$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 51}$

M. ATAPOUR, S. M. SHEIKHOLESLAMI AND L. VOLKMANN

SIGNED STAR {k}-DOMATIC NUMBER OF A GRAPH

ABSTRACT. Let G be a simple graph without isolated vertices with vertex set V(G) and edge set E(G) and let k be a positive integer. A function $f: E(G) \longrightarrow \{\pm 1, \pm 2, \dots, \pm k\}$ is said to be a signed star {k}-dominating function on G if $\sum_{e \in E(v)} f(e) \ge k$ for every vertex v of G, where $E(v) = \{uv \in E(G) \mid u \in N(v)\}$. The signed star $\{k\}$ -domination number of a graph G is $\gamma_{\{k\}SS}(G) =$ $\min\{\sum_{e \in E} f(e) \mid f \text{ is a } SS\{k\}DF \text{ on } G\}.$ A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed star $\{k\}$ -dominating functions on G with the property that $\sum_{i=1}^{d} f_i(e) \leq k$ for each $e \in E(G)$, is called a signed star $\{k\}$ -dominating family (of functions) on G. The maximum number of functions in a signed star $\{k\}$ -dominating family on G is the signed star $\{k\}$ -domatic number of G, denoted by $d_{\{k\}SS}(G)$. In this paper we study the properties of the signed star $\{k\}$ - domination number $\gamma_{\{k\}SS}(G)$ and signed star $\{k\}$ -domatic number $d_{\{k\}SS}(G)$. In particular, we determine the signed star $\{k\}$ - domination number of some classes of graphs. Some of our results extend these one given by Xu [7] for the signed star domination number and Atapour et al. [1] for the signed star domatic number. KEY WORDS: signed star $\{k\}$ -domatic number, signed star domatic number, signed star $\{k\}$ -dominating function, signed star dominating functions, signed star $\{k\}$ -domination number, signed star domination number, regular graphs.

AMS Mathematics Subject Classification: 05C69.

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). We use [2, 6] for terminology and notation which are not defined here and consider simple graphs without isolated vertices only. For every nonempty subset E' of E(G), the subgraph G[E'] induced by E' is the graph whose vertex set consists of those vertices of G incident with at least one edge of E' and whose edge set is E'. Two edges e_1, e_2 of G are called *adjacent* if they are distinct and have a common vertex. The *open neighborhood* $N_G(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its *closed neighborhood* is $N_G[e] = N_G(e) \cup \{e\}$. For a function $f : E(G) \longrightarrow \mathbb{R}$ and a subset S of E(G) we define $f(S) = \sum_{e \in S} f(e)$. The *edge-neighborhood* $E_G(v)$ of a vertex $v \in V(G)$ is the set of all edges incident with the vertex v. For each vertex $v \in V(G)$, we also define $f(v) = \sum_{e \in E_G(v)} f(e)$.

Let k be a positive integer. A function $f : E(G) \longrightarrow \{\pm 1, \pm 2, \ldots, \pm k\}$ is called a signed star $\{k\}$ -dominating function (SS $\{k\}$ DF) on G, if $f(v) \ge k$ for every vertex v of G. The signed star $\{k\}$ -domination number of a graph G is $\gamma_{\{k\}SS}(G) = \min\{\sum_{e \in E} f(e) \mid f \text{ is a SS}\{k\}$ DF on G}. The signed star $\{k\}$ -dominating function f on G with $f(E(G)) = \gamma_{\{k\}SS}(G)$ is called a $\gamma_{\{k\}SS}(G)$ -function. The signed star $\{1\}$ -domination number of a graph G is the usual signed star domination number $\gamma_{SS}(G)$, which has been introduced by Xu in [7] and has been studied by several authors (see for instance [4, 5, 8, 9]).

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed star $\{k\}$ -dominating functions on G with the property that $\sum_{i=1}^d f_i(e) \leq k$ for each $e \in E(G)$, is called a signed star $\{k\}$ -dominating family (of functions) on G. The maximum number of functions in a signed star $\{k\}$ -dominating family on G is the signed star $\{k\}$ -domatic number of G, denoted by $d_{\{k\}SS}(G)$. The signed star $\{k\}$ -domatic number is well-defined and $d_{\{k\}SS}(G) \geq 1$ for all graphs G, since the set consisting of any one SS $\{k\}$ D function forms a SS $\{k\}$ D family on G. A $d_{\{k\}SS}$ -family of a graph G is a SS $\{k\}$ D family containing $d_{\{k\}SS}(G)$ is the usual signed star domatic number $d_{SS}(G)$ which was introduced by Atapour et al. in [1].

Our purpose in this paper is to initiate the study of signed star $\{k\}$ -domination number and signed star $\{k\}$ -domatic number in graphs. We first present bounds on signed star $\{k\}$ -domination number and then we study basic properties and bounds for the signed star $\{k\}$ -domatic number of a graph which some of them are analogous to those of the signed star domatic number $d_{SS}(G)$ in [1]. In addition, we determine the signed star $\{k\}$ -domatic number of some classes of graphs.

Observation 1. Let G be a graph of size m with $\delta(G) \geq 1$. Then $\gamma_{SS}(G) = m$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\deg(u) = 1$ or $\deg(u) = 2$.

Observation 2. Let G be a graph with $\delta(G) \ge 1$. If v is a vertex of G such that $\delta(G - v) \ge 1$, then

$$\gamma_{\{k\}SS}(G) \le \gamma_{\{k\}SS}(G-v) + \max\{k, \deg(v)\}.$$

Proof. Since $\delta(G - v) \geq 1$, there exists a $\gamma_{\{k\}SS}(G - v)$ -function f. Let $E_G(v) = \{e_1, e_2, \ldots, e_d\}$. If $\deg(v) = d \geq k$, then define $g : E(G) \rightarrow \{\pm 1, \pm 2, \ldots, \pm k\}$ by g(e) = f(e) for $e \in E(G - v)$ and $g(e_i) = 1$ for $i \in \{1, 2, \ldots, d\}$. If $d = \deg(v) < k$, then define $g : E(G) \rightarrow \{\pm 1, \pm 2, \ldots, \pm k\}$ by g(e) = f(e) for $e \in E(G - v)$ and $g(e_i) = 1$ for $1 \leq i \leq d - 1$ and $g(e_d) = k + 1 - \deg(v)$. In both cases it is easy to see that g is a signed star $\{k\}$ -dominating function on G, and therefore we obtain the desired bound $\gamma_{\{k\}SS}(G) \leq \gamma_{\{k\}SS}(G - v) + \max\{k, \deg(v)\}$.

Observation 3. Let G be a graph of size m and let $k \ge 2$ be an integer. Then $\gamma_{\{k\}SS}(G) = mk$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\deg(u) = 1$.

Proof. If each edge $e \in E(G)$ has an endpoint u such that $\deg(u) = 1$, then trivially $\gamma_{\{k\}SS}(G) = mk$.

Conversely, assume that $\gamma_{\{k\}SS}(G) = mk$. Suppose to the contrary that there exists an edge $e = uv \in E(G)$ such that $\min\{\deg(u), \deg(v)\} \ge 2$. Define $f : E(G) \to \{\pm 1, \pm 2, \dots, \pm k\}$ by f(e) = 1 and f(e') = k for $e' \in E(G) \setminus \{e\}$. Obviously, f is a signed star $\{k\}$ -dominating function of G with weight less than mk, a contradiction. This completes the proof.

Theorem A. [7] If G is a graph G with $\delta(G) \ge 3$, then G contains an even cycle.

Theorem B. [7] For any graph G of order $n \ge 4$, $\gamma_{SS}(G) \le 2n - 4$.

2. Bounds on the signed star $\{k\}$ -domination number

In this section we give some bounds on $\gamma_{\{k\}SS}(G)$.

Theorem 1. For any graph G of order $n \ge 4$ and any integer $k \ge 2$,

$$\gamma_{\{k\}SS}(G) \le k(n-1).$$

The bound is sharp for stars.

Proof. We proceed by induction on m = |E(G)|. The result is clearly true for $m \leq 3$, since $n \geq 4$. Let the statement be true for all graphs of order $n \geq 4$ and size at most m-1. Now assume that G is a graph of order $n \geq 4$ and size m.

Assume first that $\delta(G) \geq 3$. By Theorem A, G contains an even cycle C. Let G' = G - E(C), and let f be a $\gamma_{\{k\}SS}(G')$ -function. By the induction hypothesis, $\omega(f) \leq k(n-1)$. Extending f from G' to G by signing +1 and -1 alternating along C, we obtain an SS $\{k\}$ DF for G, and hence $\gamma_{\{k\}SS}(G) \leq k(n-1)$. Assume second that $\delta(G) = 2$. If v is a vertex of G with $\deg(v) = 2$, then $\delta(G-v) \ge 1$ and $|E(G-v)| \le m-1$. If |V(G-v)| = 3, then n = 4, and it is easy to see that $\gamma_{\{k\}SS}(G) \le k(n-1)$. Let now $|V(G-v)| \ge 4$. Using the induction hypothesis and Observation 2, we obtain

$$\gamma_{\{k\}SS}(G) \le \gamma_{\{k\}SS}(G-v) + k \le k(n-2) + k = k(n-1).$$

Assume third that $\delta(G) = 1$. If $\Delta(G) = 1$, then G is isomorphic to pK_2 with p = n/2. We observe that $\gamma_{\{k\}SS}(G) = nk/2 \leq k(n-1)$. Let now $\Delta(G) \geq 2$, and let H be a component of G with $\Delta(H) \geq 2$.

If $\delta(H) = 1$, then let v be a vertex of H with $\deg_H(v) = 1$. Obviously, $\delta(G - v) \ge 1$ and $|E(G - v)| \le m - 1$. If |V(G - v)| = 3, then n = 4, and it is easy to see that $\gamma_{\{k\}SS}(G) \le k(n-1)$. Let now $|V(G - v)| \ge 4$. Using the induction hypothesis and Observation 2, we deduce that

$$\gamma_{\{k\}SS}(G) \le \gamma_{\{k\}SS}(G-v) + k \le k(n-2) + k = k(n-1).$$

If $\delta(H) = 2$, then let v be a vertex of H with $\deg_H(v) = 2$. Obviously, $\delta(G-v) \ge 1$ and $4 \le |E(G-v)| \le m-1$. Using the induction hypothesis and Observation 2, we deduce that

$$\gamma_{\{k\}SS}(G) \le \gamma_{\{k\}SS}(G-v) + k \le k(n-2) + k = k(n-1).$$

Finally assume that $\delta(H) \geq 3$. Using the arguments as in the case $\delta(G) \geq 3$, we obtain the desired result.

Clearly, if G is isomorphic to the star $K_{1,n-1}$, then $\gamma_{\{k\}SS}(G) = k(n-1)$, and the proof is complete.

Theorem 2. For all graphs G of order n and $\delta(G) \ge 1$, $\gamma_{\{k\}SS}(G) \ge \lfloor \frac{nk}{2} \rfloor$.

Proof. Suppose that f is a $\gamma_{\{k\}SS}(G)$ -function. Then

$$\gamma_{\{k\}SS}(G) = \sum_{e \in E(G)} f(e) = \frac{1}{2} \sum_{v \in V(G)} \sum_{e \in E(v)} f(e) \ge \frac{1}{2} \sum_{v \in V(G)} k = \frac{nk}{2}$$

as desired.

Theorem 3. Let G be an r-regular and 1-factorable graph and let $k \geq 2$ be an integer. Then $\gamma_{\{k\}SS}(G) = \lceil \frac{nk}{2} \rceil$.

Proof. Let $\{M_1, M_2, \ldots, M_r\}$ be a 1-factorization of G. If r is odd, then the function $f : E(G) \to \{\pm 1, \pm 2, \ldots, \pm k\}$ defined by

$$f(e) = k \text{ if } e \in M_r, \quad f(e) = 1 \text{ for } e \in \bigcup_{i=1}^{(r-1)/2} M_{2i-1}$$

and $f(e) = -1$ for $e \in \bigcup_{i=1}^{(r-1)/2} M_{2i}$,

is a SS{k}DF of G with weight $\frac{nk}{2}$.

Let r be even. Define $f: E(\tilde{G}) \to \{\pm 1, \pm 2, \dots, \pm k\}$ by

f(e) = k - 1 if $e \in M_r$, f(e) = 1 for $e \in M_{r-1}$ when r = 2

and by f(e) = k - 1 if $e \in M_r$, f(e) = 1 for $e \in M_{r-1}$, f(e) = 1 for $e \in \bigcup_{i=1}^{(r-2)/2} M_{2i-1}$ and f(e) = -1 for $e \in \bigcup_{i=1}^{(r-2)/2} M_{2i}$ when $r \ge 4$. Obviously, f is a SS{k}DF of G with weight $\frac{nk}{2}$. Thus $\gamma_{\{k\}SS}(G) \le \frac{nk}{2}$. It follows from Theorem 2 that $\gamma_{\{k\}SS}(G) = \frac{nk}{2}$ and the proof is complete.

Theorem 4. Let G be a graph of order n and factorable into r Hamiltonian cycles and let $k \ge 2$ be an integer. Then $\gamma_{\{k\}SS}(G) = \lceil \frac{nk}{2} \rceil$.

Proof. Let G be a Hamiltonian factorable graph, and let $\{C_1, C_2, \ldots, C_r\}$ be a Hamiltonian factorization of G. If n and k are even, then by signing k/2 to each edge C_1 and signing +1 and -1 alternating along C_i for $2 \le i \le r$, we obtain an SS $\{k\}$ DF for G of weight (nk)/2. If n is even and k is odd, then by signing (k-1)/2 and (k+1)/2 alternating along C_1 and signing +1 and -1 alternating along C_i for $2 \le i \le r$, we obtain an SS $\{k\}$ DF for G of weight (nk)/2.

Let n be odd. We distinguish four cases.

Case 1. r is odd and k is even.

Then the function $f: E(G) \to \{\pm 1, \pm 2, \dots, \pm k\}$ defined by

$$f(e) = k/2$$
 if $e \in C_r$, $f(e) = 1$ for $e \in \bigcup_{i=1}^{(r-1)/2} C_{2i-1}$
and $f(e) = -1$ for $e \in \bigcup_{i=1}^{(r-1)/2} C_{2i}$,

is a SS{k}DF of G with weight $\frac{nk}{2}$.

Case 2. r and k are odd.

Then by signing (k+1)/2 and (k-1)/2 alternating along C_r , signing +1 to the edges in $\bigcup_{i=1}^{(r-1)/2} C_{2i-1}$ and signing -1 to the edges in $\bigcup_{i=1}^{(r-1)/2} C_{2i}$, we obtain an SS{k}DF for G of weight $\lceil (nk)/2 \rceil$.

Case 3. r and k are even.

Then the function $f: E(G) \to \{\pm 1, \pm 2, \dots, \pm k\}$ defined by

$$f(e) = k$$
 if $e \in C_r$, $f(e) = (-k)/2$ for $e \in C_{r-1}$

and if r > 2

$$f(e) = 1, \ e \in \bigcup_{i=1}^{(r-2)/2} C_{2i-1}$$
 and $f(e) = -1$ for $e \in \bigcup_{i=1}^{(r-2)/2} C_{2i}$,

is obviously a SS{k}DF of G with weight $\frac{nk}{2}$.

Case 4. r is even and k is odd.

Define $f : E(G) \to \{\pm 1, \pm 2, \dots, \pm k\}$ by assigning k to the edge of C_r , assigning (1-k)/2 and (-1-k)/2 alternatively along C_{r-1} and if r > 2 by

$$f(e) = 1, \ e \in \bigcup_{i=1}^{(r-2)/2} C_{2i-1}$$
 and $f(e) = -1$ for $e \in \bigcup_{i=1}^{(r-2)/2} C_{2i}$.

It is easy to see that $f \in SS\{k\}DF$ of G with weight $\lceil \frac{nk}{2} \rceil$.

Thus in all cases $\gamma_{\{k\}SS}(G) \leq \lceil \frac{nk}{2} \rceil$ and the result follows from Theorem 2.

According to Theorems 3, 4 and the following three well-known results, we can determine the signed star $\{k\}$ -domination number of complete graphs and regular bipartite graphs.

Theorem C. The complete graph K_{2r} is 1-factorable.

Theorem D. For every positive integer r, the complete graph K_{2r+1} is Hamiltonian factorable.

Theorem E. [König [3] 1916] Every r-regular bipartite graph is 1-factorable for $r \ge 1$.

3. Basic properties of the signed star $\{k\}$ -domatic number

In this section we study basic properties of $d_{\{k\}SS}(G)$. The special case k = 1 of the next result can be found in [1].

Theorem 5. Let G be a graph of size m, signed star $\{k\}$ -domination number $\gamma_{\{k\}SS}(G)$ and signed star $\{k\}$ -domatic number $d_{\{k\}SS}(G)$. Then

$$\gamma_{\{k\}SS}(G) \cdot d_{\{k\}SS}(G) \le mk.$$

Moreover, if $\gamma_{\{k\}SS}(G) \cdot d_{\{k\}SS}(G) = mk$, then for each $d_{\{k\}SS}$ -family $\{f_1, f_2, \dots, f_d\}$ of G, each function f_i is a $\gamma_{\{k\}SS}$ -function and $\sum_{i=1}^d f_i(e) = k$ for all $e \in E(G)$.

Proof. If $\{f_1, f_2, \ldots, f_d\}$ is a signed star $\{k\}$ -dominating family on G such that $d = d_{\{k\}SS}(G)$, then the definitions imply

$$d \cdot \gamma_{\{k\}SS}(G) = \sum_{i=1}^{d} \gamma_{\{k\}SS}(G) \le \sum_{i=1}^{d} \sum_{e \in E(G)} f_i(e)$$
$$= \sum_{e \in E(G)} \sum_{i=1}^{d} f_i(e) \le \sum_{e \in E(G)} k = mk$$

as desired.

If $\gamma_{\{k\}SS}(G) \cdot d_{\{k\}SS}(G) = mk$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{\{k\}SS}$ -family $\{f_1, f_2, \dots, f_d\}$ of G and for each i, $\sum_{e \in E(G)} f_i(e) = \gamma_{\{k\}SS}(G)$, thus each function f_i is a $\gamma_{\{k\}SS}$ -function, and $\sum_{i=1}^d f_i(e) = k$ for all $e \in E(G)$.

Corollary 1. If G is a graph of size m, then $\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le mk + 1$.

Proof. By Theorem 5,

(1)
$$\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le d_{\{k\}SS}(G) + \frac{mk}{d_{\{k\}SS}(G)}$$

Using the fact that the function g(x) = x + (mk)/x is decreasing for $1 \le x \le \sqrt{mk}$ and increasing for $\sqrt{mk} \le x \le mk$, this inequality leads to the desired bound immediately.

Corollary 2. Let G be a graph of size m. If $2 \leq \gamma_{\{k\}SS}(G) \leq mk-1$, then

$$\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le mk.$$

Proof. Theorem 5 implies that

(2)
$$\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le \gamma_{\{k\}SS}(G) + \frac{mk}{\gamma_{\{k\}SS}(G)}$$

If we define $x = \gamma_{\{k\}SS}(G)$ and g(x) = x + (mk)/x for x > 0, then because $2 \le \gamma_{\{k\}SS}(G) \le mk-1$, we have to determine the maximum of the function g in the interval $I : 2 \le x \le mk-1$. It is easy to see that

$$\max_{x \in I} \{g(x)\} = \max\{g(2), g(mk-1)\}$$
$$= \max\{2 + \frac{mk}{2}, mk - 1 + \frac{mk}{mk-1}\}$$
$$= mk - 1 + \frac{mk}{mk-1} < mk + 1,$$

and we obtain $\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le mk$. This completes the proof.

Corollary 3. Let G be a graph of size m. If $\min\{\gamma_{\{k\}SS}(G), d_{\{k\}SS}(G)\} \ge 2$, then

$$\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le \frac{mk}{2} + 2.$$

Proof. Since $\min\{\gamma_{\{k\}SS}(G), d_{\{k\}SS}(G)\} \geq 2$, it follows by Theorem 5 that $2 \leq d_{\{k\}SS}(G) \leq \frac{mk}{2}$. By (1) and the fact that the maximum of g(x) = x + (mk)/x on the interval $2 \leq x \leq (mk)/2$ is g(2) = g((mk)/2), we see that

$$\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) \le d_{\{k\}SS}(G) + \frac{mk}{d_{\{k\}SS}(G)} \le \frac{mk}{2} + 2.$$

Since $\gamma_{\{k\}SS}(K_{1,n}) = nk$ and $d_{\{k\}SS}(K_{1,n}) = 1$, Corollary 3 is no longer true in the case that $\min\{\gamma_{\{k\}SS}(G), d_{\{k\}SS}(G)\} = 1$.

Theorem 6. Let G be a graph. Then

$$d_{\{k\}SS}(G) \le \delta(G).$$

Moreover, if the equality holds, then for each function f_i of a $SS\{k\}D$ family $\{f_1, f_2, \dots, f_d\}$ and for every $e \in E(v)$ where v is a vertex of degree $\delta(G)$, $\sum_{e \in E(v)} f_i(e) = k$ and $\sum_{i=1}^d f_i(e) = k$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SS $\{k\}$ D family of G such that $d = d_{\{k\}SS}(G)$ and let v be a vertex of degree $\delta(G)$. Then

$$dk = \sum_{i=1}^{d} k \leq \sum_{i=1}^{d} \sum_{e \in E(v)} f_i(e)$$
$$= \sum_{e \in E(v)} \sum_{i=1}^{d} f_i(e) \leq \sum_{e \in E(v)} k = k\delta(G).$$

If $d_{\{k\}SS}(G) = \delta(G)$, then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement.

The special case k = 1 of Theorem 6 can be found in [1].

Corollary 4. Let G be a graph of size m, and let $k \ge 2$ be an integer. Then $\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) = mk + 1$ if and only if G is the disjoint union of stars.

Proof. If G is is the disjoint union of stars, then $\gamma_{\{k\}SS}(G) = mk$ by Observation 3. Hence $d_{\{k\}SS}(G) = 1$ and the result follows.

Conversely, let $\gamma_{\{k\}SS}(G) + d_{\{k\}SS}(G) = mk + 1$. The result is obviously true for m = 1, 2, 3. Assume $m \ge 4$. By Corollary 3, we may assume that $\min\{\gamma_{\{k\}SS}(G), d_{\{k\}SS}(G)\} = 1$. If $\gamma_{\{k\}SS}(G) = 1$, then $d_{\{k\}SS}(G) = mk$, which is a contradiction to Theorem 6. If $d_{\{k\}SS}(G) = 1$, then $\gamma_{\{k\}SS}(G) = mk$, and the result follows by Observation 3.

Corollary 5. Let G be a graph of size m. Then $\gamma_{SS}(G) + d_{SS}(G) = m+1$ if and only if each edge $e \in E(G)$ has an endpoint u such that $\deg(u) = 1$ or $\deg(u) = 2$.

Proof. If G satisfies the condition, i.e., each edge $e \in E(G)$ has an endpoint u such that $\deg(u) = 1$ or $\deg(u) = 2$, then $\gamma_{SS}(G) = m$ by Observation 1. Theorem 5 implies that $d_{SS}(G) = 1$ and so $\gamma_{SS}(G) + d_{SS}(G) = m+1$.

Conversely, assume that $\gamma_{SS}(G) + d_{SS}(G) = m+1$. The result is obviously true for m = 1 and m = 2. Assume now that $m \ge 3$. By Corollary 3, we may assume that $\min\{\gamma_{SS}(G), d_{SS}(G)\} = 1$. Since $m \ge 3$, we observe that $n \ge 3$ and therefore Theorem 2 implies that $\gamma_{SS}(G) \ge \lceil \frac{n}{2} \rceil > 1$. Thus $d_{SS}(G) = 1$ and $\gamma_{SS}(G) = m$, and the result follows by Observation 1.

As an application of Theorem 6, we will prove the following Nordhaus-Gaddum type result.

Theorem 7. For every graph G of order n,

(3)
$$d_{\{k\}SS}(G) + d_{\{k\}SS}(\overline{G}) \le n - 1.$$

If $d_{\{k\}SS}(G) + d_{\{k\}SS}(\overline{G}) = n - 1$, then G is regular.

Proof. Since $\delta(G) + \delta(\overline{G}) \leq n - 1$, Theorem 6 leads to

$$d_{\{k\}SS}(G) + d_{\{k\}SS}(\overline{G}) \le \delta(G) + \delta(\overline{G}) \le n - 1.$$

If G is not regular, then $\delta(G) + \delta(\overline{G}) \leq n-2$ and hence we obtain the better bound $d_{\{k\}SS}(G) + d_{\{k\}SS}(\overline{G}) \leq n-2$.

If C_n is a cycle of length n, then we have shown in [1] that $d_{SS}(C_n) = 1$. Next we determine $d_{\{k\}SS}(C_n)$ for $k \ge 2$.

Theorem 8. If $k \ge 2$ is an integer, and C_n a cycle of length n, then $d_{\{k\}SS}(C_n) = 2$ when $k \ge 3$ and n is even and $d_{\{k\}SS}(C_n) = 1$ otherwise.

Proof. Let $C_n = v_1 e_1 v_2 e_2 \dots v_{n-1} e_n v_1$ with $v_j \in V(C_n)$ and $e_j \in E(C_n)$ for $j \in \{1, 2, \dots, n\}$.

First assume that $k \geq 3$ and that *n* is even. Define $f_i : E(G) \longrightarrow \{\pm 1, \pm 2, \dots, \pm k\}$ for i = 1, 2 by $f_1(e_1) = f_1(e_3) = \dots = f_1(e_{n-1}) = 1$, $f_1(e_2) = f_1(e_4) = \dots = f_1(e_n) = k - 1$ and $f_2(e_1) = f_2(e_3) = \dots = f_2(e_{n-1}) = k - 1$, $f_2(e_2) = f_2(e_4) = \dots = f_2(e_n) = 1$. Then $\{f_1, f_2\}$ is an SS $\{k\}$ D family on C_n and thus $d_{\{k\}SS}(C_n) \geq 2$. As Theorem 6 implies that $d_{\{k\}SS}(C_n) \leq 2$, we deduce that $d_{\{k\}SS}(C_n) = 2$ in this case.

Assume next that k = 2 and that n is even. Suppose to the contrary that $d_{\{2\}SS}(C_n) = 2$. If $\{f_1, f_2\}$ is an SS $\{k\}D$ family on C_n , then Theorem 6 yields to $f_i(e_t) + f_i(e_{t+1}) = 2$ for i = 1, 2 and $1 \le t \le n$, where the indices t

are taken modulo *n*. Since $f_i(e_t) \in \{-2, -1, 1, 2\}$, this is only possible when $f_1(e_t) = 1$ and $f_2(e_t) = 1$ for each $t \in \{1, 2, ..., n\}$. Hence we obtain the contradiction $f_1 \equiv f_2 \equiv 1$ and thus $d_{\{2\}SS}(C_n) = 1$.

Finally assume that n is odd. Suppose to the contrary that $d_{\{k\}SS}(C_n) = 2$. If $\{f_1, f_2\}$ is an SS $\{k\}D$ family on C_n , then Theorem 6 implies that $f_i(e_t) + f_i(e_{t+1}) = k$ for i = 1, 2 and $1 \le t \le n$, where the indices t are taken modulo n. Since $f_i(e_t) + f_i(e_{t+1}) = f_i(e_{t+1}) + f_i(e_{t+2}) = k$, we conclude that $f_i(e_t) = f_i(e_{t+2})$ for i = 1, 2 and $1 \le t \le n$. Therefore $f_i(e_1) = f_i(e_3) = \dots = f_i(e_n) = a_i$. As e_1 and e_n are adjacent, it follows that $f_i(e_1) + f_i(e_n) = 2a_i = k$. In addition, we have $f_i(e_2) = f_i(e_4) = \dots = f_i(e_{n-1}) = b_i$. As e_1 and e_2 are adjacent, we find that $f_i(e_1) + f_i(e_2) = a_i + b_i = k$. We deduce that $k = 2a_i = a_i + b_i$ and so $a_i = b_i = k/2$ for i = 1, 2. This leads to the contradiction $f_1 \equiv f_2 \equiv k/2$ and thus $d_{\{k\}SS}(C_n) = 1$ when n is odd.

References

- ATAPOUR M., SHEIKHOLESLAMI S.M., GHAMESHLOU A.N., VOLKMANN L., Signed star domatic number of a graph, *Discrete Appl. Math.*, 158(2010), 213-218.
- [2] HAYNES T.W., HEDETNIEMI S.T., SLATER P.J., Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [3] KÖNIG D., Uber Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann., 77(1916), 453-465.
- [4] SAEI R., SHEIKHOLESLAMI S.M., Signed star k-subdomination numbers in graphs, *Discrete Appl. Math.*, 156(2008), 3066–3070.
- [5] WANG C., The signed star domination numbers of the Cartesian product, Discrete Appl. Math., 155(2007), 1497-1505.
- [6] WEST D.B., Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [7] XU B., On edge domination numbers of graphs, *Discrete Math.*, 294(2005), 311-316.
- [8] XU B., Two classes of edge domination in graphs, Discrete Appl. Math., 154 (2006), 1541-1546.
- XU B., LI C.H., Signed star k-domination numbers of graphs, (Chinese) Pure Appl. Math. (Xi'an), 25(2009), 638-641.

M. Atapour Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran *e-mail:* m.atapour@bonabu.ac.ir

S. M. Sheikholeslami Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran *e-mail:* s.m.sheikholeslami@azaruniv.edu LUTZ VOLKMANN LEHRSTUHL II FÜR MATHEMATIK RWTH-AACHEN UNIVERSITY 52056 AACHEN, GERMANY *e-mail:* volkm@math2.rwth-aachen.de

Received on 02.03.2012 and, in revised form, on 20.11.2012.