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1. Introduction

Let S and T be two self mappings of a metric space. Sessa [7] defined
S and T to be weakly commuting if d(STx, TSx) ≤ d(Tx, Sx) for all x in
X . In 1986, Jungck [3] introduced the concept of compatibility as follows:
S and T above are compatible if lim

n→∞
d(STxn, TSxn) = 0 whenever {xn}

is a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = x for some x ∈ X .

Recently, in 2008, Al-Thagafi and Shahzad [1] weakened the above notion
by giving the so-called occasionally weak compatibility. Let X be a set. S
and T : X → X are said to be occasionally weakly compatible if and only
if, there is a point x in X which is a coincidence point of S and T at which
S and T commute.

Definition 1. A function M : [0,∞)→ [0,∞) is said to be a contractive
modulus if M(0) = 0 and M(t) < t for t > 0.

Theorem 1 ([2]). Let X be a set endowed with a symmetric d. Suppose
A, B, S and T are four self mappings of (X , d) satisfying the conditions:

d2(Ax,By) ≤ max{M(d(Sx, Ty))M(d(Sx,Ax)),M(d(Sx, Ty))(1)

M(d(Ty,By)),M(d(Sx,Ax))M(d(Ty,By)),

M(d(Sx,By))M(d(Ty,Ax))},
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for all x, y ∈ X , where M is contractive modulus, the pairs (A,S) and
(B, T ) are owc. Then A, B, S and T have a unique common fixed point.

In [6] and [5] is initiated the study of fixed point for mappings satisfying
implicit relations. The purpose of this paper is to prove a general fixed point
theorem for four mappings satisfying an implicit relation which generalizes
Theorem 1.

2. Implicit relations

Definition 2. Let (FM) be the set of all functions F (t1, t2, t3, t4, t5, t6)
satisfying the following conditions:

(Fm) : F is increasing in variable t1,
(Fu) : F (t, t, 0, 0, t, t) > 0 for every t > 0.

Example 1. F = t21−max{M(t2)M(t3),M(t2)M(t4),M(t3)M(t4),M(t5)
M(t6)}, where M is a contractive modulus.

(Fm) : Obviously,

(Fu) : F (t, t, 0, 0, t, t) = t2 −M2(t) > 0 for every t > 0.

Example 2. F = t1 − k max{M(t2),M(t3),M(t4),
M(t5)+M(t6)

2 }, where
M is a contractive modulus and k ∈ (0, 1).

(Fm) : Obviously,

(Fu) : F (t, t, 0, 0, t, t) = t− kM(t) > 0 for every t > 0.

Example 3.

F = t21 − k1 max{M2(t2),M
2(t3),M

2(t4)}
−k2 max{M(t3)M(t5),M(t4)M(t6)} − k3M(t5)M(t6),

where M is a contractive modulus, k1 > 0, k2, k3 ≥ 0, and k1 + k3 ≤ 1.

(Fm): Obviously,

(Fu): F (t, t, 0, 0, t, t) = t2 − (k1 + k3)M
2(t) > 0 ∀t > 0.

Example 4. F = t21−aM2(t2)− bM(t5)M(t6)
1+M2(t3)+M2(t4)

, where M is a contrac-

tive modulus, a > 0, b ≥ 0, and a + b ≤ 1.

(Fm): Obviously,

(Fu): F (t, t, 0, 0, t, t) = t2 − (a + b)M2(t) > 0 ∀t > 0.

Example 5. F = t1 −max{M(t2),M(t3),M(t4),M(t5),M(t6)}, where
M is a contractive modulus.

(Fm): Obviously,

(Fu): F (t, t, 0, 0, t, t) = t−M(t) > 0 ∀t > 0.
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Lemma 1 (Jungck and Rhoades [4]). Let X be a nonempty set and S
and T be occasionally weakly compatible self mappings on X . If S and T
have a unique common point of coincidence w = Sx = Tx, then w is the
unique common fixed point of S and T .

3. Common fixed point theorems

Theorem 2. Let (X , d) be a metric space and A, B, S, T : (X , d) →
(X , d) such that

F (d(Ax,By),M(d(Sx, Ty)),M(d(Sx,Ax)),(2)

M(d(Ty,By)),M(d(Sx,By)),M(d(Ty,Ax))) ≤ 0,

for all x, y ∈ X , where F satisfies property (Fu) and M is a contractive
modulus. If there exist x, y in X such that Ax = Sx and By = Ty, then, A
and S have a unique point of coincidence and B and T have a unique point
of coincidence (resp. u = Ax = Sx and v = By = Ty). Moreover u = v.

Proof. First we prove that Ax = By. Suppose contrary. By (2) we
obtain

F (d(Ax,By),M(d(Ax,By)),M(d(Ax,Ax)),

M(d(By,By)),M(d(Ax,By)),M(d(By,Ax))) ≤ 0.

As F is increasing in variable t1, we have

F (M(d(Ax,By)),M(d(Ax,By)), 0, 0,

M(d(Ax,By)),M(d(Ax,By))) ≤ 0,

a contradiction of (Fu). Hence, M(d(Ax,By)) = 0 which implies Ax =
By = Sx = Ty = u = v.

If there exists another point of coincidence for A and S, w = Az = Sz
with Az is distinct of Ax, then by (2) we have

F (d(Az,By),M(d(Az,By)),M(d(Az,Az)),

M(d(By,By)),M(d(Az,By)),M(d(By,Az))) ≤ 0.

By condition (Fm), we get

F (M(d(Az,By)),M(d(Az,By)), 0, 0,

M(d(Az,By)),M(d(Az,By))) ≤ 0,

a contradiction of (Fu). Hence u is the unique point of coincidence for
A and S. Similarly, v is the unique point of coincidence of T and B and
u = v. Therefore u = v is the unique point of coincidence for A and S and
B and T . �
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Theorem 3. Let A, B, S, T self mappings of a metric space (X , d)
satisfying inequality (2) for all x, y in X where F is in (FM) and M is a
contractive modulus. If the pairs (A,S) and (B, T ) are occasionally weakly
compatible then, A, B, S and T have a unique common fixed point.

Proof. Since the pairs (A,S) and (B, T ) are occasionally weakly com-
patible, then, A and S have a point of coincidence u = Ax = Sx and B
and T have a point of coincidence v = By = Ty. By the above theorem,
u = v and it is a unique common point of coincidence for A and S and for
B and T . By the above lemma A and S have u as unique common fixed
point and B and T have u as the unique common fixed point. Therefore, u
is the unique common fixed point of A, B, S and T . �

Example 6. Let X = [0,∞[ with the metric d(x, y) = |x− y|. Define

Ax = Bx =

{
3
4 if x ∈ [0, 1[
1 if x ∈ [1,∞[,

Sx =

{
2 if x ∈ [0, 1[
1

x2
if x ∈ [1,∞[,

and

Tx =

{
2 if x ∈ [0, 1[
1

x
if x ∈ [1,∞[.

First it is clear to see that A and S are occasionally weakly compatible as
well as B and T .

Take M(t) = 1
2 t and

F (t1, t2, t3, t4, t5, t6) = t1 −max{M(t2),M(t3),M(t4),M(t5),M(t6)},

we get

(a) For x, y ∈ [0, 1[, we have Ax = By = 3
4 , Sx = Ty = 2 and

F (d(Ax,By),M(d(Sx, Ty)),M(d(Sx,Ax)),

M(d(Ty,By)),M(d(Sx,By)),M(d(Ty,Ax)))

= F (0,M(0),M(
5

4
),M(

5

4
),M(

5

4
),M(

5

4
))

= F (0, 0,
5

8
,
5

8
,
5

8
,
5

8
)

= 0−max{M(0),M(
5

8
)} = −max{0, 5

16
} = − 5

16
≤ 0

because that d(Ax,By) = 0 and max{M(t2),M(t3),M(t4),M(t5),M(t6)}
= 5

16 then d(Ax,By) ≤ max{M(t2),M(t3),M(t4),M(t5),M(t6)}.
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(b) For x, y ∈ [1,∞[, we have Ax = By = 1, Sx =
1

x2
, Ty =

1

y
and

F (d(Ax,By),M(d(Sx, Ty)),M(d(Sx,Ax)),

M(d(Ty,By)),M(d(Sx,By)),M(d(Ty,Ax)))

= F (0,M(| 1

x2
− 1

y
|),M(| 1

x2
− 1|),M(|1

y
− 1|),

M(| 1

x2
− 1|),M(|1

y
− 1|))

= F (0,

| 1

x2
− 1

y
|

2
,
| 1

x2
− 1|

2
,

|1
y
− 1|

2
,
| 1

x2
− 1|

2
,

|1
y
− 1|

2
)

= 0−max{M(

| 1

x2
− 1

y
|

2
),M(

| 1

x2
− 1|

2
),M(

|1
y
− 1|

2
),

M(
| 1

x2
− 1|

2
),M(

|1
y
− 1|

2
)}

= −max{
| 1

x2
− 1

y
|

4
,
| 1

x2
− 1|

4
,

|1
y
− 1|

4
,
| 1

x2
− 1|

4
,

|1
y
− 1|

4
} ≤ 0

because that d(Ax,By) = 0 and max{M(t2),M(t3),M(t4),M(t5),M(t6)} ≤ 1
then d(Ax,By) ≤ max{M(t2),M(t3),M(t4),M(t5),M(t6)}.

(c) For x ∈ [0, 1[, y ∈ [1,∞[, we have Ax = 3
4 , By = 1, Sx = 2, Ty =

1

y
and

F (d(Ax,By),M(d(Sx, Ty)),M(d(Sx,Ax)),

M(d(Ty,By)),M(d(Sx,By)),M(d(Ty,Ax)))

= F (
1

4
,M(|2− 1

y
|),M(|2− 3

4
|),M(|1

y
− 1|),M(|2− 1|),M(|1

y
− 3

4
|))

= F (
1

4
,M(|2− 1

y
|),M(

5

4
),M(|1

y
− 1|),M(1),M(|1

y
− 3

4
|))

= F (
1

4
,

|2− 1

y
|

2
,
5

8
,

|1
y
− 1|

2
,
1

2
,

|1
y
− 3

4 |

2
)

=
1

4
−max{M(

|2− 1

y
|

2
),M(

5

8
),M(

|1
y
− 1|

2
),M(

1

2
),M(

|1
y
− 3

4 |

2
)}

=
1

4
−max{

|2− 1

y
|

4
,

5

16
,

|1
y
− 1|

4
,
1

4
,

|1
y
− 3

4 |

4
} ≤ 0
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because that d(Ax,By) = 1
4 and M(d(Sx,By)) = 1

2 then

d(Ax,By) ≤ max{M(t2),M(t3),M(t4),M(t5),M(t6)}.

(d) Finally, for x ∈ [1,∞[, y ∈ [0, 1[, we have Ax = 1, By = 3
4 , Sx =

1

x2
,

Ty = 2 and

F (d(Ax,By),M(d(Sx, Ty)),M(d(Sx,Ax)),

M(d(Ty,By)),M(d(Sx,By)),M(d(Ty,Ax)))

= F (
1

4
,M(| 1

x2
− 2|),M(| 1

x2
− 1|),M(|2− 3

4
|),M(| 1

x2
− 3

4
|),M(|2− 1|))

= F (
1

4
,
| 1

x2
− 2|

2
,
| 1

x2
− 1|

2
,
5

8
,
| 1

x2
− 3

4 |

2
,
1

2
)

=
1

4
−max{M(

| 1

x2
− 2|

2
),M(

| 1

x2
− 1|

2
),M(

5

8
),M(

| 1

x2
− 3

4 |

2
),M(

1

2
)}

=
1

4
−max{

| 1

x2
− 2|

4
,
| 1

x2
− 1|

4
,

5

16
,
| 1

x2
− 3

4 |

4
,
1

4
} ≤ 0

because that d(Ax,By) = 1
4 and M(d(Ty,Ax)) = 1

4 then

d(Ax,By) ≤ max{M(t2),M(t3),M(t4),M(t5),M(t6)}.

So, all the hypotheses of the above theorem are satisfied and 1 is the unique
common fixed point of mappings A, B, S and T .

Corollary 1. Theorem 1.

Proof. The proof follows by Theorem 3 and Example 1. �

If A = B and S = T by Theorem 3 we obtain:

Theorem 4. Let A and S be self mappings of a metric space (X , d)
satisfying the inequality

F (d(Ax,Ay),M(d(Sx, Sy)),M(d(Sx,Ax)),

M(d(Sy,Ay)),M(d(Sx,Ay)),M(d(Sy,Ax))) ≤ 0,

for all x, y ∈ X , where F is in F (M) and M is a contractive modulus. If
A and S are occasionally weakly compatible, then A and S have a unique
common fixed point.



Some common fixed point theorems . . . 59

Corollary 2. Let A and S be self mappings of a metric space (X , d)
satisfying the inequality

d(Ax,Ay) ≤ max{M(d(Sx, Sy)),M(d(Sx,Ax)),M(d(Sy,Ay)),

M(d(Sx,Ay)),M(d(Sy,Ax))}

for all x, y ∈ X . If A and S are occasionally weakly compatible, then A and
S have a unique common fixed point.

Proof. The proof follows by Theorem 4 and Example 5. �

Example 7. Let X = [1,∞), Ax = x, Sx = 2x − 1, Mx = 1
2x and

d(x, y) = |x − y|. It follows that AS(1) = SA(1) = 1. Hence A and S are
owc. On the other hand d(Ax,Ay) = |x− y|, M(d(Sx, Sy)) = 1

2d(Sx, Sy) =
|x− y|. Therefore

d(Ax,Ay) ≤ max{M(d(Sx, Sy)),M(d(Sx,Ax)),M(d(Sy,Ay)),

M(d(Sx,Ay)),M(d(Sy,Ax))}

by Theorem 4, A and S have a unique common fixed point which is x = 1
because A(1) = S(1) = 1.
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