F A S C I C U L I M A T H E M A T I C I
 Nr 51

M. Atapour, S. M. Sheikholeslami and L. Volkmann

SIGNED STAR $\{k\}$-DOMATIC NUMBER OF A GRAPH

Abstract

Let G be a simple graph without isolated vertices with vertex set $V(G)$ and edge set $E(G)$ and let k be a positive integer. A function $f: E(G) \longrightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ is said to be a signed star $\{k\}$-dominating function on G if $\sum_{e \in E(v)} f(e) \geq k$ for every vertex v of G, where $E(v)=\{u v \in E(G) \mid u \in N(v)\}$. The signed star $\{k\}$-domination number of a graph G is $\gamma_{\{k\} S S}(G)=$ $\min \left\{\sum_{e \in E} f(e) \mid f\right.$ is a $\operatorname{SS}\{\mathrm{k}\} \mathrm{DF}$ on $\left.G\right\}$. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed star $\{k\}$-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(e) \leq k$ for each $e \in E(G)$, is called a signed star $\{k\}$-dominating family (of functions) on G. The maximum number of functions in a signed star $\{k\}$-dominating family on G is the signed star $\{k\}$-domatic number of G, denoted by $d_{\{k\} S S}(G)$. In this paper we study the properties of the signed star $\{k\}$ - domination number $\gamma_{\{k\} S S}(G)$ and signed star $\{k\}$-domatic number $d_{\{k\} S S}(G)$. In particular, we determine the signed star $\{k\}$ - domination number of some classes of graphs. Some of our results extend these one given by $\mathrm{Xu}[7]$ for the signed star domination number and Atapour et al. [1] for the signed star domatic number. KEY words: signed star $\{k\}$-domatic number, signed star domatic number, signed star $\{k\}$-dominating function, signed star dominating functions, signed star $\{k\}$-domination number, signed star domination number, regular graphs.

AMS Mathematics Subject Classification: 05C69.

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We use $[2,6]$ for terminology and notation which are not defined here and consider simple graphs without isolated vertices only. For every nonempty subset E^{\prime} of $E(G)$, the subgraph $G\left[E^{\prime}\right]$ induced by E^{\prime} is the graph whose vertex set consists of those vertices of G incident with at least one edge of E^{\prime} and whose edge set is E^{\prime}.

Two edges e_{1}, e_{2} of G are called adjacent if they are distinct and have a common vertex. The open neighborhood $N_{G}(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_{G}[e]=N_{G}(e) \cup\{e\}$. For a function $f: E(G) \longrightarrow \mathbb{R}$ and a subset S of $E(G)$ we define $f(S)=$ $\sum_{e \in S} f(e)$. The edge-neighborhood $E_{G}(v)$ of a vertex $v \in V(G)$ is the set of all edges incident with the vertex v. For each vertex $v \in V(G)$, we also define $f(v)=\sum_{e \in E_{G}(v)} f(e)$.

Let k be a positive integer. A function $f: E(G) \longrightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ is called a signed star $\{k\}$-dominating function (SS\{k\}DF) on G, if $f(v) \geq$ k for every vertex v of G. The signed star $\{k\}$-domination number of a graph G is $\gamma_{\{k\} S S}(G)=\min \left\{\sum_{e \in E} f(e) \mid f\right.$ is a $\operatorname{SS}\{\mathrm{k}\} \mathrm{DF}$ on $\left.G\right\}$. The signed star $\{k\}$-dominating function f on G with $f(E(G))=\gamma_{\{k\} S S}(G)$ is called a $\gamma_{\{k\} S S}(G)$-function. The signed star $\{1\}$-domination number of a graph G is the usual signed star domination number $\gamma_{S S}(G)$, which has been introduced by Xu in [7] and has been studied by several authors (see for instance $[4,5,8,9]$).

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed star $\{k\}$-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(e) \leq k$ for each $e \in E(G)$, is called a signed star $\{k\}$-dominating family (of functions) on G. The maximum number of functions in a signed star $\{k\}$-dominating family on G is the signed star $\{k\}$-domatic number of G, denoted by $d_{\{k\} S S}(G)$. The signed star $\{k\}$-domatic number is well-defined and $d_{\{k\} S S}(G) \geq 1$ for all graphs G, since the set consisting of any one $\operatorname{SS}\{k\} \mathrm{D}$ function forms a $\operatorname{SS}\{k\} \mathrm{D}$ family on G. A $d_{\{k\} S S}-$ family of a graph G is a $\operatorname{SS}\{k\} \mathrm{D}$ family containing $d_{\{k\} S S}(D)$ $\operatorname{SS}\{k\} \mathrm{D}$ functions. The signed star $\{1\}$-domatic number $d_{\{1\} S S}(G)$ is the usual signed star domatic number $d_{S S}(G)$ which was introduced by Atapour et al. in [1].

Our purpose in this paper is to initiate the study of signed star $\{k\}$-domination number and signed star $\{k\}$-domatic number in graphs. We first present bounds on signed star $\{k\}$-domination number and then we study basic properties and bounds for the signed star $\{k\}$-domatic number of a graph which some of them are analogous to those of the signed star domatic number $d_{S S}(G)$ in [1]. In addition, we determine the signed star $\{k\}$-domatic number of some classes of graphs.

Observation 1. Let G be a graph of size m with $\delta(G) \geq 1$. Then $\gamma_{S S}(G)=m$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=1$ or $\operatorname{deg}(u)=2$.

Observation 2. Let G be a graph with $\delta(G) \geq 1$. If v is a vertex of G such that $\delta(G-v) \geq 1$, then

$$
\gamma_{\{k\} S S}(G) \leq \gamma_{\{k\} S S}(G-v)+\max \{k, \operatorname{deg}(v)\}
$$

Proof. Since $\delta(G-v) \geq 1$, there exists a $\gamma_{\{k\} S S}(G-v)$-function f. Let $E_{G}(v)=\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$. If $\operatorname{deg}(v)=d \geq k$, then define $g: E(G) \rightarrow$ $\{ \pm 1, \pm 2, \ldots, \pm k\}$ by $g(e)=f(e)$ for $e \in E(G-v)$ and $g\left(e_{i}\right)=1$ for $i \in$ $\{1,2, \ldots, d\}$. If $d=\operatorname{deg}(v)<k$, then define $g: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ by $g(e)=f(e)$ for $e \in E(G-v)$ and $g\left(e_{i}\right)=1$ for $1 \leq i \leq d-1$ and $g\left(e_{d}\right)=k+1-\operatorname{deg}(v)$. In both cases it is easy to see that g is a signed star $\{k\}$-dominating function on G, and therefore we obtain the desired bound $\gamma_{\{k\} S S}(G) \leq \gamma_{\{k\} S S}(G-v)+\max \{k, \operatorname{deg}(v)\}$.

Observation 3. Let G be a graph of size m and let $k \geq 2$ be an integer. Then $\gamma_{\{k\} S S}(G)=m k$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=1$.

Proof. If each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=1$, then trivially $\gamma_{\{k\} S S}(G)=m k$.

Conversely, assume that $\gamma_{\{k\} S S}(G)=m k$. Suppose to the contrary that there exists an edge $e=u v \in E(G)$ such that $\min \{\operatorname{deg}(u), \operatorname{deg}(v)\} \geq 2$. Define $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ by $f(e)=1$ and $f\left(e^{\prime}\right)=k$ for $e^{\prime} \in$ $E(G) \backslash\{e\}$. Obviously, f is a signed star $\{k\}$-dominating function of G with weight less than $m k$, a contradiction. This completes the proof.

Theorem A. [7] If G is a graph G with $\delta(G) \geq 3$, then G contains an even cycle.

Theorem B. [7] For any graph G of order $n \geq 4, \gamma_{S S}(G) \leq 2 n-4$.

2. Bounds on the signed star $\{k\}$-domination number

In this section we give some bounds on $\gamma_{\{k\} S S}(G)$.
Theorem 1. For any graph G of order $n \geq 4$ and any integer $k \geq 2$,

$$
\gamma_{\{k\} S S}(G) \leq k(n-1)
$$

The bound is sharp for stars.
Proof. We proceed by induction on $m=|E(G)|$. The result is clearly true for $m \leq 3$, since $n \geq 4$. Let the statement be true for all graphs of order $n \geq 4$ and size at most $m-1$. Now assume that G is a graph of order $n \geq 4$ and size m.

Assume first that $\delta(G) \geq 3$. By Theorem A, G contains an even cycle C. Let $G^{\prime}=G-E(C)$, and let f be a $\gamma_{\{k\} S S}\left(G^{\prime}\right)$-function. By the induction hypothesis, $\omega(f) \leq k(n-1)$. Extending f from G^{\prime} to G by signing +1 and -1 alternating along C, we obtain an $\operatorname{SS}\{k\}$ DF for G, and hence $\gamma_{\{k\} S S}(G) \leq$ $k(n-1)$.

Assume second that $\delta(G)=2$. If v is a vertex of G with $\operatorname{deg}(v)=2$, then $\delta(G-v) \geq 1$ and $|E(G-v)| \leq m-1$. If $|V(G-v)|=3$, then $n=4$, and it is easy to see that $\gamma_{\{k\} S S}(G) \leq k(n-1)$. Let now $|V(G-v)| \geq 4$. Using the induction hypothesis and Observation 2, we obtain

$$
\gamma_{\{k\} S S}(G) \leq \gamma_{\{k\} S S}(G-v)+k \leq k(n-2)+k=k(n-1)
$$

Assume third that $\delta(G)=1$. If $\Delta(G)=1$, then G is isomorphic to $p K_{2}$ with $p=n / 2$. We observe that $\gamma_{\{k\} S S}(G)=n k / 2 \leq k(n-1)$. Let now $\Delta(G) \geq 2$, and let H be a component of G with $\Delta(H) \geq 2$.

If $\delta(H)=1$, then let v be a vertex of H with $\operatorname{deg}_{H}(v)=1$. Obviously, $\delta(G-v) \geq 1$ and $|E(G-v)| \leq m-1$. If $|V(G-v)|=3$, then $n=4$, and it is easy to see that $\gamma_{\{k\} S S}(G) \leq k(n-1)$. Let now $|V(G-v)| \geq 4$. Using the induction hypothesis and Observation 2, we deduce that

$$
\gamma_{\{k\} S S}(G) \leq \gamma_{\{k\} S S}(G-v)+k \leq k(n-2)+k=k(n-1)
$$

If $\delta(H)=2$, then let v be a vertex of H with $\operatorname{deg}_{H}(v)=2$. Obviously, $\delta(G-v) \geq 1$ and $4 \leq|E(G-v)| \leq m-1$. Using the induction hypothesis and Observation 2, we deduce that

$$
\gamma_{\{k\} S S}(G) \leq \gamma_{\{k\} S S}(G-v)+k \leq k(n-2)+k=k(n-1)
$$

Finally assume that $\delta(H) \geq 3$. Using the arguments as in the case $\delta(G) \geq 3$, we obtain the desired result.

Clearly, if G is isomorphic to the star $K_{1, n-1}$, then $\gamma_{\{k\} S S}(G)=k(n-1)$, and the proof is complete.

Theorem 2. For all graphs G of order n and $\delta(G) \geq 1, \gamma_{\{k\} S S}(G) \geq$ $\left\lceil\frac{n k}{2}\right\rceil$.

Proof. Suppose that f is a $\gamma_{\{k\} S S}(G)$-function. Then

$$
\gamma_{\{k\} S S}(G)=\sum_{e \in E(G)} f(e)=\frac{1}{2} \sum_{v \in V(G)} \sum_{e \in E(v)} f(e) \geq \frac{1}{2} \sum_{v \in V(G)} k=\frac{n k}{2}
$$

as desired.
Theorem 3. Let G be an r-regular and 1-factorable graph and let $k \geq 2$ be an integer. Then $\gamma_{\{k\} S S}(G)=\left\lceil\frac{n k}{2}\right\rceil$.

Proof. Let $\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}$ be a 1-factorization of G. If r is odd, then the function $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ defined by

$$
\begin{aligned}
& f(e)=k \text { if } e \in M_{r}, \quad f(e)=1 \text { for } e \in \cup_{i=1}^{(r-1) / 2} M_{2 i-1} \\
& \text { and } f(e)=-1 \text { for } e \in \cup_{i=1}^{(r-1) / 2} M_{2 i}
\end{aligned}
$$

is a $\operatorname{SS}\{k\} \mathrm{DF}$ of G with weight $\frac{n k}{2}$.
Let r be even. Define $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ by

$$
f(e)=k-1 \text { if } e \in M_{r}, f(e)=1 \text { for } e \in M_{r-1} \text { when } r=2
$$

and by $f(e)=k-1$ if $e \in M_{r}, f(e)=1$ for $e \in M_{r-1}, f(e)=1$ for $e \in$ $\cup_{i=1}^{(r-2) / 2} M_{2 i-1}$ and $f(e)=-1$ for $e \in \cup_{i=1}^{(r-2) / 2} M_{2 i}$ when $r \geq 4$. Obviously, f is a $\operatorname{SS}\{k\} \mathrm{DF}$ of G with weight $\frac{n k}{2}$. Thus $\gamma_{\{k\} S S}(G) \leq \frac{n \bar{k}}{2}$. It follows from Theorem 2 that $\gamma_{\{k\} S S}(G)=\frac{n k}{2}$ and the proof is complete.

Theorem 4. Let G be a graph of order n and factorable into r Hamiltonian cycles and let $k \geq 2$ be an integer. Then $\gamma_{\{k\} S S}(G)=\left\lceil\frac{n k}{2}\right\rceil$.

Proof. Let G be a Hamiltonian factorable graph, and let $\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ be a Hamiltonian factorization of G. If n and k are even, then by signing $k / 2$ to each edge C_{1} and signing +1 and -1 alternating along C_{i} for $2 \leq i \leq r$, we obtain an $\operatorname{SS}\{k\} \mathrm{DF}$ for G of weight $(n k) / 2$. If n is even and k is odd, then by signing $(k-1) / 2$ and $(k+1) / 2$ alternating along C_{1} and signing +1 and -1 alternating along C_{i} for $2 \leq i \leq r$, we obtain an $\operatorname{SS}\{k\} \mathrm{DF}$ for G of weight $(n k) / 2$.

Let n be odd. We distinguish four cases.
Case 1. r is odd and k is even.
Then the function $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ defined by

$$
\begin{aligned}
& f(e)=k / 2 \text { if } e \in C_{r}, f(e)=1 \text { for } e \in \cup_{i=1}^{(r-1) / 2} C_{2 i-1} \\
& \text { and } f(e)=-1 \text { for } e \in \cup_{i=1}^{(r-1) / 2} C_{2 i}
\end{aligned}
$$

is a $\operatorname{SS}\{k\} \mathrm{DF}$ of G with weight $\frac{n k}{2}$.
Case 2. r and k are odd.
Then by signing $(k+1) / 2$ and $(k-1) / 2$ alternating along C_{r}, signing +1 to the edges in $\cup_{i=1}^{(r-1) / 2} C_{2 i-1}$ and signing -1 to the edges in $\cup_{i=1}^{(r-1) / 2} C_{2 i}$, we obtain an $\operatorname{SS}\{k\} \mathrm{DF}$ for G of weight $\lceil(n k) / 2\rceil$.

Case 3. r and k are even.
Then the function $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ defined by

$$
f(e)=k \text { if } e \in C_{r}, \quad f(e)=(-k) / 2 \text { for } e \in C_{r-1}
$$

and if $r>2$

$$
f(e)=1, \quad e \in \cup_{i=1}^{(r-2) / 2} C_{2 i-1} \text { and } f(e)=-1 \text { for } e \in \cup_{i=1}^{(r-2) / 2} C_{2 i}
$$

is obviously a $\operatorname{SS}\{k\} \mathrm{DF}$ of G with weight $\frac{n k}{2}$.

Case 4. r is even and k is odd.
Define $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ by assigning k to the edge of C_{r}, assigning $(1-k) / 2$ and $(-1-k) / 2$ alternatively along C_{r-1} and if $r>2$ by

$$
f(e)=1, \quad e \in \cup_{i=1}^{(r-2) / 2} C_{2 i-1} \text { and } f(e)=-1 \text { for } e \in \cup_{i=1}^{(r-2) / 2} C_{2 i} .
$$

It is easy to see that f a $\operatorname{SS}\{k\} \mathrm{DF}$ of G with weight $\left\lceil\frac{n k}{2}\right\rceil$.
Thus in all cases $\gamma_{\{k\} S S}(G) \leq\left\lceil\frac{n k}{2}\right\rceil$ and the result follows from Theorem 2.

According to Theorems 3, 4 and the following three well-known results, we can determine the signed star $\{k\}$-domination number of complete graphs and regular bipartite graphs.

Theorem C. The complete graph $K_{2 r}$ is 1-factorable.
Theorem D. For every positive integer r, the complete graph $K_{2 r+1}$ is Hamiltonian factorable.

Theorem E. [König [3] 1916] Every r-regular bipartite graph is 1-factorable for $r \geq 1$.

3. Basic properties of the signed star $\{k\}$-domatic number

In this section we study basic properties of $d_{\{k\} S S}(G)$. The special case $k=1$ of the next result can be found in [1].

Theorem 5. Let G be a graph of size m, signed star $\{k\}$-domination number $\gamma_{\{k\} S S}(G)$ and signed star $\{k\}$-domatic number $d_{\{k\} S S}(G)$. Then

$$
\gamma_{\{k\} S S}(G) \cdot d_{\{k\} S S}(G) \leq m k .
$$

Moreover, if $\gamma_{\{k\} S S}(G) \cdot d_{\{k\} S S}(G)=m k$, then for each $d_{\{k\} S S}$-family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ of G, each function f_{i} is a $\gamma_{\{k\} S S}-$ function and $\sum_{i=1}^{d} f_{i}(e)=$ k for all $e \in E(G)$.

Proof. If $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is a signed star $\{k\}$-dominating family on G such that $d=d_{\{k\} S S}(G)$, then the definitions imply

$$
\begin{aligned}
d \cdot \gamma_{\{k\} S S}(G) & =\sum_{i=1}^{d} \gamma_{\{k\} S S}(G) \leq \sum_{i=1}^{d} \sum_{e \in E(G)} f_{i}(e) \\
& =\sum_{e \in E(G)} \sum_{i=1}^{d} f_{i}(e) \leq \sum_{e \in E(G)} k=m k
\end{aligned}
$$

as desired.

If $\gamma_{\{k\} S S}(G) \cdot d_{\{k\} S S}(G)=m k$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{\{k\} S S^{-}}$family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ of G and for each $i, \sum_{e \in E(G)} f_{i}(e)=\gamma_{\{k\} S S}(G)$, thus each function f_{i} is a $\gamma_{\{k\} S S}$-function, and $\sum_{i=1}^{d} f_{i}(e)=k$ for all $e \in E(G)$.

Corollary 1. If G is a graph of size m, then $\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq$ $m k+1$.

Proof. By Theorem 5,

$$
\begin{equation*}
\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq d_{\{k\} S S}(G)+\frac{m k}{d_{\{k\} S S}(G)} \tag{1}
\end{equation*}
$$

Using the fact that the function $g(x)=x+(m k) / x$ is decreasing for $1 \leq$ $x \leq \sqrt{m k}$ and increasing for $\sqrt{m k} \leq x \leq m k$, this inequality leads to the desired bound immediately.

Corollary 2. Let G be a graph of size m. If $2 \leq \gamma_{\{k\} S S}(G) \leq m k-1$, then

$$
\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq m k
$$

Proof. Theorem 5 implies that

$$
\begin{equation*}
\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq \gamma_{\{k\} S S}(G)+\frac{m k}{\gamma_{\{k\} S S}(G)} \tag{2}
\end{equation*}
$$

If we define $x=\gamma_{\{k\} S S}(G)$ and $g(x)=x+(m k) / x$ for $x>0$, then because $2 \leq \gamma_{\{k\} S S}(G) \leq m k-1$, we have to determine the maximum of the function g in the interval $I: 2 \leq x \leq m k-1$. It is easy to see that

$$
\begin{aligned}
\max _{x \in I}\{g(x)\} & =\max \{g(2), g(m k-1)\} \\
& =\max \left\{2+\frac{m k}{2}, m k-1+\frac{m k}{m k-1}\right\} \\
& =m k-1+\frac{m k}{m k-1}<m k+1
\end{aligned}
$$

and we obtain $\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq m k$. This completes the proof.
Corollary 3. Let G be a graph of size m. If $\min \left\{\gamma_{\{k\} S S}(G), d_{\{k\} S S}(G)\right\}$ ≥ 2, then

$$
\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq \frac{m k}{2}+2
$$

Proof. Since $\min \left\{\gamma_{\{k\} S S}(G), d_{\{k\} S S}(G)\right\} \geq 2$, it follows by Theorem 5 that $2 \leq d_{\{k\} S S}(G) \leq \frac{m k}{2}$. By (1) and the fact that the maximum of $g(x)=x+(m k) / x$ on the interval $2 \leq x \leq(m k) / 2$ is $g(2)=g((m k) / 2)$, we see that

$$
\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G) \leq d_{\{k\} S S}(G)+\frac{m k}{d_{\{k\} S S}(G)} \leq \frac{m k}{2}+2
$$

Since $\gamma_{\{k\} S S}\left(K_{1, n}\right)=n k$ and $d_{\{k\} S S}\left(K_{1, n}\right)=1$, Corollary 3 is no longer true in the case that $\min \left\{\gamma_{\{k\} S S}(G), d_{\{k\} S S}(G)\right\}=1$.

Theorem 6. Let G be a graph. Then

$$
d_{\{k\} S S}(G) \leq \delta(G)
$$

Moreover, if the equality holds, then for each function f_{i} of a $S S\{k\} D$ family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ and for every $e \in E(v)$ where v is a vertex of degree $\delta(G)$, $\sum_{e \in E(v)} f_{i}(e)=k$ and $\sum_{i=1}^{d} f_{i}(e)=k$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a $\operatorname{SS}\{k\} \mathrm{D}$ family of G such that $d=$ $d_{\{k\} S S}(G)$ and let v be a vertex of degree $\delta(G)$. Then

$$
\begin{aligned}
d k & =\sum_{i=1}^{d} k \leq \sum_{i=1}^{d} \sum_{e \in E(v)} f_{i}(e) \\
& =\sum_{e \in E(v)} \sum_{i=1}^{d} f_{i}(e) \leq \sum_{e \in E(v)} k=k \delta(G) .
\end{aligned}
$$

If $d_{\{k\} S S}(G)=\delta(G)$, then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement.

The special case $k=1$ of Theorem 6 can be found in [1].
Corollary 4. Let G be a graph of size m, and let $k \geq 2$ be an integer. Then $\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G)=m k+1$ if and only if G is the disjoint union of stars.

Proof. If G is is the disjoint union of stars, then $\gamma_{\{k\} S S}(G)=m k$ by Observation 3. Hence $d_{\{k\} S S}(G)=1$ and the result follows.

Conversely, let $\gamma_{\{k\} S S}(G)+d_{\{k\} S S}(G)=m k+1$. The result is obviously true for $m=1,2,3$. Assume $m \geq 4$. By Corollary 3, we may assume that $\min \left\{\gamma_{\{k\} S S}(G), d_{\{k\} S S}(G)\right\}=1$. If $\gamma_{\{k\} S S}(G)=1$, then $d_{\{k\} S S}(G)=m k$, which is a contradiction to Theorem 6. If $d_{\{k\} S S}(G)=1$, then $\gamma_{\{k\} S S}(G)=$ $m k$ and the result follows by Observation 3.

Corollary 5. Let G be a graph of size m. Then $\gamma_{S S}(G)+d_{S S}(G)=m+1$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=1$ or $\operatorname{deg}(u)=2$.

Proof. If G satisfies the condition, i.e., each edge $e \in E(G)$ has an endpoint u such that $\operatorname{deg}(u)=1$ or $\operatorname{deg}(u)=2$, then $\gamma_{S S}(G)=m$ by Observation 1. Theorem 5 implies that $d_{S S}(G)=1$ and so $\gamma_{S S}(G)+d_{S S}(G)=m+1$.

Conversely, assume that $\gamma_{S S}(G)+d_{S S}(G)=m+1$. The result is obviously true for $m=1$ and $m=2$. Assume now that $m \geq 3$. By Corollary 3 , we may assume that $\min \left\{\gamma_{S S}(G), d_{S S}(G)\right\}=1$. Since $m \geq 3$, we observe that $n \geq 3$ and therefore Theorem 2 implies that $\gamma_{S S}(G) \geq\left\lceil\frac{n}{2}\right\rceil>1$. Thus $d_{S S}(G)=1$ and $\gamma_{S S}(G)=m$, and the result follows by Observation 1.

As an application of Theorem 6, we will prove the following NordhausGaddum type result.

Theorem 7. For every graph G of order n,

$$
\begin{equation*}
d_{\{k\} S S}(G)+d_{\{k\} S S}(\bar{G}) \leq n-1 \tag{3}
\end{equation*}
$$

If $d_{\{k\} S S}(G)+d_{\{k\} S S}(\bar{G})=n-1$, then G is regular.
Proof. Since $\delta(G)+\delta(\bar{G}) \leq n-1$, Theorem 6 leads to

$$
d_{\{k\} S S}(G)+d_{\{k\} S S}(\bar{G}) \leq \delta(G)+\delta(\bar{G}) \leq n-1
$$

If G is not regular, then $\delta(G)+\delta(\bar{G}) \leq n-2$ and hence we obtain the better bound $d_{\{k\} S S}(G)+d_{\{k\} S S}(\bar{G}) \leq n-2$.

If C_{n} is a cycle of length n, then we have shown in [1] that $d_{S S}\left(C_{n}\right)=1$. Next we determine $d_{\{k\} S S}\left(C_{n}\right)$ for $k \geq 2$.

Theorem 8. If $k \geq 2$ is an integer, and C_{n} a cycle of length n, then $d_{\{k\} S S}\left(C_{n}\right)=2$ when $k \geq 3$ and n is even and $d_{\{k\} S S}\left(C_{n}\right)=1$ otherwise.

Proof. Let $C_{n}=v_{1} e_{1} v_{2} e_{2} \ldots v_{n-1} e_{n} v_{1}$ with $v_{j} \in V\left(C_{n}\right)$ and $e_{j} \in E\left(C_{n}\right)$ for $j \in\{1,2, \ldots, n\}$.

First assume that $k \geq 3$ and that n is even. Define $f_{i}: E(G) \longrightarrow$ $\{ \pm 1, \pm 2, \ldots, \pm k\}$ for $i=1,2$ by $f_{1}\left(e_{1}\right)=f_{1}\left(e_{3}\right)=\ldots=f_{1}\left(e_{n-1}\right)=1$, $f_{1}\left(e_{2}\right)=f_{1}\left(e_{4}\right)=\ldots=f_{1}\left(e_{n}\right)=k-1$ and $f_{2}\left(e_{1}\right)=f_{2}\left(e_{3}\right)=\ldots=$ $f_{2}\left(e_{n-1}\right)=k-1, f_{2}\left(e_{2}\right)=f_{2}\left(e_{4}\right)=\ldots=f_{2}\left(e_{n}\right)=1$. Then $\left\{f_{1}, f_{2}\right\}$ is an $\mathrm{SS}\{k\} \mathrm{D}$ family on C_{n} and thus $d_{\{k\} S S}\left(C_{n}\right) \geq 2$. As Theorem 6 implies that $d_{\{k\} S S}\left(C_{n}\right) \leq 2$, we deduce that $d_{\{k\} S S}\left(C_{n}\right)=2$ in this case.

Assume next that $k=2$ and that n is even. Suppose to the contrary that $d_{\{2\} S S}\left(C_{n}\right)=2$. If $\left\{f_{1}, f_{2}\right\}$ is an $\operatorname{SS}\{k\} \mathrm{D}$ family on C_{n}, then Theorem 6 yields to $f_{i}\left(e_{t}\right)+f_{i}\left(e_{t+1}\right)=2$ for $i=1,2$ and $1 \leq t \leq n$, where the indices t
are taken modulo n. Since $f_{i}\left(e_{t}\right) \in\{-2,-1,1,2\}$, this is only possible when $f_{1}\left(e_{t}\right)=1$ and $f_{2}\left(e_{t}\right)=1$ for each $t \in\{1,2, \ldots, n\}$. Hence we obtain the contradiction $f_{1} \equiv f_{2} \equiv 1$ and thus $d_{\{2\} S S}\left(C_{n}\right)=1$.

Finally assume that n is odd. Suppose to the contrary that $d_{\{k\} S S}\left(C_{n}\right)$ $=2$. If $\left\{f_{1}, f_{2}\right\}$ is an $\operatorname{SS}\{k\} \mathrm{D}$ family on C_{n}, then Theorem 6 implies that $f_{i}\left(e_{t}\right)+f_{i}\left(e_{t+1}\right)=k$ for $i=1,2$ and $1 \leq t \leq n$, where the indices t are taken modulo n. Since $f_{i}\left(e_{t}\right)+f_{i}\left(e_{t+1}\right)=f_{i}\left(e_{t+1}\right)+f_{i}\left(e_{t+2}\right)=k$, we conclude that $f_{i}\left(e_{t}\right)=f_{i}\left(e_{t+2}\right)$ for $i=1,2$ and $1 \leq t \leq n$. Therefore $f_{i}\left(e_{1}\right)=f_{i}\left(e_{3}\right)=$ $\ldots=f_{i}\left(e_{n}\right)=a_{i}$. As e_{1} and e_{n} are adjacent, it follows that $f_{i}\left(e_{1}\right)+f_{i}\left(e_{n}\right)=$ $2 a_{i}=k$. In addition, we have $f_{i}\left(e_{2}\right)=f_{i}\left(e_{4}\right)=\ldots=f_{i}\left(e_{n-1}\right)=b_{i}$. As e_{1} and e_{2} are adjacent, we find that $f_{i}\left(e_{1}\right)+f_{i}\left(e_{2}\right)=a_{i}+b_{i}=k$. We deduce that $k=2 a_{i}=a_{i}+b_{i}$ and so $a_{i}=b_{i}=k / 2$ for $i=1,2$. This leads to the contradiction $f_{1} \equiv f_{2} \equiv k / 2$ and thus $d_{\{k\} S S}\left(C_{n}\right)=1$ when n is odd.

References

[1] Atapour M., Sheikholeslami S.M., Ghameshlou A.N., Volkmann L., Signed star domatic number of a graph, Discrete Appl. Math., 158(2010), 213-218.
[2] Haynes T.W., Hedetniemi S.T., Slater P.J., Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
[3] König D., Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann., 77(1916), 453-465.
[4] Saei R., Sheikholeslami S.M., Signed star k-subdomination numbers in graphs, Discrete Appl. Math., 156(2008), 3066-3070.
[5] Wang C., The signed star domination numbers of the Cartesian product, Discrete Appl. Math., 155(2007), 1497-1505.
[6] West D.B., Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
[7] Xu B., On edge domination numbers of graphs, Discrete Math., 294(2005), 311-316.
[8] Xu B., Two classes of edge domination in graphs, Discrete Appl. Math., 154 (2006), 1541-1546.
[9] Xu B., Li C.H., Signed star k-domination numbers of graphs, (Chinese) Pure Appl. Math. (Xi'an), 25(2009), 638-641.

M. Atapour
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: m.atapour@bonabu.ac.ir
S. M. Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: s.m.sheikholeslami@azaruniv.edu

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH-Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Received on 02.03.2012 and, in revised form, on 20.11.2012.

