ are disjoint open subsets of Y. Hence Y is e-regular.

Definition 14. A space X is called e-normal if for every pair of disjoint e-closed subsets A and B, there exist disjoint open subsets U and V such that $A \subset U$ and $B \subset V$.

Theorem 17. Let a function $f: X \rightarrow Y$ be e-irresolute. If X is e-normal, then Y is also e-normal.

Proof. Let A and B be disjoint e-closed subsets of Y. Since f is e-irresolute, then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint e-closed subsets of X. Since X is e-normal, then there exist disjoint open subsets U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By Lemma $2, A \subset Y-f(X-U)$ and $B \subset Y-f(X-V)$. Note that $Y-f(X-U)$ and $Y-f(X-V)$ are disjoint open subsets of Y. Hence Y is e-normal.

Lemma 4. A space X is e-normal if and only if for each e-closed subset F and e-open subset U containing F, there exists an open set V such that $F \subset V \subset c_{e} V \subset U$.

Proof. Necessity. Let F be a e-closed set and U be a e-open set containing F. Then we have $X-U$ is e-closed and $F \cap(X-U)=\emptyset$. Since X is an e-normal space, then there exist disjoint open subsets U_{1}, V_{1} such that $F \subset U_{1}$ and $X-U \subset V_{1}$. This implies that $X-V_{1} \subset U$. Since $U_{1} \cap V_{1}=\emptyset$, then we obtain $c_{e} U_{1} \subset X-V_{1}$. Set $V=U_{1}$, then $c_{e} U_{1} \subset X-V_{1} \subset U$. Therefore, $F \subset V \subset c_{e} V \subset X-V_{1} \subset U$.

Sufficiency. The proof is obvious.
Below we give Urysohn's Lemma on e-normal spaces.
Theorem 18. A space X is e-normal if and only if for each pair of disjoint e-closed subsets A and B of X, there exists a continuous map f : $X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$.

Proof. Sufficiency. Suppose that for each pair of disjoint e-closed subsets A and B of X, there exists a continuous map $f: X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$. Put $U=f^{-1}([0,1 / 2)), V=f^{-1}((1 / 2,1])$, then U and V are disjoint open subsets of X such that $A \subset U$ and $B \subset V$. Hence X is e-normal.

Necessity. Suppose X is e-normal. For each pair of disjoint e-closed subsets A and B of $X, A \subset X-B$, where A is e-closed in X and $X-B$ is e-open in X, by Lemma 4 , there exists an open subset $U_{1 / 2}$ of X such that

$$
A \subset U_{1 / 2} \subset c_{e} U_{1 / 2} \subset X-B
$$

Since $A \subset U_{1 / 2}, A$ is e-closed in X and $U_{1 / 2}$ is e-open in X, then there exists an open subset $U_{1 / 4}$ of X such that $A \subset U_{1 / 4} \subset c_{e} U_{1 / 4} \subset U_{1 / 2}$ by Lemma 4. Since $c_{e} U_{1 / 2} \subset X-B, c_{e} U_{1 / 2}$ is e-closed in X and $X-B$ is e-open in X, then there exists an open subset $U_{3 / 4}$ of X such that $c_{e} U_{1 / 2} \subset$ $U_{3 / 4} \subset c_{e} U_{3 / 4} \subset X-B$ by Lemma 4. Thus, there exist two open subsets $U_{1 / 2}$ and $U_{3 / 4}$ of X such that

$$
A \subset U_{1 / 4} \subset c_{e} U_{1 / 4} \subset U_{1 / 2} \subset c_{e} U_{1 / 2} \subset U_{3 / 4} \subset c_{e} U_{3 / 4} \subset X-B
$$

We get a family $\left\{U_{m / 2^{n}}: 1 \leq m<2^{n}, n \in N\right\}$ of open subsets of X, denotes $\left\{U_{m / 2^{n}}: 1 \leq m<2^{n}, n \in N\right\}$ by $\left\{U_{\alpha}: \alpha \in \Gamma\right\} .\left\{U_{\alpha}: \alpha \in \Gamma\right\}$ satisfies the following condition:
(a) $A \subset U_{\alpha} \subset c_{e} U_{\alpha} \subset X-B$,
(b) if $\alpha<\alpha^{\prime}$, then $c_{e} U_{\alpha} \subset U_{\alpha^{\prime}}$.

We define $f: X \rightarrow[0,1]$ as follows:

$$
f(x)= \begin{cases}\inf \left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}, & \text { if } x \in U_{\alpha} \text { for some } \alpha \in \Gamma \\ 1, & \text { if } x \notin U_{\alpha} \text { for any } \alpha \in \Gamma\end{cases}
$$

For each $x \in A, x \in U_{\alpha}$ for any $\alpha \in \Gamma$ by (1), so $f(x)=\inf \{\alpha \in \Gamma: x \in$ $\left.U_{\alpha}\right\}=\inf \Gamma=0$. Thus, $f(A)=\{0\}$.

For each $x \in B, x \notin X-B$ implies $x \notin U_{\alpha}$ for any $\alpha \in \Gamma$ by (1), so $f(x)=1$. Thus, $f(B)=\{1\}$.

We have to show f is continuous.
For $x \in X$ and $\alpha \in \Gamma$, we have the following Claim:
Claim 1: if $f(x)<\alpha$, then $x \in U_{\alpha}$.
Suppose $f(x)<\alpha$, then $\inf \left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}<\alpha$, so there exists $\alpha_{1} \in\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$ such that $\alpha_{1}<\alpha$. By (2), $c_{e} U_{\alpha_{1}} \subset U_{\alpha}$. Notice that $x \in U_{\alpha_{1}}$. Hence $x \in U_{\alpha}$.

Claim 2: if $f(x)>\alpha$, then $x \notin c_{e} U_{\alpha}$.
Suppose $f(x)>\alpha$, then there exists $\alpha_{1} \in \Gamma$ such that $\alpha<\alpha_{1}<f(x)$. Notice that $\alpha_{1} \in\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$ implies $\alpha_{1} \geq \inf \left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}=f(x)$. Thus, $\alpha_{1} \notin\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$. So $x \notin U_{\alpha_{1}}$. By (2), $c_{e} U_{\alpha} \subset U_{\alpha_{1}}$. Hence $x \notin c_{e} U_{\alpha}$.

Claim 3: if $x \notin c_{e} U_{\alpha}$, then $f(x) \geq \alpha$.
Suppose $x \notin c_{e} U_{\alpha}$, we claim that $\alpha<\beta$ for any $\beta \in\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$. Otherwise, there exists $\beta \in\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$ such that $\alpha \geq \beta$. $x \notin c_{e} U_{\alpha}$ implies $\alpha \notin\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$. So $\alpha \neq \beta$. Thus $\alpha>\beta$. By (2), $c_{e} U_{\beta} \subset U_{\alpha}$. So $x \notin \beta$, contridiction. Therefore $\alpha<\beta$ for any $\beta \in\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$. Hence $\alpha \leq \inf \left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}=f(x)$.

For $x_{0} \in X$, if $f\left(x_{0}\right) \in(0,1)$, suppose V is an open neighborhood of $f\left(x_{0}\right)$ in $[0,1]$, then there exists $\varepsilon>0$ such that $\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right) \subset V \bigcap(0,1)$. Pick $\alpha^{\prime}, \alpha " \in \Gamma$ such that

$$
0<f\left(x_{0}\right)-\epsilon<\alpha^{\prime}<f\left(x_{0}\right)<\alpha "<f\left(x_{0}\right)+\epsilon<1
$$

By Claim 1 and Claim 2, $x_{0} \in U_{\alpha} ", x_{0} \notin c_{e} U_{\alpha}^{\prime}$. Put $U=U_{\alpha} "-c_{e} U_{\alpha}^{\prime}$, then U is an open neighborhood of x_{0} in X.

We will prove that $f(U) \subset\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$. if $y \in f(U)$, then $y=f(x)$ for some $x \in U . \quad x \in U$ implies that $x \in U_{\alpha} "$ and $x \notin c_{e} U_{\alpha}^{\prime}$. Since $x \in U_{\alpha}$ ", then $\alpha " \in\left\{\alpha \in \Gamma: x \in U_{\alpha}\right\}$. Thus, $\alpha " \geq \inf \{\alpha \in \Gamma: x \in$ $\left.U_{\alpha}\right\}=f(x)$. Notice that $\alpha "<f\left(x_{0}\right)+\epsilon$. Therefore $f(x)<f\left(x_{0}\right)+\epsilon$. Since $x \notin c_{e} U_{\alpha}^{\prime}$, then $f(x) \geq \alpha^{\prime}$ by Claim 3. Notice that $f\left(x_{0}\right)-\epsilon<\alpha^{\prime}$. Therefore $f(x)>f\left(x_{0}\right)-\epsilon$. Hence, $f(U) \subset\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$.

Therefore, $f(U) \subset V$. This implies f is continuous at x_{0}. If $f\left(x_{0}\right)=0$, or 1 , the proof that f is continuous at x_{0} is similar.

Theorem 19. Let $f: X \rightarrow Y$ be a function and $G: X \rightarrow X \times Y$ be the graph function of f, defined by $G(x)=(x, f(x))$ for each $x \in X$. Then f is e-continuous if and only if G is e-continuous.

Proof. Necessity. Let $x \in X$ and V be an open subset in $X \times Y$ containing $G(x)$. Then there exist open subsets $U_{1} \subset X$ and $W \subset Y$
such that $G(x)=(x, f(x)) \subset U_{1} \times W \subset V$. Since f is e-continuous, then there exists a $U_{2} \in E O(X)$ such that $f\left(U_{2}\right) \subset W$. Set $U=U_{1} \cap U_{2}$, then $U \in E O(X)$ with Proposition 2. Thus, we have $G(U) \subset V$. Hence G is e-continuous.

Sufficiency. Let $x \in X$ and V be an open subset of Y containing $f(x)$. Then $X \times V$ is an open subset containing $G(x)$. Since G is e-continuous, then there exists $U \in E O(X)$ such that $G(U) \subset X \times V$. Thus, we have $f(U) \subset V$. Hence f is e-continuous.

Definition 15. A graph $G(f)$ of a function $f: X \rightarrow Y$ is called strongly e-closed if for each $(x, y) \in(X \times Y) \backslash G(f)$, there exists a $U \in E O(X)$ containing x and an open subset V of Y containing y such that $(U \times V) \cap$ $G(f)=\emptyset$.

Theorem 20. Let $f: X \rightarrow Y$ be e-continuous and Y be $e-T_{2}$. Then $G(f)$ is e-strongly closed.

Proof. Let $(x, y) \in(X \times Y) \backslash G(f)$. Then $f(x) \neq y$. Since Y is $e-T_{2}$, then there exist disjoint e-open subsets V and W of Y such that $f(x) \in V$ and $y \in W$. Since f is e-continuous, then there exists a $U \in E O(X)$ such that $f(U) \subset V$. Thus, we have $f(U) \cap(W)=\emptyset$. Hence $(U \times W) \cap G(f)=\emptyset$ and $G(f)$ is strongly e-closed.

Theorem 21. Let $f: X \rightarrow Y$ be a e-continuous and injective. If $G(f)$ is strongly e-closed, then X is $e-T_{2}$.

Proof. Let $x, y \in X$ such that $x \neq y$. Since f is injective, then $f(x) \neq$ $f(y)$ and $(x, f(y)) \notin G(f)$. Since $G(f)$ is strongly e-closed, there exists a $U \in E O(X)$ and an open subset W of Y such that $(x, f(y)) \in U \times W$ and $(U \times W) \cap G(f)=\emptyset$. Thus, we have $f(U) \cap W=\emptyset$. Since f is e-continuous, then there exists a $y \in V \in E O(X)$ such that $f(V) \subset W$. This implies that $f(U) \cap f(V)=\emptyset$. Hence $U \cap V=\emptyset$ and X is $e-T_{2}$.

6. e-connectedness and covering properties

Definition 16. A space X is called e-connected if X is not the union of two disjoint nonempty e-open subsets.

Theorem 22. Let $f: X \rightarrow Y$ be e-continuous. If X is e-connected, then Y is connected.

Proof. Suppose Y is not a connected space. Then there exist nonempty disjoint open subsets A and B such that $Y=A \cup B$. Since f is e-continuous, then $f^{-1}(A)$ and $f^{-1}(B)$ are e-open subsets of X. Thus, we obtain $f^{-1}(A)$
and $f^{-1}(B)$ are nonempty disjoint subsets and $X=f^{-1}(A) \cup f^{-1}(B)$. This is contrary to the hypothesis that X is a e-connected space. Hence Y is connected.

Corollary 1. Let $f: X \rightarrow Y$ be e-irresolute. If X is e-connected, then Y is e-connected.

Definition 17. A space X is called e-Lindelöf (resp. e-compact) if every e-open cover of X has a countable (resp. finite) subcover.

Theorem 23. Let $f: X \rightarrow Y$ be e-continuous. If X is e-Lindelöf, then Y is Lindelöf.

Proof. Let $\left\{U_{\alpha}: \alpha \in \bigwedge\right\}$ is an open cover of Y. Since f is an e-continuous function, then $f^{-1}\left(\left\{U_{\alpha}: \alpha \in \Lambda\right\}\right)$ is an e-open cover of X. Since X is e-Lindelöf, then there exists a countable subcover $f^{-1}\left(\left\{U_{\alpha i}\right.\right.$: $\left.\left.U_{\alpha i} \in\left\{U_{\alpha}\right\}, 1<i<\infty, \alpha \in \bigwedge\right\}\right)$ in X. Thus, we have $\left\{U_{\alpha i}: U_{\alpha i} \in\left\{U_{\alpha}\right\}, 1<\right.$ $i<\infty, \alpha \in \bigwedge\}$ is a countable subcover of Y. Hence Y is Lindelöf.

Similarly, we can prove the following Theorem 24.
Theorem 24. Let $f: X \rightarrow Y$ be e-continuous. If X is e-compact, then Y is compact.

Acknowledgement. This paper is supported by the Innovation Project of Guangxi University for Nationalities (No. gxun-chx2011081).

References

[1] El-Atik A.A., A Study on some Types of Mappings on Topological Spaces, M. Sci. Thesis, Tanta Univ., Egypt, 1997.
[2] Andrijevic D., On b-open sets, Math. Vesnik, 48(1996), 59-64.
[3] Ekici E., On e-open sets, $\mathcal{D P}^{*}$-sets and $\mathcal{D P} \mathcal{E}^{*}$-sets and decompositions of continuity, Arab. J. Sci. Eng. Sect., 2(2008), 269-282.
[4] Hatir E., Noiri T., Decompositions of continuity and complete continuity, Acta. Math. Hungary, 113(4)(2006), 281-287.
[5] Hatir E., Noiri T., On δ - β-continuous functions, Chaos, Solitons and Fractals, 42(2009), 205-211.
[6] Park J.H., Lee Y., Son M.J., On δ-semiopen sets in topological space, J. Indian Acad. Math., 19(1997), 59-67.
[7] Veličko N.V., H-closed topological spaces, Am. Math. Soc. Transl., 2(78) (1968), 103-118.
[8] Engelking R., General Topology, Państwowe Wyd. Nauk., Warszawa, 1977.
[9] Lin S., Metric Spaces and Topology of Function Spaces, Chinese Scientific Publications, Beijing, 2004.
[10] Raychaudhurim S., Mukherjee M.N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.
[11] Noiri T., On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161166.
[12] Noiri T., Remarks on δ-semiopen sets and δ-preopen sets, Demonstratio Math., 36(2003), 1007-1020.

Tusheng Xie
College of Mathematics and Information Science
Guangii University
Nanning, Guangxi 530004, P.R. China
e-mail: tushengxie@126.com
Haining Li
College of Mathematics and Computer Science
Guangxi University for Nationalities
Nanning, Guangxi 530006, P.R. China
e-mail: hning100@126.com

Received on 07.11.2011 and, in revised form, on 23.03.2012.

