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Abstract. The purpose of this paper concerns to establish mod-
ified q-Genocchi numbers and polynomials with weight (α,β). In
this paper we investigate special generalized q-Genocchi polyno-
mials and we apply the method of generating function, which
are exploited to derive further classes of q-Genocchi polynomials
and develop q-Genocchi numbers and polynomials. By using the
Laplace-Mellin transformation integral, we define q-Zeta function
with weight (α,β) and by presenting a link between q-Zeta func-
tion with weight (α,β) and q-Genocchi numbers with weight (α,β)
we obtain an interpolation formula for the q-Genocchi numbers
and polynomials with weight (α,β). Also we derive distribution
formula (Multiplication Theorem) and Witt’s type formula for
modified q-Genocchi numbers and polynomials with weight (α,β)
which yields a deeper insight into the effectiveness of this type
of generalizations for q-Genocchi numbers and polynomials. Our
new generating function possess a number of interesting properties
which we state in this paper.
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1. Introduction, definitions and notations

Recently, q-calculus has served as a bridge between mathematics and
physics. Therefore, there is a significant increase of activity in the area of the
q-calculus due to applications of the q-calculus in mathematics, statistics and
physics. The majority of scientists in the world who use q-calculus today are
physicists. q-Calculus is a generalization of many subjects, like hypergeomet-
ric series, generating functions, complex analysis, and particle physics. In
short, q-calculus is quite a popular subject today. One of important branch
of q-calculus in number theory is q-type of special generating functions, for
instance q-Bernoulli numbers, q-Euler numbers, and q-Genocchi numbers,
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here we introduce a new class of q-type generating function. We introduce
q-Genocchi numbers with weight (α, β). When we define a new class of
generating functions like, q-Genocchi numbers with weight (α, β), then we
face to with this question that “can we define a new q-Zeta type function in
related of this new class of q-type generating function?”. We give a positive
answer for our new class of numbers and polynomials. More precisely we
show that our q-type generating function is generalization of the Hurwitz
Zeta function. Historically many authors have tried to give q-analogues of
the Riemann Zeta function ζ(s), and its related functions. By just following
the method of Kaneko et al. [M. Kaneko, N. Kurokawa and M. Wakayama,
A variation of Euler’s approach to the Riemann Zeta function, Kyushu J.
Math. 57 (2003), 175–192], who mainly used Euler-Maclaurin summation
formula to present and investigate a q-analogue of the Riemann zeta func-
tion ζ(s), and gave a good and reasonable explanation that their q-analogue
may be a best choice. They also commented that q-analogue of ζ(s) can be
achieved by modifying their method. Furthermore it is clear that q-Genocchi
polynomials of weight (α, β) are in a class of orthogonal polynomials and
we know that most such special functions that are orthogonal are satisfied
in multiplication theorem, so in this present paper we show this property is
true for q-Genocchi polynomials of weight (α, β). In this introductory sec-
tion, we present the definitions and notations (and some of the Important
properties and characteristics) of the various special functions, polynomials
and numbers, which are potentially useful in the remainder of the paper.

Assume that p be a fixed odd prime number. Throughout this paper we
use the following notations. By Zp we denote the ring of p-adic rational
integers, Q denotes the field of rational numbers, Qp denotes the field of
p-adic rational numbers, and Cp denotes the completion of algebraic closure
of Qp. Let N be the set of natural numbers and Z+ = N∪{0}. Let vp be the
normalized exponential valuation of Cp with |p|p = p−vp(p) = p−1. When one
speaks of q-extension, q is considered in many ways such as an indeterminate,
a complex number q ∈ C or p-adic number q ∈ Cp. If q ∈ C one normally

assumes that |q| < 1. If q ∈ Cp, we assume that |1− q|p < p
− 1
p−1 so that

qx = exp (x log q) for |x|p ≤ 1. We use the following notation:

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q

Note that limq→1 [x]q = x; cf. [1-24].
For a fixed positive integer d with (d, f) = 1, we set

X = Xd = lim←−
N

Z/dpNZ,
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X∗ =
⋃

0<a<dp
(a,p)=1

a+ dpZp

and
a+ dpNZp =

{
x ∈ X | x ≡ a

(
mod dpN

)}
,

where a ∈ Z satisfies the condition 0 ≤ a < dpN .
By using Koblitz’s [N. Koblitz, p-adic Numbers p-adic Analysis and Zeta

Functions, Springer-Verlag, New York Inc, 1977] notations, a p-adic distri-
bution µ on X is a Qp-linear vector space homomorphism from the Qp-vector
space of locally constant functions on X to Qp. If f : X → Qp is locally
constant, instead of writing µ (f) for the value of µ at f , we usually write∫
fµ. Also it is known that we can write µq as follows:

µq
(
x+ pNZp

)
=

qx

[pN ]q

is a distribution on X for q ∈ Cp with |1− q|p ≤ 1. For

f ∈ UD (Zp) = {f | f : Zp → Cp is uniformly differentiable function} ,

the following fermionic p-adic q-integral on Zp is defined by using Kim’s
measure µq:

I−q (f) =

∫
Zp
f (x) dµ−q (x)(1)

= lim
N→∞

pN−1∑
x=0

f (x)µ−q
(
x+ pNZp

)
= lim

N→∞

1

[pN ]−q

pN−1∑
x=0

(−1)x f (x) qx.

Let q → 1, then we have fermionic integration on Zp as follows:

I−1 (f) =

∫
Zp
f (x) dµ−1 (x) = lim

N→∞

pN−1∑
x=0

(−1)x f (x) ,

So by applying f (x) = ext, we get

(2) t

∫
Zp
etxdµ−1 (x) =

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
.

Where Gn are Genocchi numbers. By using (2), we have∫
Zp
extdµ−1 (x) =

∞∑
n=0

Gn+1

n+ 1

tn

n!
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so from above, we obtain

∞∑
n=0

(∫
Zp
xndµ−1 (x)

)
tn

n!
=
∞∑
n=0

(
Gn+1

n+ 1

)
tn

n!
.

By comparing coefficients of tn

n! on both sides of the above equation it is
fairly straightforward to deduce,

Gn+1

n+ 1
=

∫
Zp
xndµ−1 (x) .

The definition of modified q-Euler numbers are given by

(3) ε0,q =
[2]q
2
, (qε+ 1)k − εk,q =

{
[2]q , k = 0,

0, k > 0,

with usual the convention about replacing εk by εk,q cf. [11], [24]. It
was known that the modified q-euler numbers can be represented by p-adic
q-integral on Zp as follows:

εn,q =

∫
Zp
q−t [t]nq dµ−q (t) .

In [3, 14, 15, 17], q-Genocchi numbers are defined as follows:

(4) G0,q = 0, and q (qGq + 1)n +Gn,q =

{
[2]q , n = 1

0, n > 1,

with the usual convention of replacing (Gq)
n by Gn,q.

In [7], (h, q)-Genocchi numbers are indicated as:

G
(h)
0,q = 0, and qh−2

(
qG(h)

q + 1
)n

+G(h)
n,q =

{
[2]q , n = 1

0, n > 1,

with the usual convention about replacing
(
G

(h)
q

)n
by G

(h)
n,q.

Recently, for n ∈ Z+, Araci et al. are considered weighted q-Genocchi
numbers by

(5) G̃
(α)
0,q = 0, q1−α

(
qG̃(α)

q + 1
)n

+ G̃(α)
n,q =

{
[2]q , n = 1

0, n 6= 1,

with the usual convention about replacing (G̃q)
n by G̃n,q (for more informa-

tion, see [4]).
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For α, n ∈ Z+ and h ∈ N, Araci et al. [5] defined weighted (h, q)
-Genocchi numbers as follows:

G̃
(α,h)
n+1,q =

∫
Zp
q(h−1)x [x]nqα dµ−q (x) .

Taekyun Kim, by using p-adic q-integral on Zp, introduced a new class
of numbers and polynomials. He added a weight on q-Bernoulli numbers
and polynomials and defined q-Bernoulli numbers with weight α. He gave
some interesting properties concerning q-Bernoulli numbers and polynomials
with weight α. After, by using p-adic q-integral on Zp, several mathemati-
cians started to study on this new branch of generating function theory
and extended most of the symmetric properties of q-Bernoulli numbers and
polynomials to q-Bernoulli numbers and polynomials with weight α (for
more information, see [4], [5], [1], [2], [7], [8], [23], [19], [6], [20], [22]). With
the same motivation, we also introduce modified q-Genocchi numbers and
polynomials with weight (α, β). Also, we give some interesting properties
this type of polynomials. Furthermore, we derive the q-extensions of zeta
type functions with weight (α, β) from the Mellin transformation to this gen-
erating function which interpolates the q-Genocchi polynomials with weight
(α, β) at negative integers.

2. Modified q-Genocchi numbers and polynomials
with weight (α, β)

In this section, we derive some interesting properties Modified q-Genocchi
numbers and polynomials with weight (α, β).

Lemma 1. For n ∈ Z+, we obtain

(6) I
(β)
−q

(
q−βxfn

)
+ (−1)n−1 I

(β)
−q

(
q−βxf

)
= [2]qβ

n−1∑
l=0

(−1)n−l−1 f (l) ,

Proof. Let be fn (x) = f (x+ n) and I
(β)
−q (f) =

∫
Zp f (x) dµ−qβ (x) by

the (1), we easily get

−I(β)−q
(
q−βxf1

)
= lim

N→∞

1

[pN ]−qβ

pN−1∑
x=0

f (x+ 1) (−1)x(7)

= lim
N→∞

1

[pN ]−qβ

pN−1∑
x=0

f (x) (−1)x − [2]qβ lim
N→∞

f
(
pN
)

+ f (0)

1 + qβpN

= I
(β)
−q

(
q−βxf

)
− [2]qβ f (0)
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and

I
(β)
−q

(
q−βxf2

)
=

∫
Zp
q−βxf (x+ 2) dµ−qβ (x)

= lim
N→∞

1

[pN ]−qβ

pN−1∑
x=0

f (x+ 2) (−1)x

= I
(β)
−q

(
q−βxf

)
+ [2]qβ lim

N→∞

−f (0) + f (1)− f
(
pN
)

+ f
(
pN + 1

)
1 + qβpN

= I
(β)
−q

(
q−βxf

)
+ [2]qβ (f (1)− f (0)) .

Thus, we have

I
(β)
−q

(
q−βxf2

)
− I(β)−q

(
q−βxf

)
= [2]qβ

1∑
l=0

(−1)1−l f (l)

By continuing this process, we arrive at the desired result. �

Definition 1. Let α, n, β ∈ Z+. We define modified q-Genocchi numbers
with weight (α, β) as follows:

(8)
g
(α,β)
n+1,q

n+ 1
= [2]qβ

∞∑
m=0

(−1)m [m]nqα .

Theorem 1. For α, n, β ∈ Z+, we get

(9)
g
(α,β)
n+1,q

n+ 1
=

[2]qβ

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

1

1 + qαl
.

Proof. By (8), we develop as follows:

g
(α,β)
n+1,q

n+ 1
=

[2]qβ

(1− qα)n

∞∑
m=0

(−1)m (1− qmα)n

=
[2]qβ

(1− qα)n

∞∑
m=0

(−1)m
n∑
l=0

(
n

l

)
(−1)l (qmα)l

=
[2]qβ

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

∞∑
m=0

(−1)m qmαl

=
[2]qβ

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

1

1 + qαl
.

Thus, we complete the proof of Theorem. �

By the following Theorem, we get Witt’s type formula of this type poly-
nomials.
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Theorem 2. For β, α, n ∈ Z+, we get

(10)
g
(α,β)
n+1,q

n+ 1
=

∫
Zp
q−βx [x]nqα dµ−qβ (x) .

Proof. By using p-adic q-integral on Zp, namely, replace f(x) by q−βx [x]nqα

and µ−q
(
x+ pNZp

)
by µ−qβ

(
x+ pNZp

)
into (1), we get∫

Zp
q−βx [x]nqα dµ−qβ (x)(11)

=
1

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

∫
Zp
qαlx−βxdµ−qβ (x)

=
1

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l lim

N→∞

1

[pN ]−qβ

pN−1∑
x=0

(
−qαl

)x
=

1

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

[2]qβ

1 + qαl
lim
N→∞

1 +
(
qαl
)pN

1 + qβpN

=
[2]qβ

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

1

1 + qαl
.

Use of (9) and (11), we arrive at the desired result. �

The Witt’s type formula of modified q-Genocchi numbers with weight
(α, β) asserted by Theorem 2, do aid in translating the various properties
and results involving q-Genocchi numbers with weight (α, β) which we state
some of them in this section. We put α→ 1 and β → 1 into (10), we readily

see
g
(1,1)
n+1,q

n+1 = εn,q.

Corollary 1. Let C
(α,β)
q (t) =

∑∞
n=0 g

(α,β)
n,q

tn

n! . Then we have

C(α,β)
q (t) = [2]qβ t

∞∑
m=0

(−1)m et[m]qα .

Proof. From (8) we easily get,

(12)

∫
Zp
q−βxet[x]qαdµ−qβ (x) = [2]qβ t

∞∑
m=0

(−1)m et[m]qα .

By expression (12), we have

∞∑
n=0

g(α,β)n,q

tn

n!
= [2]qβ t

∞∑
m=0

(−1)m et[m]qα .



28 S. Aracı, M. Acikgoz, F. Qi and H. Jolany

Thus, we complete the proof of Theorem. �

Now, we consider the modified q-Genocchi polynomials polynomials with
weight α as follows:

(13)
g
(α,β)
n+1,q(x)

n+ 1
=

∫
Zp
q−βt [x+ t]nqα dµ−qβ (t) , n ∈ N and α ∈ Z+

From expression (13), we see readily

g
(α,β)
n+1,q(x)

n+ 1
=

[2]qβ

(1− qα)n

n∑
l=0

(
n

l

)
(−1)l qαlx

1

1 + qαl
(14)

= [2]qβ

∞∑
m=0

(−1)m [m+ x]nqα .

Let C
(α,β)
q (t, x) =

∑∞
n=0 g

(α,β)
n,q (x) t

n

n! . Then we have

(15) C(α,β)
q (t, x) = [2]qβ t

∞∑
m=0

(−1)m et[m+x]qα =

∞∑
n=0

g(α,β)n,q (x)
tn

n!
.

By Lemma 1, we get the following Theorem:

Theorem 3. For m ∈ N, and α, β, n ∈ Z+, we get

g
(α,β)
m+1,q

m+ 1
+ (−1)n−1

g
(α,β)
m+1,q (n)

m+ 1
= [2]qβ

n−1∑
l=0

(−1)n−l−1 [l]mqα .

Proof. By applying Lemma 1 the methodology and techniques used
above in getting some identities for the generating functions of the modified
q-Genocchi numbers and polynomials with weight (α, β), we arrive at the
desired result. �

Theorem 4. The following identity holds:

g
(α,β)
0,q = 0, and g(α,β)n,q (1) + g(α,β)n,q =

{
[2]qβ , if n = 1,

0, if n > 1,

Proof. In (7) it is known that

I
(β)
−q

(
q−βxf1

)
+ I

(β)
−q

(
q−βxf

)
= [2]qβ f (0) .
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If we take f(x) = et[x]qα , then we have

[2]qβ =

∫
Zp
q−βxet[x+1]qαdµ−qβ (x) +

∫
Zp
q−βxet[x]qαdµ−q−β (x)(16)

=
∞∑
n=0

(
g(α,β)n,q (1) + g(α,β)n,q

) tn−1
n!

.

Therefore, we get the Proof of Theorem. �

Theorem 5. For d ≡ 1 ( mod 2), α, β ∈ Z+ and n ∈ N, we get,

g(α,β)n,q (dx) =
[d]n−1qα

[d]−qβ

d−1∑
a=0

(−1)a g
(α,β)

n,qd

(
x+

a

d

)
.

Proof. From (13), we can easily derive the following (17)∫
Zp
q−βt [x+ t]nqα dµ−qβ (t)(17)

=
[d]nqα

[d]−qβ

d−1∑
a=0

(−1)a
∫
Zp
q−βt

[
x+ a

d
+ t

]n
qdα

dµ
(−qd)

β (t)

=
[d]nqα

[d]−qβ

d−1∑
a=0

(−1)a
g
(α,β)

n+1,qd

(
x+a
d

)
n+ 1

.

So, by applying expression (17), we get at the desired result and proof is
complete. �

3. Interpolation function of the polynomials g
(α,β)
n,q (x)

In this section, we derive the interpolation function of the generating
functions of modified q-Genocchi polynomials with weight α and we give
the value of q-extension zeta function with weight (α, β) at negative integers
explicitly. For s ∈ C, by applying the Mellin transformation to (15), we
obtain

ξ(α,β) (s, x | q) =
1

Γ (s)

∫ ∞
0

ts−2
{
−C(α,β)

q (−t, x)
}
dt

= [2]qβ

∞∑
m=0

(−1)m
1

Γ (s)

∫ ∞
0

ts−1e−t[m+x]qαdt
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where Γ (s) is Euler gamma function. We have

ξ(α,β) (s, x | q) = [2]qβ

∞∑
m=0

(−1)m

[m+ x]sqα

So, we define q-extension zeta function with weight (α, β) as follows:

Definition 2. For s ∈ C and α, β ∈ N, we have

(18) ξ(α,β) (s, x | q) = [2]qβ

∞∑
m=0

(−1)m

[m+ x]sqα

ξ(α,β) (s, x | q) can be continued analytically to an entire function.

Observe that, if q → 1, then ξ(α,β) (s, x | 1) = ζ(s, x) which is the Hurwitz-

Euler zeta functions. Relation between ξ(α,β)(s, x | q) and g
(α,β)
n,q (x) are given

by the following theorem:

Theorem 6. For α, β ∈ N and n ∈ N, we get

ξ(α,β) (−n, x | q) =
g
(α,β)
n+1,q (x)

n+ 1
.

Proof. By substituting s = −n into (18), we arrive at the desired re-
sult. �
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