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SIGNED STAR {k}-DOMATIC NUMBER

OF A GRAPH

Abstract. Let G be a simple graph without isolated vertices
with vertex set V (G) and edge set E(G) and let k be a positive
integer. A function f : E(G) −→ {±1,±2, . . . ,±k} is said to be a
signed star {k}-dominating function on G if

∑
e∈E(v) f(e) ≥ k for

every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. The
signed star {k}-domination number of a graph G is γ{k}SS(G) =
min{

∑
e∈E f(e) | f is a SS{k}DF on G}. A set {f1, f2, . . . , fd}

of distinct signed star {k}-dominating functions on G with the

property that
∑d

i=1 fi(e) ≤ k for each e ∈ E(G), is called a signed
star {k}-dominating family (of functions) on G. The maximum
number of functions in a signed star {k}-dominating family on G is
the signed star {k}-domatic number of G, denoted by d{k}SS(G).
In this paper we study the properties of the signed star {k}- dom-
ination number γ{k}SS(G) and signed star {k}-domatic number
d{k}SS(G). In particular, we determine the signed star {k}- dom-
ination number of some classes of graphs. Some of our results
extend these one given by Xu [7] for the signed star domination
number and Atapour et al. [1] for the signed star domatic number.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We use
[2, 6] for terminology and notation which are not defined here and consider
simple graphs without isolated vertices only. For every nonempty subset
E′ of E(G), the subgraph G[E′] induced by E′ is the graph whose vertex
set consists of those vertices of G incident with at least one edge of E′ and
whose edge set is E′.
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Two edges e1, e2 of G are called adjacent if they are distinct and have a
common vertex. The open neighborhood NG(e) of an edge e ∈ E(G) is the
set of all edges adjacent to e. Its closed neighborhood is NG[e] = NG(e)∪{e}.
For a function f : E(G) −→ R and a subset S of E(G) we define f(S) =∑

e∈S f(e). The edge-neighborhood EG(v) of a vertex v ∈ V (G) is the set
of all edges incident with the vertex v. For each vertex v ∈ V (G), we also
define f(v) =

∑
e∈EG(v) f(e).

Let k be a positive integer. A function f : E(G) −→ {±1,±2, . . . ,±k}
is called a signed star {k}-dominating function (SS{k}DF) on G, if f(v) ≥
k for every vertex v of G. The signed star {k}-domination number of a
graph G is γ{k}SS(G) = min{

∑
e∈E f(e) | f is a SS{k}DF on G}. The

signed star {k}-dominating function f on G with f(E(G)) = γ{k}SS(G) is
called a γ{k}SS(G)-function. The signed star {1}-domination number of a
graph G is the usual signed star domination number γSS(G), which has
been introduced by Xu in [7] and has been studied by several authors (see
for instance [4, 5, 8, 9]).

A set {f1, f2, . . . , fd} of distinct signed star {k}-dominating functions
on G with the property that

∑d
i=1 fi(e) ≤ k for each e ∈ E(G), is called

a signed star {k}-dominating family (of functions) on G. The maximum
number of functions in a signed star {k}-dominating family on G is the
signed star {k}-domatic number of G, denoted by d{k}SS(G). The signed
star {k}-domatic number is well-defined and d{k}SS(G) ≥ 1 for all graphs G,
since the set consisting of any one SS{k}D function forms a SS{k}D family
on G. A d{k}SS-family of a graph G is a SS{k}D family containing d{k}SS(D)
SS{k}D functions. The signed star {1}-domatic number d{1}SS(G) is the
usual signed star domatic number dSS(G) which was introduced by Atapour
et al. in [1].

Our purpose in this paper is to initiate the study of signed star {k}-domi-
nation number and signed star {k}-domatic number in graphs. We first
present bounds on signed star {k}-domination number and then we study
basic properties and bounds for the signed star {k}-domatic number of a
graph which some of them are analogous to those of the signed star domatic
number dSS(G) in [1]. In addition, we determine the signed star {k}-domatic
number of some classes of graphs.

Observation 1. Let G be a graph of size m with δ(G) ≥ 1. Then
γSS(G) = m if and only if each edge e ∈ E(G) has an endpoint u such that
deg(u) = 1 or deg(u) = 2.

Observation 2. Let G be a graph with δ(G) ≥ 1. If v is a vertex of G
such that δ(G− v) ≥ 1, then

γ{k}SS(G) ≤ γ{k}SS(G− v) + max{k, deg(v)}.
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Proof. Since δ(G − v) ≥ 1, there exists a γ{k}SS(G − v)-function f .
Let EG(v) = {e1, e2, . . . , ed}. If deg(v) = d ≥ k, then define g : E(G) →
{±1,±2, . . . ,±k} by g(e) = f(e) for e ∈ E(G − v) and g(ei) = 1 for i ∈
{1, 2, . . . , d}. If d = deg(v) < k, then define g : E(G) → {±1,±2, . . . ,±k}
by g(e) = f(e) for e ∈ E(G − v) and g(ei) = 1 for 1 ≤ i ≤ d − 1 and
g(ed) = k+ 1− deg(v). In both cases it is easy to see that g is a signed star
{k}-dominating function on G, and therefore we obtain the desired bound
γ{k}SS(G) ≤ γ{k}SS(G− v) + max{k, deg(v)}. �

Observation 3. Let G be a graph of size m and let k ≥ 2 be an integer.
Then γ{k}SS(G) = mk if and only if each edge e ∈ E(G) has an endpoint u
such that deg(u) = 1.

Proof. If each edge e ∈ E(G) has an endpoint u such that deg(u) = 1,
then trivially γ{k}SS(G) = mk.

Conversely, assume that γ{k}SS(G) = mk. Suppose to the contrary that
there exists an edge e = uv ∈ E(G) such that min{deg(u),deg(v)} ≥ 2.
Define f : E(G) → {±1,±2, . . . ,±k} by f(e) = 1 and f(e′) = k for e′ ∈
E(G)\{e}. Obviously, f is a signed star {k}-dominating function of G with
weight less than mk, a contradiction. This completes the proof. �

Theorem A. [7] If G is a graph G with δ(G) ≥ 3, then G contains an
even cycle.

Theorem B. [7] For any graph G of order n ≥ 4, γSS(G) ≤ 2n− 4.

2. Bounds on the signed star {k}-domination number

In this section we give some bounds on γ{k}SS(G).

Theorem 1. For any graph G of order n ≥ 4 and any integer k ≥ 2,

γ{k}SS(G) ≤ k(n− 1).

The bound is sharp for stars.

Proof. We proceed by induction on m = |E(G)|. The result is clearly
true for m ≤ 3, since n ≥ 4. Let the statement be true for all graphs of
order n ≥ 4 and size at most m− 1. Now assume that G is a graph of order
n ≥ 4 and size m.

Assume first that δ(G) ≥ 3. By Theorem A, G contains an even cycle C.
Let G′ = G − E(C), and let f be a γ{k}SS(G′)-function. By the induction
hypothesis, ω(f) ≤ k(n−1). Extending f from G′ to G by signing +1 and−1
alternating along C, we obtain an SS{k}DF for G, and hence γ{k}SS(G) ≤
k(n− 1).



36 M. Atapour, S. M. Sheikholeslami and L. Volkmann

Assume second that δ(G) = 2. If v is a vertex of G with deg(v) = 2, then
δ(G − v) ≥ 1 and |E(G − v)| ≤ m − 1. If |V (G − v)| = 3, then n = 4, and
it is easy to see that γ{k}SS(G) ≤ k(n− 1). Let now |V (G− v)| ≥ 4. Using
the induction hypothesis and Observation 2, we obtain

γ{k}SS(G) ≤ γ{k}SS(G− v) + k ≤ k(n− 2) + k = k(n− 1).

Assume third that δ(G) = 1. If ∆(G) = 1, then G is isomorphic to pK2

with p = n/2. We observe that γ{k}SS(G) = nk/2 ≤ k(n − 1). Let now
∆(G) ≥ 2, and let H be a component of G with ∆(H) ≥ 2.

If δ(H) = 1, then let v be a vertex of H with degH(v) = 1. Obviously,
δ(G − v) ≥ 1 and |E(G − v)| ≤ m − 1. If |V (G − v)| = 3, then n = 4, and
it is easy to see that γ{k}SS(G) ≤ k(n− 1). Let now |V (G− v)| ≥ 4. Using
the induction hypothesis and Observation 2, we deduce that

γ{k}SS(G) ≤ γ{k}SS(G− v) + k ≤ k(n− 2) + k = k(n− 1).

If δ(H) = 2, then let v be a vertex of H with degH(v) = 2. Obviously,
δ(G− v) ≥ 1 and 4 ≤ |E(G− v)| ≤ m− 1. Using the induction hypothesis
and Observation 2, we deduce that

γ{k}SS(G) ≤ γ{k}SS(G− v) + k ≤ k(n− 2) + k = k(n− 1).

Finally assume that δ(H) ≥ 3. Using the arguments as in the case
δ(G) ≥ 3, we obtain the desired result.

Clearly, if G is isomorphic to the star K1,n−1, then γ{k}SS(G) = k(n−1),
and the proof is complete. �

Theorem 2. For all graphs G of order n and δ(G) ≥ 1, γ{k}SS(G) ≥
dnk2 e.

Proof. Suppose that f is a γ{k}SS(G)-function. Then

γ{k}SS(G) =
∑

e∈E(G)

f(e) =
1

2

∑
v∈V (G)

∑
e∈E(v)

f(e) ≥ 1

2

∑
v∈V (G)

k =
nk

2
,

as desired. �

Theorem 3. Let G be an r-regular and 1-factorable graph and let k ≥ 2
be an integer. Then γ{k}SS(G) = dnk2 e.

Proof. Let {M1,M2, . . . ,Mr} be a 1-factorization of G. If r is odd, then
the function f : E(G)→ {±1,±2, . . . ,±k} defined by

f(e) = k if e ∈Mr, f(e) = 1 for e ∈ ∪(r−1)/2i=1 M2i−1

and f(e) = −1 for e ∈ ∪(r−1)/2i=1 M2i,
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is a SS{k}DF of G with weight nk
2 .

Let r be even. Define f : E(G)→ {±1,±2, . . . ,±k} by

f(e) = k − 1 if e ∈Mr, f(e) = 1 for e ∈Mr−1 when r = 2

and by f(e) = k − 1 if e ∈ Mr, f(e) = 1 for e ∈ Mr−1, f(e) = 1 for e ∈
∪(r−2)/2i=1 M2i−1 and f(e) = −1 for e ∈ ∪(r−2)/2i=1 M2i when r ≥ 4. Obviously, f
is a SS{k}DF of G with weight nk

2 . Thus γ{k}SS(G) ≤ nk
2 . It follows from

Theorem 2 that γ{k}SS(G) = nk
2 and the proof is complete. �

Theorem 4. Let G be a graph of order n and factorable into r Hamil-
tonian cycles and let k ≥ 2 be an integer. Then γ{k}SS(G) = dnk2 e.

Proof. LetG be a Hamiltonian factorable graph, and let {C1, C2, . . . , Cr}
be a Hamiltonian factorization of G. If n and k are even, then by signing k/2
to each edge C1 and signing +1 and −1 alternating along Ci for 2 ≤ i ≤ r,
we obtain an SS{k}DF for G of weight (nk)/2. If n is even and k is odd,
then by signing (k−1)/2 and (k+ 1)/2 alternating along C1 and signing +1
and −1 alternating along Ci for 2 ≤ i ≤ r, we obtain an SS{k}DF for G of
weight (nk)/2.

Let n be odd. We distinguish four cases.

Case 1. r is odd and k is even.

Then the function f : E(G)→ {±1,±2, . . . ,±k} defined by

f(e) = k/2 if e ∈ Cr, f(e) = 1 for e ∈ ∪(r−1)/2i=1 C2i−1

and f(e) = −1 for e ∈ ∪(r−1)/2i=1 C2i,

is a SS{k}DF of G with weight nk
2 .

Case 2. r and k are odd.

Then by signing (k+ 1)/2 and (k−1)/2 alternating along Cr, signing +1

to the edges in ∪(r−1)/2i=1 C2i−1 and signing −1 to the edges in ∪(r−1)/2i=1 C2i, we
obtain an SS{k}DF for G of weight d(nk)/2e.

Case 3. r and k are even.

Then the function f : E(G)→ {±1,±2, . . . ,±k} defined by

f(e) = k if e ∈ Cr, f(e) = (−k)/2 for e ∈ Cr−1

and if r > 2

f(e) = 1, e ∈ ∪(r−2)/2i=1 C2i−1 and f(e) = −1 for e ∈ ∪(r−2)/2i=1 C2i,

is obviously a SS{k}DF of G with weight nk
2 .
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Case 4. r is even and k is odd.

Define f : E(G) → {±1,±2, . . . ,±k} by assigning k to the edge of Cr,
assigning (1− k)/2 and (−1− k)/2 alternatively along Cr−1 and if r > 2 by

f(e) = 1, e ∈ ∪(r−2)/2i=1 C2i−1 and f(e) = −1 for e ∈ ∪(r−2)/2i=1 C2i.

It is easy to see that f a SS{k}DF of G with weight dnk2 e.
Thus in all cases γ{k}SS(G) ≤ dnk2 e and the result follows from Theo-

rem 2. �

According to Theorems 3, 4 and the following three well-known results,
we can determine the signed star {k}-domination number of complete graphs
and regular bipartite graphs.

Theorem C. The complete graph K2r is 1-factorable.

Theorem D. For every positive integer r, the complete graph K2r+1 is
Hamiltonian factorable.

Theorem E. [König [3] 1916] Every r-regular bipartite graph is 1-factor-
able for r ≥ 1.

3. Basic properties of the signed star {k}-domatic
number

In this section we study basic properties of d{k}SS(G). The special case
k = 1 of the next result can be found in [1].

Theorem 5. Let G be a graph of size m, signed star {k}-domination
number γ{k}SS(G) and signed star {k}-domatic number d{k}SS(G). Then

γ{k}SS(G) · d{k}SS(G) ≤ mk.

Moreover, if γ{k}SS(G) · d{k}SS(G) = mk, then for each d{k}SS-family
{f1, f2, · · · , fd} of G, each function fi is a γ{k}SS-function and

∑d
i=1 fi(e) =

k for all e ∈ E(G).

Proof. If {f1, f2, . . . , fd} is a signed star {k}-dominating family on G
such that d = d{k}SS(G), then the definitions imply

d · γ{k}SS(G) =

d∑
i=1

γ{k}SS(G) ≤
d∑

i=1

∑
e∈E(G)

fi(e)

=
∑

e∈E(G)

d∑
i=1

fi(e) ≤
∑

e∈E(G)

k = mk

as desired.
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If γ{k}SS(G) · d{k}SS(G) = mk, then the two inequalities occurring in
the proof become equalities. Hence for the d{k}SS-family {f1, f2, · · · , fd}
of G and for each i,

∑
e∈E(G) fi(e) = γ{k}SS(G), thus each function fi is a

γ{k}SS-function, and
∑d

i=1 fi(e) = k for all e ∈ E(G). �

Corollary 1. If G is a graph of size m, then γ{k}SS(G) + d{k}SS(G) ≤
mk + 1.

Proof. By Theorem 5,

(1) γ{k}SS(G) + d{k}SS(G) ≤ d{k}SS(G) +
mk

d{k}SS(G)
.

Using the fact that the function g(x) = x + (mk)/x is decreasing for 1 ≤
x ≤

√
mk and increasing for

√
mk ≤ x ≤ mk, this inequality leads to the

desired bound immediately. �

Corollary 2. Let G be a graph of size m. If 2 ≤ γ{k}SS(G) ≤ mk − 1,
then

γ{k}SS(G) + d{k}SS(G) ≤ mk.

Proof. Theorem 5 implies that

(2) γ{k}SS(G) + d{k}SS(G) ≤ γ{k}SS(G) +
mk

γ{k}SS(G)
.

If we define x = γ{k}SS(G) and g(x) = x+ (mk)/x for x > 0, then because
2 ≤ γ{k}SS(G) ≤ mk−1, we have to determine the maximum of the function
g in the interval I : 2 ≤ x ≤ mk − 1. It is easy to see that

max
x∈I
{g(x)} = max{g(2), g(mk − 1)}

= max{2 +
mk

2
,mk − 1 +

mk

mk − 1
}

= mk − 1 +
mk

mk − 1
< mk + 1,

and we obtain γ{k}SS(G) + d{k}SS(G) ≤ mk. This completes the proof. �

Corollary 3. Let G be a graph of size m. If min{γ{k}SS(G), d{k}SS(G)}
≥ 2, then

γ{k}SS(G) + d{k}SS(G) ≤ mk

2
+ 2.
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Proof. Since min{γ{k}SS(G), d{k}SS(G)} ≥ 2, it follows by Theorem

5 that 2 ≤ d{k}SS(G) ≤ mk

2
. By (1) and the fact that the maximum of

g(x) = x+ (mk)/x on the interval 2 ≤ x ≤ (mk)/2 is g(2) = g((mk)/2), we
see that

γ{k}SS(G) + d{k}SS(G) ≤ d{k}SS(G) +
mk

d{k}SS(G)
≤ mk

2
+ 2.

�

Since γ{k}SS(K1,n) = nk and d{k}SS(K1,n) = 1, Corollary 3 is no longer
true in the case that min{γ{k}SS(G), d{k}SS(G)} = 1.

Theorem 6. Let G be a graph. Then

d{k}SS(G) ≤ δ(G).

Moreover, if the equality holds, then for each function fi of a SS{k}D family
{f1, f2, · · · , fd} and for every e ∈ E(v) where v is a vertex of degree δ(G),∑

e∈E(v) fi(e) = k and
∑d

i=1 fi(e) = k.

Proof. Let {f1, f2, . . . , fd} be a SS{k}D family of G such that d =
d{k}SS(G) and let v be a vertex of degree δ(G). Then

dk =
d∑

i=1

k ≤
d∑

i=1

∑
e∈E(v)

fi(e)

=
∑

e∈E(v)

d∑
i=1

fi(e) ≤
∑

e∈E(v)

k = kδ(G).

If d{k}SS(G) = δ(G), then the two inequalities occurring in the proof of each
corresponding case become equalities, which gives the properties given in
the statement. �

The special case k = 1 of Theorem 6 can be found in [1].

Corollary 4. Let G be a graph of size m, and let k ≥ 2 be an integer.
Then γ{k}SS(G) + d{k}SS(G) = mk+ 1 if and only if G is the disjoint union
of stars.

Proof. If G is is the disjoint union of stars, then γ{k}SS(G) = mk by
Observation 3. Hence d{k}SS(G) = 1 and the result follows.

Conversely, let γ{k}SS(G) + d{k}SS(G) = mk+ 1. The result is obviously
true for m = 1, 2, 3. Assume m ≥ 4. By Corollary 3, we may assume that
min{γ{k}SS(G), d{k}SS(G)} = 1. If γ{k}SS(G) = 1, then d{k}SS(G) = mk,
which is a contradiction to Theorem 6. If d{k}SS(G) = 1, then γ{k}SS(G) =
mk and the result follows by Observation 3. �
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Corollary 5. Let G be a graph of size m. Then γSS(G)+dSS(G) = m+1
if and only if each edge e ∈ E(G) has an endpoint u such that deg(u) = 1
or deg(u) = 2.

Proof. If G satisfies the condition, i.e., each edge e ∈ E(G) has an end-
point u such that deg(u) = 1 or deg(u) = 2, then γSS(G) = m by Observa-
tion 1. Theorem 5 implies that dSS(G) = 1 and so γSS(G)+dSS(G) = m+1.

Conversely, assume that γSS(G)+dSS(G) = m+1. The result is obviously
true for m = 1 and m = 2. Assume now that m ≥ 3. By Corollary 3, we
may assume that min{γSS(G), dSS(G)} = 1. Since m ≥ 3, we observe that
n ≥ 3 and therefore Theorem 2 implies that γSS(G) ≥ dn2 e > 1. Thus
dSS(G) = 1 and γSS(G) = m, and the result follows by Observation 1. �

As an application of Theorem 6, we will prove the following Nordhaus-
Gaddum type result.

Theorem 7. For every graph G of order n,

(3) d{k}SS(G) + d{k}SS(G) ≤ n− 1.

If d{k}SS(G) + d{k}SS(G) = n− 1, then G is regular.

Proof. Since δ(G) + δ(G) ≤ n− 1, Theorem 6 leads to

d{k}SS(G) + d{k}SS(G) ≤ δ(G) + δ(G) ≤ n− 1.

If G is not regular, then δ(G)+δ(G) ≤ n−2 and hence we obtain the better
bound d{k}SS(G) + d{k}SS(G) ≤ n− 2. �

If Cn is a cycle of length n, then we have shown in [1] that dSS(Cn) = 1.
Next we determine d{k}SS(Cn) for k ≥ 2.

Theorem 8. If k ≥ 2 is an integer, and Cn a cycle of length n, then
d{k}SS(Cn) = 2 when k ≥ 3 and n is even and d{k}SS(Cn) = 1 otherwise.

Proof. Let Cn = v1e1v2e2 . . . vn−1env1 with vj ∈ V (Cn) and ej ∈ E(Cn)
for j ∈ {1, 2, . . . , n}.

First assume that k ≥ 3 and that n is even. Define fi : E(G) −→
{±1,±2, . . . ,±k} for i = 1, 2 by f1(e1) = f1(e3) = . . . = f1(en−1) = 1,
f1(e2) = f1(e4) = . . . = f1(en) = k − 1 and f2(e1) = f2(e3) = . . . =
f2(en−1) = k − 1, f2(e2) = f2(e4) = . . . = f2(en) = 1. Then {f1, f2} is an
SS{k}D family on Cn and thus d{k}SS(Cn) ≥ 2. As Theorem 6 implies that
d{k}SS(Cn) ≤ 2, we deduce that d{k}SS(Cn) = 2 in this case.

Assume next that k = 2 and that n is even. Suppose to the contrary that
d{2}SS(Cn) = 2. If {f1, f2} is an SS{k}D family on Cn, then Theorem 6
yields to fi(et) + fi(et+1) = 2 for i = 1, 2 and 1 ≤ t ≤ n, where the indices t
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are taken modulo n. Since fi(et) ∈ {−2,−1, 1, 2}, this is only possible when
f1(et) = 1 and f2(et) = 1 for each t ∈ {1, 2, . . . , n}. Hence we obtain the
contradiction f1 ≡ f2 ≡ 1 and thus d{2}SS(Cn) = 1.

Finally assume that n is odd. Suppose to the contrary that d{k}SS(Cn)
= 2. If {f1, f2} is an SS{k}D family on Cn, then Theorem 6 implies that
fi(et)+fi(et+1) = k for i = 1, 2 and 1 ≤ t ≤ n, where the indices t are taken
modulo n. Since fi(et)+fi(et+1) = fi(et+1)+fi(et+2) = k, we conclude that
fi(et) = fi(et+2) for i = 1, 2 and 1 ≤ t ≤ n. Therefore fi(e1) = fi(e3) =
. . . = fi(en) = ai. As e1 and en are adjacent, it follows that fi(e1)+fi(en) =
2ai = k. In addition, we have fi(e2) = fi(e4) = . . . = fi(en−1) = bi. As e1
and e2 are adjacent, we find that fi(e1) + fi(e2) = ai + bi = k. We deduce
that k = 2ai = ai + bi and so ai = bi = k/2 for i = 1, 2. This leads to the
contradiction f1 ≡ f2 ≡ k/2 and thus d{k}SS(Cn) = 1 when n is odd. �
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