
F A S C I C U L I M A T H E M A T I C I

Nr 50 2013

E. M. E. Zayed and M. A. El-Moneam

ON THE QUALITATIVE STUDY OF THE NONLINEAR

DIFFERENCE EQUATION xn+1 =
αxn−σ
β+γxpn−τ
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1. Introduction

The qualitative study of difference equations is a fertile research area and
increasingly attracts many mathematicians. This topic draws its importance
from the fact that many real life phenomena are modeled using difference
equations. Examples from economy, biology, etc. can be found in [2, 5− 7].
It is known that nonlinear difference equations are capable of producing a
complicated behavior regardless its order. This can be easily seen from the
family xn+1 = gµ (xn), µ > 0, n ≥ 0. This behavior is ranging according to
the value of µ, from the existence of a bounded number of periodic solutions
to chaos.

There has been a great interest in studying the global attractivity, the
boundedness character and the periodicity nature of nonlinear difference
equations. For example, in the articles [1, 6 − 8] closely related global con-
vergence results were obtained which can be applied to nonlinear difference
equations in proving that every solution of these equations converges to a
period two solution. For other closely related results, (see [3 − 5, 9 − 24])
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and the references cited therein. The study of these equations is challenging
and rewarding and is still in its infancy. We believe that the nonlinear ra-
tional difference equations are of paramount importance in their own right.
Furthermore the results about such equations offer prototypes for the de-
velopment of the basic theory of the global behavior of nonlinear difference
equations.

The objective of this article is to investigate some qualitative behavior of
the solutions of the nonlinear difference equation

(1) xn+1 =
(αxn−σ)

(β + γxpn−τ )
, n = 0, 1, 2, . . . .

where the coefficients α, β, γ, p ∈ (0,∞) and σ, τ ∈ N and the initial con-
ditions x−ω, . . . , x−1, x0 are arbitrary positive real numbers, where ω =
max {σ, τ}. Note that the difference equation (1) has been discussed in [7]
in the special case when σ = 1 and τ = 2.

Definition 1. A difference equation of order (k + 1) is of the form

(2) xn+1 = F (xn, xn−1, ..., xn−k) , n = 0, 1, 2, . . . .

where F is a continuous function which maps some set Jk+1 into J and J is
a set of real numbers. An equilibrium point x̃ of this equation is a point that
satisfies the condition x̃ = F (x̃, x̃, . . . , x̃). That is, the constant sequence
{xn}∞n=−k with xn = x̃ for all n ≥ −k is a solution of that equation.

Definition 2. We say that a sequence {xn}∞n=−k is bounded and persist-
ing if there exist positive constants m and M such that

m ≤ xn ≤M for all n ≥ −k .

Definition 3. A sequence {xn}∞n=−k is said to be periodic with period r
if xn+r = xn for all n ≥−k. A sequence {xn}∞n=−k is said to be periodic with
prime period r if r is the smallest positive integer having this property.

Definition 4. A positive semi-cycle of {xn}∞n=−k consists of ”a string”
of terms {xl, xl+1, . . . , xm} all greater than or equal to x̃, with l ≥ −k and
m ≤ ∞ such that

either l = −k or l > −k and xl−1 < x̃ ,

and
either m =∞ or m <∞ and xm+1 < x̃ .

A negative semi-cycle of {xn}∞n=−k consists of ”a string” of terms {xl, xl+1,
. . . , xm} all less than x̃, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 ≥ x̃ ,
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and
either m =∞ or m <∞ and xm+1 ≥ x̃ .

The linearized equation of (2) about the equilibrium point x̃ is the linear
difference equation

(3) yn+1 =
k∑
i=0

∂F (x̃, x̃, . . . , x̃)

∂xn−i
yn−i , n = 0, 1, 2, . . . .

and its characteristic equation is defined by

(4) λk+1 =

k∑
i=0

∂F (x̃, x̃, ..., x̃)

∂xn−i
λn−i , n = 0, 1, 2, . . . .

Theorem 1 ([7]). (i) If all roots of the characteristic equation (4) of the
linearized equation (3) have absolute value less than one, then the equilibrium
point x̃ is locally asymptotically stable.

(ii) If at least one root of (4) has absolute value greater than one, then
the equilibrium point x̃ is unstable.

(iii) If (4) has roots both inside and outside the unit disk, then the equi-
librium point x̃ is called a saddle point.

Theorem 2 ([11]). Assume that p, q ∈ R and k ∈ {0, 1, 2, . . .}. Then
|p| + |q| < 1, is a sufficient condition for the asymptotic stability of the
difference equation

xn+1 − pxn + qxn−k = 0, n = 0, 1, 2, . . . .

2. Change of variables

By using the change of variables xn =
(
β
γ

) 1
p
yn. Then (1) reduces to the

difference equation

(5) yn+1 =
ryn−σ

1 + ypn−τ
, n = 0, 1, 2, . . . .

where r = α
β > 0 and the initial conditions y−ω, y−ω+1, . . . , y−1, y0 ∈ (0,∞)

such that p > 0 where ω = max {σ, τ}.

3. The dynamics of equation (5)

In this section, we investigate the dynamics of (5) under the assump-
tions that all parameters in (5) are positive and the initial conditions are
non-negative.
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The equilibrium point ỹ of (5) is

ỹ =
rỹ

1 + ỹpn−τ
.

The difference equation (5) can be written in the form

(6) yn+1 = F (yn−σ, . . . , yn−τ ) , n = 0, 1, 2, . . . .

where

(7) F =
ryn−σ

1 + ypn−τ
, n = 0, 1, 2, . . . .

The linearized equation of (6) about ỹ is

(8) zn+1 = ρ0yn−σ − ρ1yn−τ , n = 0, 1, 2, . . . .

where

∂F (ỹ, ỹ)

∂yn−σ
=

r

1 + ỹp
= ρ0 and

∂F (ỹ, ỹ)

yn−τ
= − rpỹp

(1 + ỹp)2 = ρ1 .

Its characteristic equation is

(9) λk+1 − r

1 + ỹp
λn−σ +

rpỹp

(1 + ỹp)2λ
n−τ = 0 .

Note that ỹ1 = 0 is always an equilibrium point of (5). When r > 1, (5)

also possesses the unique positive equilibrium point ỹ2 = (r − 1)
1
p .

Theorem 3. The following statements are true:
(i) If r < 1, then the equilibrium point ỹ1 = 0 of (5) is locally asymp-

totically stable.
(ii) If r > 1, then the equilibrium point ỹ1 = 0 of (5) is a saddle point.

(iii) If r > 1, σ = τ and 0 < p < 2r
r−1 then the equilibrium point ỹ2 =

(r − 1)
1
p of (5) is locally asymptotically stable.

(iv) If r > 1, σ = τ and p > 2r
r−1 then the equilibrium point ỹ2 = (r − 1)

1
p

of (5) is unstable.
(v) If r > 1, σ = τ and p = 2r

r−1 then the linearized stability analysis
fails.

(vi) If r > 1, σ 6= τ then the equilibrium point ỹ2 = (r − 1)
1
p of (5) is

unstable.
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Proof. The linearized equation of (5) about the equilibrium point ỹ1 = 0
is

(10) zn+1 − ryn−σ = 0 , n = 0, 1, 2, . . . .

and its characteristic equation is

(11) λn−σ
(
λσ+1 − r

)
= 0 .

According to Theorems 1 and 2 we deduce that the proofs of (i) and (ii) are
completed.

The linearized equation of (5) about the equilibrium point ỹ2 = (r − 1)
1
p

when σ = τ and r > 1 has the form

(12) zn+1 +

[
p (r − 1)

r
− 1

]
zn−σ = 0 , n = 0, 1, 2, . . . .

and its characteristic equation is

(13) λn+1 +

[
p (r − 1)

r
− 1

]
λn−σ = 0 .

According to Theorems 1 and 2 we deduce that if 0 < p < 2r
r−1 then ỹ2

is locally asymptotically stable, while if p > 2r
r−1 then ỹ2 is unstable and

if p = 2r
r−1 then the linearized stability analysis fails. Now, the proofs of

(iii)-(v) are completed. The linearized equation of (5) about the equilibrium

point ỹ2 = (r − 1)
1
p when σ 6= τ and r > 1 has the form

(14) zn+1 + a1zn−σ + a2zn−τ = 0 , n = 0, 1, 2, . . . .

and its characteristic equation is

(15) λn+1 + a1λ
n−σ + a2λ

n−τ = 0 ,

where

(16) a1 = −1 , a2 =
p (r − 1)

r
.

It is clear that |a1| + |a2| > 1, then according to Theorems 1 and 2 the
equilibrium point ỹ2 is unstable. The proof of (vi) is completed. The proof
of Theorem 3 is now completed. �
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Theorem 4. Assume that r > 1 and ω = max {σ, τ}. Let {yn}∞n=−ω be
a solution of (5) such that σ is odd, τ is even. Assume that the following
inequalities hold:

(17)

{
y−σ, y−σ+2, . . . , y−τ+1, y−τ+3, . . . < ỹ2 ,
y−σ+1, y−σ+3, . . . , y−τ , y−τ+2, . . . ≥ ỹ2 ,

or

(18)

{
y−σ, y−σ+2, . . . , y−τ+1, y−τ+3, . . . > ỹ2 ,
y−σ+1, y−σ+3, . . . , y−τ , y−τ+2, . . . ≤ ỹ2 .

Then the solution {yn}∞n=−ω oscillates about the equilibrium point ỹ2 =

(r − 1)
1
p with semi-cycles of length one.

Proof. Assume that (17) holds. (The case when (18) holds is similar
and will be omitted). Then

y1 =
ry−σ

1 + ypn−τ
≤ rỹ2

1 + ỹp2
= ỹ2 ,

y2 =
ry−σ+1

1 + ypn−τ+1

>
rỹ2

1 + ỹp2
= ỹ2 ,

y3 =
ry−σ+2

1 + ypn−τ+2

<
rỹ2

1 + ỹp2
= ỹ2 ,

and

y4 =
ry−σ+3

1 + ypn−τ+3

>
rỹ2

1 + ỹp2
= ỹ2 ,

and so on. The proof of Theorem 4 follows by induction. �

Theorem 5. The following statements are true:
(i) Assume that r < 1, then the equilibrium point ỹ1 = 0 of (5) is globally

asymptotically stable.
(ii) Assume that r > 1, σ = τ and 0 < p < 2r

r−1 then the equilibrium

point ỹ2 = (r − 1)
1
p of (5) is globally asymptotically stable.

Proof. We have proved in Theorem 3 that if r < 1, then the equilibrium
point ỹ1 = 0 of (5) is locally asymptotically stable. So, to prove (i) we must
prove that the equilibrium point ỹ1 = 0 of (5) is global attractor. To this
end, we note that

(19) 0 ≤ yn+1 =
ryn−σ

1 + ypn−τ
≤ ryn−σ < yn−σ .
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Consequently, we have limn→∞ yn = 0. The proof of (i) is now completed.
Also, we have proved in Theorem 3 that if r > 1, σ = τ and 0 < p < 2r

r−1 ,

then the equilibrium point ỹ2 = (r − 1)
1
p of (5) is locally asymptotically

stable. So, to prove (ii) we must prove that the equilibrium point ỹ2 =

(r − 1)
1
p of (5) is global attractor. To this end, let S = lim supn→∞ yn and

I = lim infn→∞ yn. Then we deduce from (5) that

(20) S ≤ rI

1 + IP
and I ≤ rS

1 + SP
.

Consequently, we have the inequality

(21)
rS2

1 + SP
≤ IS ≤ rI2

1 + IP
,

Since

(22) S > I ,

then, it is easy to see that

(23)
1

1 + SP
<

1

1 + IP
.

From (21) and (23), we have

(24) S < I .

Then from (22) and (24), we deduce that S = I. This proves that the
equilibrium point ỹ2 is global attractor. The proof of (ii) is now completed.
Thus, the proof of Theorem 5 is now completed. �

Theorem 6. Assume that r > 1, together with the following cases:
(i) If σ is odd and τ is even,
(ii) If σ and τ are odd.
Then (5) possesses an unbounded solution.

Proof. From Theorem 4, we deduce from case (i) that is

y2n+1 < ỹ2 and y2n ≥ ỹ2.

Consequently, we have

y2n+2 =
ry2n+1−σ

1 + yp2n+1−τ
>

ry2n+1−σ
1 + (r − 1)

= y2n+1−σ ,



144 E. M. E. Zayed and M. A. El-Moneam

and
y2n+3 =

ry2n+2−σ
1 + yp2n+2−τ

≤ ry2n+2−σ
1 + (r − 1)

= y2n+2−σ .

From which it follows that

lim
n→∞

y2n =∞ and lim
n→∞

y2n+1 = 0 .

This proves that (5) possesses an unbounded solution for case (i).
Similarly, from case (ii) we can show that

y2n+2 ≤ y2n+1−σ and y2n+3 > y2n+2−σ .

From which it follows that

lim
n→∞

y2n = 0 and lim
n→∞

y2n+1 =∞ .

Thus, the proof of Theorem 6 is now completed. �

Theorem 7. (i) If σ is odd and τ is even, then, if r = 1 (5) has prime
period two solution

(25) . . . ,Φ, 0,Φ, 0, . . .

with Φ > 0. Furthermore, every solution of (5) converges to the prime
periodtwo solution (25) with Φ > 0. While if r > 1 or r < 1 then, (5) has
no prime period two solution.

(ii) If σ is even and τ is odd, then, (5) has no prime period two solution.
(iii) If both σ and τ are odd, then, (5) has no prime period two solution.
(iv) If both σ and τ are even, then, (5) has prime period two solution if

p > 1 while if 0 < p < 1 then, (5) has no prime period two solution.

Proof. Let
. . . ,Φ,Ψ,Φ,Ψ, . . .

be a non-negative distinctive prime period two solution of (5).

Case (i). If σ is odd and τ is even, then, yn+1 = yn−σ and yn = yn−τ .
Then from (5) we have Φ = rΦ

1+Ψp and Ψ = rΨ
1+Φp . Consequently, we have

(26) 0 ≤ ΦΨ =
(1− r) (Φ−Ψ)

Φp−1 −Ψp−1
.

From (26) we deduce that if p > 1 then r ≤ 1. If r < 1 this implies that
Φ < 0 or Ψ < 0 which is impossible, since Φ > 0 and Ψ > 0. Thus, if r > 1
and r < 1, then (5) has no prime period two solution. So, r = 1. If p < 1

then r ≥ 1. If r > 1 then Φ = Ψ = (r − 1)
1
p 6= 0 which is impossible, since
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Φ 6= Ψ. Thus, if 0 < p < 1 and r > 1 then (5) has no prime period two
solution. So, r = 1. Assume that r = 1 and let {xn}∞n=−ω be a solution of
(5), where, ω = max {σ, τ}. If ω = τ , then

(27) yn+1 − yn−σ =
yn−σy

p
n−τ

1 + ypn−τ
≤ 0 .

From (27) we deduce that, the even terms of this solution decreases to a
limit (say Ψ ≥ 0). Thus, Φ = Φ

1+Ψp and Ψ = Ψ
1+Φp which implies that

ΦΨp = 0 and ΨΦp = 0. This completes the proof of case (i).

Case (ii). If σ is even and τ is odd, then, yn = yn−σ and yn+1 = yn−τ .
Then from (5) we have Φ = rΨ

1+Φp and Ψ = rΦ
1+Ψp . Consequently, we have

(28) 0 ≤ Φp+1 −Ψp+1

Φ−Ψ
= − (r + 1) .

From (28) we deduce that, r + 1 ≤ 0 and hence r ≤ −1. This is impossible,
since r > 0. Therefore (5) has no prime period two solution.

Case (iii). If σ and τ are odd, then, yn+1 = yn−σ = yn−τ and from
(5) we have Φ = rΦ

1+Φp and Ψ = rΨ
1+Ψp . Consequently, if r > 1 we get

Φ = Ψ = (r − 1)
1
p 6= 0. This is impossible, since Φ 6= Ψ 6= 0. Therefore (5)

has no prime period two solution.

Case (iv). If σ and τ are even, then, yn = yn−σ = yn−τ and from (5) we
have Φ = rΨ

1+Ψp and Ψ = rΦ
1+Φp . Consequently, we get

(29) ΦΨ =
(r + 1) (Φ−Ψ)

Φp−1 −Ψp−1
≥ 0 .

From (29) we deduce for p > 1 and r > 0 that (5) has prime period two
solution, while if 0 < p < 1 then r + 1 ≤ 0. Therefore r ≤ −1. This is
impossible, since r > 0. Thus, (5) has no prime period two solution. The
proof of Theorem 7 is now completed. �

4. Conclusions

In this paper, we have studied the nonlinear difference equation (5) and
we have shown under certain conditions on the parameters σ, τ , p and
r that its solution is globally asymptotic stable and oscillates about the
equilibrium point with semi-cycles of length one. Furthermore, we have
shown also under certain conditions on these parameters that (5) possesses
an unbounded solution and this equation has (or not) a prime period two
solution.
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