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1. Introduction

In recent years, many researchers introduced different forms of contin-
uous functions. El-Atik et al. [1] presented γ-open sets and γ-continuity.
Hatir and Noiri et al. [5] has introduced δ-β-open sets and δ-β-continuity.
Raychaudhurim and Mukherjee et al. [10] investigated δ-preopen sets and
δ-almost continuity. Noiri et al. [12] not only studied δ-semi-sets and δ-
semi-continuity but also discussed the relationship between δ-β-continuity
and δ-semi-continuity. In 2008, Ekici et al. [3] introduced the concept of
e-open sets and investigated e-continuity. The purpose of this paper is to
study further e-continuity. We will give characterizations and properties
of e-continuity. We also discuss the relationship between e-continuity and
other forms of continuity. In addition, Urysohn’s Lemma on e-normal spaces
is proved.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces with no
separation properties assumed, and maps are onto. If X is a space and
A ⊂ X, then the interior and the closure of A in X are denoted by iA, cA,
respectively.

Let fi : 2X −→ 2X be a operator (i = 1, 2, . . . , n) and A ⊂ X. We define

f1f2 · · · fnA = f1(f2(. . . (fn(A)) . . .)).
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Let X be a space, A ⊂ X and x ∈ X. A is called regular open (resp.
regular closed) if A = icA (resp. A = ciA). x is called a δ-cluster point of
A if A ∩ icU 6= ∅ for each open set U containing x. The set of all δ-cluster
points of A is called the δ-closure [7] of A and is denoted by cδA. A is called
δ-closed if cδA = A and the complements are called δ-open. The union of
all δ-open sets contained in A is called the δ-interior [7] of A and is denoted
by iδA. Obviously, A is δ-open if and only if A = iδA.

Let (X, τ) be a space and x ∈ X. Then τ(x) means the family of all open
neighborhoods of x. Put

τδ = {A : A is δ-open in X}.

It is not difficult that τδ forms a topology on X and τδ ⊂ τ .

Definition 1. Let X be a space and A ⊂ X. Then A is called
(a) e-open [3] if A ⊂ icδA ∪ ciδA.
(b) δ-preopen [10] if A ⊂ icδA.
(c) δ-semiopen [6] if A ⊂ ciδA.
(d) δ-β-open [4] if A ⊂ cicδA.
(e) b-open [2] (or γ-open [1]) if A ⊂ icA ∪ ciA.

The family of all e-open (resp. δ-preopen, δ-semiopen, δ-β-open, b-open)
subsets of X is denoted by EO(X) (resp. δPO(X), δSO(X), δβO(X),
BO(X)).

Definition 2. The complement of a e-open (resp. δ-preopen, δ-semiopen,
δ-β-open, b-open) set is called e-closed [3] (resp. δ-preclosed [10], δ-semiclo-
sed [6], δ-β-closed [4], b-closed [2]).

Definition 3. The union of all e-open (resp. δ-preopen, δ-semiopen,
δ-β-open, b-open) subsets of X contained in A is called the e-interior [3]
(resp. δ-preinterior [10], δ-semi-interior [12], δ-β-interior [4], b-interior
[2]) of A and is denoted by ieA (resp. piδA, siδA, βiδA, ibA).

Definition 4. The intersection of all e-closed (resp. δ-preclosed, δ-semi-
closed, δ-β-closed, b-closed) sets of X containing A is called the e-closure [3]
(resp. δ-preclosure [10], δ-semiclosure [12], δ-β-closure [4], b-closure [2]) of
A and is denoted by ceA (resp. pcδA, scδA, βcδA, cbA).

Lemma 1 ([4]). Let X be a space and A ⊂ X. Then
(a) piδA = A ∩ icδA; pcδA = A ∪ ciδA.
(b) siδA = A ∩ ciδA; scδA = A ∪ icδA.
(c) βiδA = A ∩ cicδA; βcδA = A ∪ iciδA.

Proposition 1 ([3]). Let X be a space and A ⊂ X. Then A is e-open
in X if and only if A =piδA∪siδA.
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Theorem 1 ([3]). Let X be a space and A ⊂ X. Then
(a) ieA = A ∩ (icδA ∪ ciδA).
(b) ceA = A ∪ (ciδA ∩ icδA).
(c) ie(X −A) = X − ceA.
(d) x ∈ ieA if and only if U ⊂ A for some U ∈ EO(X) containing x.
(e) A is e-open in X if and only if A = ieA.

Theorem 2 ([3]). Let X be a space. Then
(a) The union of any family of e-open subsets of X is e-open.
(b) The intersection of any family of e-closed subsets of X is e-closed.

Proposition 2. Let X be a space. Then the intersection of an open
subset and a e-open subset is e-open in X.

Proof. Suppose A ∈ EO(X) and B ∈ τ . By Proposition 1, then A∩B =
(piδA∪siδA) ∩ B = (piδA ∩ B) ∪ (siδA ∩ B) = (piδA ∩ iB) ∪ (siδA ∩ iB) ⊂
(piδA∩piδB)∪(siδA∩siδB) = (A∩ icδA∩B∩ icδB)∪(A∩ciδA∩B∩ciδB) ⊂
(icδA ∩ icδB) ∪ (ciδA ∩ ciδB) = icδ(A ∩ B) ∪ ciδ(A ∩ B). Hence A ∩ B is
e-open in X. �

Definition 5. A function f : X → Y is called δ-continuous [11] if
f−1(V ) is regular open in X for each V ∈ RO(Y ).

Definition 6. A function f : X → Y is called δ-β-continuous [5]
(resp. γ-continuous [1], δ-almost continuous [10], δ-semi-continuous [12])
if f−1(V ) is δ-β-open (resp. b-open, δ-preopen, δ-semiopen) in X for each
open set V in Y .

Lemma 2 ([9]). If f : X → Y is a function, A ⊂ X and B ⊂ Y , then
f−1(B) ⊂ A if and only if B ⊂ Y − f(X −A).

3. e-continuous functions

Definition 7 ([3]). A function f : (X, τ)→ (Y, σ) is called e-continuous
if f−1(V ) is e-open in X for each V ∈ σ.

Every δ-almost continuous and δ-semi-continuous is e-continuous but the
converse is not true. Every e-continuous is δ-β-continuous but the converse
is also not true, as shown by the following Example 4.4 [3], Example 4.5 [3]
and Example 1.

Example 1. Let X = Y = {x, y, z}, τ = {∅, {x}, {y}, {x, y}, X} and

σ = {∅, {x, z}, Y }.

Let f : X → Y be the identity function.
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Since τ(x) = {{x}, {x, y}, X}, τ(y) = {{y}, {x, y}, X} and τ(z) = {X},
then cδ{x, z} = {x, z} and iδ{x, z} = ∅. Thus we have cicδ{x, z} = ci{x, z} =
c{x} = {x, z} and ciδ{x, z} ∪ icδ{x, z} = ∅ ∪ {x} = {x}. Therefore for each
open subset {x, z} ∈ σ, then f−1({x, z}) = {x, z} ⊂ cicδf−1({x, z}) = {x, z}
and f−1({x, z}) is δ-β-open in X. Hence f is δ-β-continuous.

But f−1({x, z}) = {x, z} 6⊂ ciδf
−1({x, z}) ∪ icδf−1({x, z}) = ∅ ∪ {x} =

{x} is not e-open in X. Hence f is not e-continuous.

The following Theorem 3 gives some characterizations of e-continuity.

Theorem 3. Let f : X → Y be a function. Then the following are
equivalent.

(a) f is e-continuous;
(b) For each x ∈ X and each open neighborhood V of f(x), there exists

U ∈ EO(X) containing x such that f(U) ⊂ V ;
(c) f−1(V ) is e-closed in X for each closed subset V of Y ;
(d) ciδf

−1(B) ∩ icδf−1(B) ⊂ f−1(cB) for each B ⊂ Y ;
(e) f(ciδA ∩ icδA) ⊂ cf(A) for each A ⊂ X;
(f) f−1(iB) ⊂ ief−1(B) for each B ⊂ Y .

Proof. (a)⇔ (b), (a)⇔ (c) are obvious.
(c)⇒ (d). Let B ⊂ Y . By (3), then we obtain f−1(cB) is e-closed subset

of X. Hence ciδf
−1(B)∩ icδf−1(B) ⊂ ciδf−1(cB)∩ icδf−1(cB) ⊂ f−1(cB).

(d) ⇒ (c). For any closed subset V ⊂ Y . By (4), then we have
ciδf

−1(V ) ∩ icδf−1(V ) ⊂ f−1(cV ) = f−1(V ). Hence f−1(V ) is e-closed
in X.

(d) ⇒ (e). Put B = f(A). By (4), then we obtain ciδf
−1(f(A)) ∩

icδf
−1(f(A)) ⊂ f−1(cf(A)) and ciδA∩ icδA ⊂ f−1(cf(A)). Hence f(ciδA∩

icδA) ⊂ cf(A).
(e)⇒ (d) is obvious.
(c) ⇒ (f). Let B ⊂ Y , then Y − iB is closed subset in Y . By (3), then

we have f−1(Y − iB) ∈ EC(X) and ciδf
−1(Y − iB) ∩ icδf−1(Y − iB) ⊂

f−1(Y − iB). Thus, we obtain (X − (ciδf
−1(iB))) ∩ (X − (icδf

−1(iB))) ⊂
X − f−1(iB) and X − (ciδf

−1(iB) ∪ icδf−1(iB)) ⊂ X − f−1(iB). Hence
f−1(iB) ⊂ ciδf−1(iB)∪icδf−1(iB) ⊂ ciδf−1(B)∪icδf−1(B) and f−1(iB) ⊂
ief
−1(B).
(f)⇒ (c) is obvious. �

Theorem 4. Let f : X → Y be a function. If if(A) ⊂ f(ieA) for each
A ⊂ X, then f is e-continuous.

Proof. Suppose that x ∈ X and V is an open neighborhood of f(x).
Since if(A) ⊂ f(ieA), then V = iV = if(f−1(V )) ⊂ f(ief

−1(V )). Thus,
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we have f−1(V ) ⊂ ief−1(V ). Set U = f−1(V ), then U ∈ EO(X) containing
x and f(U) ⊂ V . By Theorem 3, then we obtain f is e-continuous. �

4. Properties of e-continuous functions

Theorem 5. Let X and Y be two spaces and A be an open subset of X.
If f : X → Y is e-continuous, then f |A : A→ Y is also e-continuous.

Proof. Let V be open in Y . Since f is e-continuous, then (f |A)−1(V ) =
(f |A)−1(V ∩ f(A)) = f−1(V ∩ f(A)) = f−1(V ) ∩ A ∈ EO(X). Therefore
f |A is e-continuous. �

Definition 8. Let X be a space. Let {xα, α ∈
∧
} be a net in X and

x ∈ X. Then {xα, α ∈
∧
} is called e-converges to x in X, we denote

xα →e x, if for every e-open set U containing x there exists a α0 ∈
∧

such
that xα ∈ U for every α ≥ α0.

Lemma 3. Let X be a space and x ∈ X,A ⊂ X. Then x ∈ ceA if and
only if there exists a net consisting of elements of A and converging to x.

Proof. Necessity. Suppose x ∈ ceA and we denote by U(x) the set of all
e-open set containing x directed by the relation ⊃, i.e., define that U1 ≤ U2

if U1 ⊃ U2. Thus, we can easily check that xU →e x for each xU ∈ U ∩A.
Sufficiency. Let xα →e x in A. For every e-open set U containing x

there exists a α0 ∈
∧

such that xα ∈ U for every α ≥ α0. Thus, we have
U ∩A 6= ∅. Hence x ∈ ceA. �

Theorem 6. A function f : X → Y is e-continuous if and only if
for any x ∈ X, the net {xα, α ∈

∧
} e-converges to x in X, then the net

{f(xα), α ∈
∧
} converges to f(x) in Y .

Proof. Necessity. Suppose a net {xα, α ∈
∧
} e-converges to x ∈ X and

a open subset V of Y containing f(x). Then there exists a α0 ∈
∧

such
that xα ∈ U for every α ≥ α0. Since f is e-continuous, then there exists a
U ∈ EO(X) containing x such that f(U) ⊂ V with Theorem 3. Thus, we
have f(xα) ∈ V for α ≥ α0. Hence {f(xα), α ∈

∧
} converges to f(x) in Y .

Sufficiency. By Theorem 3, we have f(ceA) ⊂ cf(A). By Lemma 3, then
there exists a net converging to x in A for every x ∈ ceA. By hypothesis,
then there exists a net converges to f(x) in f(A). This implies the net
e-converges to f(x). Again by Lemma 3, we obtain f(x) ∈ cef(A). Hence
f is e-continuous. �
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Theorem 7. Let f, g : X → Y be two functions and let h : X → Y × Y
be a function, defined by h(x) = (f(x), g(x)) for each x ∈ X. Then f and g
are e-continuous if and only if h is e-continuous.

Proof. Necessity. Let a net {xα, α ∈
∧
} e-converges to x for every

x ∈ X. For every open neighborhood W of h(x) there exist open subsets
U and V in Y such that (f(x), g(x)) = h(x) ∈ U × V ⊂ W . Thus, we
have f(x) ∈ U and g(x) ∈ V . Since f is e-continuous, then there exists a
α1 ∈

∧
such that f(xα) ∈ U for every α ≥ α1 with Theorem 6. Similarly,

there exists a α2 ∈
∧

such that g(xα) ∈ V for every α ≥ α2. Set α0 =
max{α1, α2}, then f(xα) ∈ U and g(xα) ∈ V for every α ≥ α0. Thus, we
obtain h(xα) = (f(xα), g(xα)) ∈ U × V ⊂W . Hence h is e-continuous.

Sufficiency. Suppose pY : Y × Y → Y be the natural projections and
f = pY ◦h. Let U is a open subset of Y . Then f−1(V ) = h−1(p−1Y (V )). Since
pY is continuous, then p−1Y (V ) is open set in Y ×Y . Since h is e-continuous,
then h−1(p−1Y (V ) is e-open set in X. Hence f is e-continuous. Similarly, we
can prove that g is e-continuous. �

Definition 9. Let F be a filter base in a space X and x ∈ X. Then
F is called e-converges to x, we denote F →e x, if for every e-open set U
containing x, there exists a F ∈ F such that F ⊂ U .

Theorem 8. A function f : X → Y is e-continuous if and only if the
filter base f(F) = {f(A) : A ∈ F} converges to f(x) in Y for every filter
base F e-converges to x in X.

Proof. Necessity. Suppose x ∈ X and V be an open set containing f(x)
in Y . Since f be e-continuous, then there exists a U ∈ EO(X) containing
x such that f(U) ⊂ V with Theorem 3. Let F →e x, then there exists a
F ∈ F such that F ⊂ U for every U ∈ EO(X) containing x. Thus, we have
f(x) ∈ f(F ) ⊂ f(U) ⊂ V in Y for every f(F ) ∈ f(F). Hence filter base
f(F) converges to f(x).

Sufficiency. Suppose x ∈ X and V be an open set containing f(x) in
Y . Let filter base U(x) be the set of all e-open set U containing x in X,
then U(x)→e x. By hypothesis, then f(U(x)) converges to f(x). Thus, we
have F ⊂ V for some a F ∈ f(U(x)) and there exists a U ∈ U(x) such that
f(U) ⊂ V . Hence f is e-continuous. �

Theorem 9. If f : X → Y is e-continuous and g : Y → Z is continuous,
then the composition g ◦ f : X → Z is e-continuous.

Proof. Suppose x ∈ X and V be an open neighborhood of g(f(x)).
Since g is continuous, then there exists a g−1(V ) open in Y containing f(x).
Since f is e-continuous, then there exists a U ∈ EO(X) containing x such
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that f(U) ⊂ g−1(V ). Thus, we have (g ◦ f)(U) ⊂ (g ◦ g−1)(V ) ⊂ V . Hence
g ◦ f is e-continuous. �

Definition 10. A function f : X → Y is called e-irresolute if f−1(V ) ∈
EO(X) for each V ∈ EO(Y ).

Definition 11. A function f : X → Y is called e-open if the image of
every e-open subset is e-open.

Every e-irresolute function is e-continuous but the converse is not true,
and e-irresolute and openness are not relate to each other, as shown by the
following Example 2 and Example 3.

Example 2. Let X = Y = {x, y, z}, τ = {∅, {x}, {y}, {x, y}, X} and

σ = {∅, {x, y}, Y }.

Let f : X → Y be the identity function.
Since τ(x) = {{x}, {x, y}, X}, τ(y) = {{y}, {x, y}, X} and τ(z) = {X},

then cδ{x, y} = {X} and iδ{x, y} = ∅. Thus we have ciδ{x, y} ∪ icδ{x, y} =
{X} ∪ ∅ = {X}. Therefore for each open set {x, y} ∈ σ, then f−1({x, y}) =
{x, y} ⊂ iδf

−1({x, y}) ∪ icδf−1({x, y}) = {X} and f−1({x, y}) is e-open in
X. Hence f is e-continuous.

Since σ(x) = σ(y) = {{x, y}, Y } and σ(z) = {Y }, then cδ{x, z} = {Y }
and iδ{x, z} = ∅. Therefore {x, z} ⊂ icδ{x, z} ∪ ciδ{x, z} = {Y } and
{x, z} is e-open set in Y . But f−1({x, z}) = {x, z} 6⊂ ciδf

−1({x, z}) ∪
icδf

−1({x, z}) = ∅ ∪ {x} = {x} is not e-open in X. Hence f is not
e-irresolute.

Example 3. Let X = Y = {x, y, z}, τ = {∅, {x}, {x, z}, X} and

σ = {∅, {x}, {y}, {x, y}, {y, z}, Y }.

Let f : X → Y be the identity function.
Since τ(x) = {{x}, {x, z}, X}, τ(y) = {Y } and τ(z) = {{x, z}, X}, then

cδ{x, y} = cδ{y, z} = cδ{z} = cδ{y} = {X} and iδ{x, y} = iδ{y, z} =
iδ{z} = iδ{y} = ∅. Thus we have ciδ{x, y} ∪ icδ{x, y} = {X} ∪ ∅ =
{X}, ciδ{y, z} ∪ icδ{y, z} = {X} ∪ ∅ = {X}, ciδ{z} ∪ icδ{z} = {X} ∪
∅ = {X} and ciδ{y} ∪ icδ{y} = {X} ∪ ∅ = {X}. Hence EO(X) =
τ ∪ {{x, y}, {y, z}, {y}, {z}}.

Since σ(x) = {{x}, {x, y}, Y }, σ(y) = {{y}, {x, y}, {y, z}, Y } and σ(z) =
{{y, z}, Y } then cδ{x, z} = {Y }, cδ{z} = {y, z} and iδ{x, z} = iδ{z} = ∅.
Thus we have ciδ{x, z} ∪ icδ{x, z} = {Y } ∪ ∅ = {Y } and ciδ{z} ∪ icδ{z} =
{y, z} ∪ ∅ = {y, z}. Hence {x, z}, {z} ∈ EO(Y ).
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Because f({x}) = {x} ∈ σ, f({y}) = {y} ∈ σ, f({z}) = {z} ∈ EO(Y ),
f({x, y}) = {x, y} ∈ σ, f({y, z}) = {y, z} ∈ σ and f({x, z}) = {x, z} ∈
EO(Y ). Thus f is e-irresolute.

Let {x, z} ∈ τ , then f({x, z}) = {x, z} 6∈ σ. Hence f is not open.

From Example 1, Example 2, Example 3, Example 4.4 [3] and Exam-
ple 4.5 [3], we have the following relationships:

Theorem 10. Let f : X → Y be e-open and g : Y → Z be a function.
If g ◦ f : X → Z is e-continuous, then g is e-continuous.

Proof. Suppose B is open in Z. Since g ◦ f is e-continuous, then (g ◦
f)−1(B) = f−1(g−1(B)) is e-open. Since f is e-open, then f(f−1(g−1(B))) =
g−1(B) is e-open. Hence g is e-continuous. �

Theorem 11. Let f : X → Y be e-open and g : Y → Z be a function.
If g ◦ f : X → Z is e-continuous, then g is e-continuous.

Proof. Suppose y ∈ Y and V is an open neighborhood of g(y). Then there
exists a x ∈ X such that f(x) = y. Since g ◦ f is e-continuous, then there
exists a U ∈ EO(X) containing x such that g(f(U)) = (g ◦ f)(U) ⊂ V .
Since f is e-open, then f(U) ∈ EO(Y ). Hence g is e-continuous. �

Let {(Xα, τα) : α ∈
∧
} and {(Yα, σα) : α ∈

∧
} be two families of

pairwise disjoint spaces, i.e., Xα ∩ Xα′ = Yα ∩ Yα′ = ∅ for α 6= α′ and let
fα : (Xα, τα)→ (Yα, σα) be a function for each α ∈

∧
.

Denote the product space
∏
α∈

∧{(Xα, τ) : α ∈ Λ} of
∏
α∈

∧{(Xα, τα) : α ∈ Λ}

by
∏
α∈

∧Xα and
∏
α∈

∧ fα :
∏
α∈

∧Xα →
∏
α∈

∧Yα denote the product function

defined by f({xα}) = {f(xα)} for each {xα} ∈
∏
α∈

∧Xα. Let Pα :
∏
α∈

∧Xα →

Xα and Qα :
∏
α∈

∧Yα → Yα be the natural projections.

Theorem 12. The product function
∏
α∈

∧ fα :
∏
α∈

∧Xα →
∏
α∈

∧Yα is

e-continuous if and only if fα : Xα → Yα is e-continuous for every α ∈
∧

.
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Proof. Denote X =
∏
α∈

∧Xα, Y =
∏
α∈

∧Yα and f =
∏
α∈

∧ fα.

Necessity. Suppose f is e-continuous and Qα is continuous for any α ∈
∧

.
By Theorem 10, then fα◦Pα = Qα◦f is e-continuous. Since Pα is continuous
surjection, then fα is e-continuous with Theorem 11.

Sufficiency. Let x = {xα} ∈ X and V be an open subset of Y containing
f(x), then there exists a basic open set

∏
α∈

∧Wα such that f(x) ∈
∏
α∈

∧Wα ⊂

V and
∏
α∈

∧Wα =
n∏
i=1

Wαi×
∏
α 6=αi

Yα where Wα be an open subset of Y for each

α ∈ {αi : 1 < i < n}. Since fα is e-continuous, then there exists a e-open set
Uαi such that fα(Uα) ∈Wα for each xαi ∈ Xαi and for each Wαi be an open
subset of Yα containing f(xαi). Put U =

∏
i∈n

Uαi×
∏
α 6=αi

Xα, then U is e-open

in X and f(x) ∈ fα({xα}) ∈ f(U) ⊂
∏
i∈n

fαi(Uαi)×
∏
α 6=αi

Yα. Let {yα} = y ∈∏
i∈n

fαi(Uαi)×
∏
α 6=αi

Yα, then there exists a x∗αi ∈ Uαi such that yαi = fα(x∗αi)

for every yαi ∈
∏
i∈n

fαi(Uαi). Set x∗ = {x∗α}, then x∗ ∈
∏
i∈n

Uαi ×
∏
α 6=αi

Xα.

If α 6= αi, then there exists yα ∈ Yα = f(Xα) and x∗α ∈ Xα such that

yα = fα(x∗α). Thus, we have {yα} = y ∈
n∏
i=1

Wαi ×
∏
α 6=αi

Yα ⊂ f(U) × Y ⊂

f(U) ⊂ V .
Hence f is e-continuous. �

Denote the topological sum (
⋃
α∈

∧Xα, τ) of {(Xα, τα) : α ∈
∧
} by

⊕
α∈

∧Xα

and the topological sum (
⋃
α∈

∧Yα, σ) of {(Yα, σα) : α ∈
∧
} by

⊕
α∈

∧Yα, where

τ = {A ⊂ X : A ∩Xα ∈ τα for every α ∈
∧
},

and
σ = {B ⊂ Y : B ∩ Yα ∈ σα for every α ∈

∧
},

A function
⊕
α∈

∧ fα :
⊕
α∈

∧Xα →
⊕
α∈

∧Yα, called a sum function of {fα : α ∈

Λ}, is defined as follows: for every x ∈
⋃
α∈

∧Xα,

(
⊕
α∈

∧ fα)(x) = fβ(x) if there exists unique β ∈
∧

such that x ∈ Xβ.

Theorem 13. The sum function
⊕
α∈

∧ fα :
⊕
α∈

∧Xα →
⊕
α∈

∧Yα is e-continu-

ous if and only if fα : (Xα, τα)→ (Yα, σα) is e-continuous for every α ∈
∧

.

Proof. Denote f =
⊕
α∈

∧ fα, X =
⊕
α∈

∧Xα, Y =
⊕
α∈

∧Yα.
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Necessity. Suppose f is e-continuous. Then f |Xα = fα is e-continuous
with Theorem 5.

Sufficiency. Let V be an open subset of Y . Then V ∩ Yα ∈ σα for every
α ∈

∧
. Let x ∈ f−1(V ) ∩Xα, then f(x) ∈ V and f(x) ∈ Yα. This implies

that f(x) ∈ fα(x). Thus, we have fα(x) ∈ V and fα(x) ∈ V ∩ Yα. Hence
x ∈ f−1α (V ∩Yα). Conversely, f−1α (V ∩Yα) ⊂ f−1(V )∩Xα. Thus, we obtain
f−1(V )∩Xα = f−1α (V ∩Yα) for every α ∈

∧
. Since fα is e-continuous, then

f−1(V )∩Xα is e-open in Xα. Thus, we have f−1(V ) is e-open in X. Hence
f is e-continuous. �

5. Separation axioms and graph properties

Definition 12. A space X is called
(a) Urysohn [8] if for each pair of distinct points x and y in X, there

exist open subsets U and V such that x ∈ U , y ∈ V and cU ∩ cV = ∅.
(b) e-T1 if for each pair of distinct points x and y in X, there exist

e-open subsets U and V containing x and y, respectively, such that y 6∈ U
and x 6∈ V .

(c) e-T2 if for each pair of distinct points x and y in X, there exist e-open
subsets U and V such that x ∈ U, y ∈ V and U ∩ V = ∅.

Theorem 14. Let f : X → Y be a e-continuous injection. Then the
following hold.

(a) If Y is a T1-space, then X is e-T1.
(b) If Y is a T2-space, then X is e-T2.
(c) If Y is Urysohn, then X is e-T2.

Proof. (a) Let x and y be any distinct points in X. Since Y is a T1-space,
then there exist open subsets U and V of Y such that f(x) ∈ U, f(y) 6∈ U and
f(x) ∈ V, f(y) 6∈ V . Since f is e-continuous, then f−1(U) and f−1(V ) are
e-open in X such that x ∈ f−1(U), y 6∈ f−1(U) and x 6∈ f−1(V ), y ∈ f−1(V ).
Hence X is e-T1.

(b) Let x and y be any distinct points in X. Since Y is a T2-space,
then there exist open subsets U and V containing f(x) and f(y) in Y ,
respectively, such that U ∩ V = ∅. Since f is e-continuous, then there exist
e-open subsets A and B containing x and y, respectively, such that f(A) ⊂ U
and f(B) ⊂ V . This implies that A ∩B = ∅. Hence X is e-T2.

(c) Let x and y be any distinct points in X. Since Y is Urysohn, then
there exist open subsets U and V in Y such that f(x) ∈ U , f(y) ∈ V and
cU ∩ cV = ∅. Since f is e-continuous, then there exist e-open subsets A
and B containing x and y, respectively, such that f(A) ⊂ U ⊂ cU and
f(B) ⊂ V ⊂ cV . This implies that A ∩B = ∅. Hence X is e-T2. �
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Theorem 15. Let f, g : X → Y be two functions. If f is continuous, g
is e-continuous and Y is e-T2, then {x ∈ X : f(x) = g(x)} is e-closed in X.

Proof. Denote A = {x ∈ X : f(x) = g(x)}. Let x ∈ X − A. Then
f(x) 6= g(x). Since Y is an e-T2 space, then there exist e-open subsets U
and V containing f(x) and g(x) in Y , respectively, such that U ∩ V = ∅.
Since f is continuous and g is e-continuous, then f−1(U) is open and g−1(V )
is e-open in X. This implies that x ∈ f−1(U) and x ∈ g−1(V ). Put W =
f−1(U)∩g−1(V ), then W is e-open in X with Proposition 2. Thus, we have
f(W )∩g(W ) ⊂ U∩V = ∅. This implies that W∩A = ∅ and x ∈W ⊂ X−A.
Hence X −A is e-open and A is e-closed in X. �

Definition 13. A space X is called e-regular if for each e-closed subset
F and each point x 6∈ F , there exist disjoint open subsets U and V such that
x ∈ U and F ⊂ V .

Theorem 16. Let a function f : X → Y be a e-irresolute surjection. If
X is e-regular, then Y is e-regular.

Proof. Suppose y ∈ Y and F is e-closed in Y such that y 6∈ F . Since f
is e-irresolute surjection, then there exists a x ∈ X such that y = f(x) and
f−1(F ) is e-closed in X such that x 6∈ f−1(F ). Since X is e-regular, then
there exist disjoint open subsets U and V such that x ∈ U and f−1(F ) ⊂ V .
This implies y = f(x) ∈ f(U) ⊂ Y − f(X − U). By Lemma 2, F ⊂
Y − f(X − V ). Note that Y − f(X − U) and Y − f(X − V ) are disjoint
open subsets of Y . Hence Y is e-regular. �

Definition 14. A space X is called e-normal if for every pair of disjoint
e-closed subsets A and B, there exist disjoint open subsets U and V such
that A ⊂ U and B ⊂ V .

Theorem 17. Let a function f : X → Y be e-irresolute. If X is
e-normal, then Y is also e-normal.

Proof. Let A and B be disjoint e-closed subsets of Y . Since f is
e-irresolute, then f−1(A) and f−1(B) are disjoint e-closed subsets of X.
Since X is e-normal, then there exist disjoint open subsets U and V in X
such that f−1(A) ⊂ U and f−1(B) ⊂ V . By Lemma 2, A ⊂ Y − f(X − U)
and B ⊂ Y − f(X − V ). Note that Y − f(X − U) and Y − f(X − V ) are
disjoint open subsets of Y . Hence Y is e-normal. �

Lemma 4. A space X is e-normal if and only if for each e-closed subset
F and e-open subset U containing F , there exists an open set V such that
F ⊂ V ⊂ ceV ⊂ U .
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Proof. Necessity. Let F be a e-closed set and U be a e-open set con-
taining F . Then we have X − U is e-closed and F ∩ (X − U) = ∅. Since X
is an e-normal space, then there exist disjoint open subsets U1, V1 such that
F ⊂ U1 and X −U ⊂ V1. This implies that X − V1 ⊂ U . Since U1 ∩ V1 = ∅,
then we obtain ceU1 ⊂ X − V1. Set V = U1, then ceU1 ⊂ X − V1 ⊂ U .
Therefore, F ⊂ V ⊂ ceV ⊂ X − V1 ⊂ U .

Sufficiency. The proof is obvious. �

Below we give Urysohn’s Lemma on e-normal spaces.

Theorem 18. A space X is e-normal if and only if for each pair of
disjoint e-closed subsets A and B of X, there exists a continuous map f :
X → [0, 1] such that f(A) = {0} and f(B) = {1}.

Proof. Sufficiency. Suppose that for each pair of disjoint e-closed subsets
A and B of X, there exists a continuous map f : X → [0, 1] such that
f(A) = {0} and f(B) = {1}. Put U = f−1([0, 1/2)), V = f−1((1/2, 1]),
then U and V are disjoint open subsets of X such that A ⊂ U and B ⊂ V .
Hence X is e-normal.

Necessity. Suppose X is e-normal. For each pair of disjoint e-closed
subsets A and B of X, A ⊂ X −B, where A is e-closed in X and X −B is
e-open in X, by Lemma 4, there exists an open subset U1/2 of X such that

A ⊂ U1/2 ⊂ ceU1/2 ⊂ X −B.

Since A ⊂ U1/2, A is e-closed in X and U1/2 is e-open in X, then there
exists an open subset U1/4 of X such that A ⊂ U1/4 ⊂ ceU1/4 ⊂ U1/2 by
Lemma 4. Since ceU1/2 ⊂ X − B, ceU1/2 is e-closed in X and X − B is
e-open in X, then there exists an open subset U3/4 of X such that ceU1/2 ⊂
U3/4 ⊂ ceU3/4 ⊂ X − B by Lemma 4. Thus, there exist two open subsets
U1/2 and U3/4 of X such that

A ⊂ U1/4 ⊂ ceU1/4 ⊂ U1/2 ⊂ ceU1/2 ⊂ U3/4 ⊂ ceU3/4 ⊂ X −B.

We get a family {Um/2n : 1 ≤ m < 2n, n ∈ N} of open subsets of X,
denotes {Um/2n : 1 ≤ m < 2n, n ∈ N} by {Uα : α ∈ Γ}. {Uα : α ∈ Γ}
satisfies the following condition:

(a) A ⊂ Uα ⊂ ceUα ⊂ X −B,
(b) if α < α′, then ceUα ⊂ Uα′ .
We define f : X → [0, 1] as follows:

f(x) =

{
inf{α ∈ Γ : x ∈ Uα}, if x ∈ Uα for some α ∈ Γ,
1, if x 6∈ Uα for any α ∈ Γ.

For each x ∈ A, x ∈ Uα for any α ∈ Γ by (1), so f(x) = inf{α ∈ Γ : x ∈
Uα} = inf Γ = 0. Thus, f(A) = {0}.
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For each x ∈ B, x 6∈ X − B implies x 6∈ Uα for any α ∈ Γ by (1), so
f(x) = 1. Thus, f(B) = {1}.

We have to show f is continuous.
For x ∈ X and α ∈ Γ, we have the following Claim:

Claim 1: if f(x) < α , then x ∈ Uα.
Suppose f(x) < α, then inf{α ∈ Γ : x ∈ Uα} < α, so there exists

α1 ∈ {α ∈ Γ : x ∈ Uα} such that α1 < α. By (2), ceUα1 ⊂ Uα. Notice that
x ∈ Uα1 . Hence x ∈ Uα.

Claim 2: if f(x) > α, then x 6∈ ceUα.
Suppose f(x) > α, then there exists α1 ∈ Γ such that α < α1 < f(x).

Notice that α1 ∈ {α ∈ Γ : x ∈ Uα} implies α1 ≥ inf{α ∈ Γ : x ∈ Uα} = f(x).
Thus, α1 6∈ {α ∈ Γ : x ∈ Uα}. So x 6∈ Uα1 . By (2), ceUα ⊂ Uα1 . Hence
x 6∈ ceUα.

Claim 3: if x 6∈ ceUα, then f(x) ≥ α.
Suppose x 6∈ ceUα, we claim that α < β for any β ∈ {α ∈ Γ : x ∈ Uα}.

Otherwise, there exists β ∈ {α ∈ Γ : x ∈ Uα} such that α ≥ β. x 6∈ ceUα
implies α 6∈ {α ∈ Γ : x ∈ Uα}. So α 6= β. Thus α > β. By (2), ceUβ ⊂ Uα.
So x 6∈ β, contridiction. Therefore α < β for any β ∈ {α ∈ Γ : x ∈ Uα}.
Hence α ≤ inf{α ∈ Γ : x ∈ Uα} = f(x).

For x0 ∈ X, if f(x0) ∈ (0, 1), suppose V is an open neighborhood of f(x0)
in [0, 1], then there exists ε > 0 such that (f(x0)− ε, f(x0) + ε) ⊂ V

⋂
(0, 1).

Pick α′, α” ∈ Γ such that

0 < f(x0)− ε < α′ < f(x0) < α” < f(x0) + ε < 1.

By Claim 1 and Claim 2, x0 ∈ Uα”, x0 6∈ ceU ′α. Put U = Uα” − ceU ′α,
then U is an open neighborhood of x0 in X.

We will prove that f(U) ⊂ (f(x0) − ε, f(x0) + ε). if y ∈ f(U), then
y = f(x) for some x ∈ U . x ∈ U implies that x ∈ Uα” and x 6∈ ceU

′
α.

Since x ∈ Uα”, then α” ∈ {α ∈ Γ : x ∈ Uα}. Thus, α” ≥ inf{α ∈ Γ : x ∈
Uα} = f(x). Notice that α” < f(x0) + ε. Therefore f(x) < f(x0) + ε. Since
x 6∈ ceU ′α, then f(x) ≥ α′ by Claim 3. Notice that f(x0)− ε < α′. Therefore
f(x) > f(x0)− ε. Hence, f(U) ⊂ (f(x0)− ε, f(x0) + ε).

Therefore, f(U) ⊂ V . This implies f is continuous at x0. If f(x0) = 0,
or 1, the proof that f is continuous at x0 is similar. �

Theorem 19. Let f : X → Y be a function and G : X → X × Y be the
graph function of f , defined by G(x) = (x, f(x)) for each x ∈ X. Then f is
e-continuous if and only if G is e-continuous.

Proof. Necessity. Let x ∈ X and V be an open subset in X × Y
containing G(x). Then there exist open subsets U1 ⊂ X and W ⊂ Y
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such that G(x) = (x, f(x)) ⊂ U1 ×W ⊂ V . Since f is e-continuous, then
there exists a U2 ∈ EO(X) such that f(U2) ⊂ W . Set U = U1 ∩ U2, then
U ∈ EO(X) with Proposition 2. Thus, we have G(U) ⊂ V . Hence G is
e-continuous.

Sufficiency. Let x ∈ X and V be an open subset of Y containing f(x).
Then X × V is an open subset containing G(x). Since G is e-continuous,
then there exists U ∈ EO(X) such that G(U) ⊂ X × V . Thus, we have
f(U) ⊂ V . Hence f is e-continuous. �

Definition 15. A graph G(f) of a function f : X → Y is called strongly
e-closed if for each (x, y) ∈ (X × Y ) \ G(f), there exists a U ∈ EO(X)
containing x and an open subset V of Y containing y such that (U × V ) ∩
G(f) = ∅.

Theorem 20. Let f : X → Y be e-continuous and Y be e-T2. Then
G(f) is e-strongly closed.

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then f(x) 6= y. Since Y is e-T2,
then there exist disjoint e-open subsets V and W of Y such that f(x) ∈ V
and y ∈ W . Since f is e-continuous, then there exists a U ∈ EO(X) such
that f(U) ⊂ V . Thus, we have f(U)∩ (W ) = ∅. Hence (U ×W )∩G(f) = ∅
and G(f) is strongly e-closed. �

Theorem 21. Let f : X → Y be a e-continuous and injective. If G(f)
is strongly e-closed, then X is e-T2.

Proof. Let x, y ∈ X such that x 6= y. Since f is injective, then f(x) 6=
f(y) and (x, f(y)) 6∈ G(f). Since G(f) is strongly e-closed, there exists a
U ∈ EO(X) and an open subset W of Y such that (x, f(y)) ∈ U ×W and
(U ×W )∩G(f) = ∅. Thus, we have f(U)∩W = ∅. Since f is e-continuous,
then there exists a y ∈ V ∈ EO(X) such that f(V ) ⊂W . This implies that
f(U) ∩ f(V ) = ∅. Hence U ∩ V = ∅ and X is e-T2. �

6. e-connectedness and covering properties

Definition 16. A space X is called e-connected if X is not the union of
two disjoint nonempty e-open subsets.

Theorem 22. Let f : X → Y be e-continuous. If X is e-connected, then
Y is connected.

Proof. Suppose Y is not a connected space. Then there exist nonempty
disjoint open subsets A and B such that Y = A∪B. Since f is e-continuous,
then f−1(A) and f−1(B) are e-open subsets of X. Thus, we obtain f−1(A)
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and f−1(B) are nonempty disjoint subsets and X = f−1(A)∪ f−1(B). This
is contrary to the hypothesis that X is a e-connected space. Hence Y is
connected. �

Corollary 1. Let f : X → Y be e-irresolute. If X is e-connected, then
Y is e-connected.

Definition 17. A space X is called e-Lindelöf (resp. e-compact) if every
e-open cover of X has a countable (resp. finite) subcover.

Theorem 23. Let f : X → Y be e-continuous. If X is e-Lindelöf, then
Y is Lindelöf.

Proof. Let {Uα : α ∈
∧
} is an open cover of Y . Since f is an

e-continuous function, then f−1({Uα : α ∈
∧
}) is an e-open cover of X.

Since X is e-Lindelöf, then there exists a countable subcover f−1({Uαi :
Uαi ∈ {Uα}, 1 < i <∞, α ∈

∧
}) inX. Thus, we have {Uαi : Uαi ∈ {Uα}, 1 <

i <∞, α ∈
∧
} is a countable subcover of Y . Hence Y is Lindelöf. �

Similarly, we can prove the following Theorem 24.

Theorem 24. Let f : X → Y be e-continuous. If X is e-compact, then
Y is compact.
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