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Abstract. An exponentially fitted second derivative extended
backward differentiation formula (SDEBDF) is derived from the
class of composite, multiderivative linear multistep method with a
free parameter to allow for the exponential fitting. Some numeri-
cal properties such as stability of the methods are investigated as
a pair of predictor-corrector (P-C) technique based on a proposed
algorithm, to which the local error estimates are also obtained.
The efficiency of the new method tested on some standard prob-
lems shows that the method compares favourably with existing
methods and with high accuracy.
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1. Introduction

Science and Engineering problems are often modelled as initial value
problems involving systems of Ordinary Differential Equations (ODEs) and
many of these problems appear to be stiff. There are different definitions
given to stiffness with respect to systems of first order ODEs,

(1) y′ = Ay + φ(x), y(a) = η, a ≤ x ≤ b

where y = (y1, y2, · · · , ys) and η = (η1, η2, · · · , ηs).

Definition 1 (Lambert [16]). The linear system (1) is said to be stiff if
(i) Re (λi) < 0, i = 1, 2, · · · , s
(ii) Max |Re (λi)| >> Min |Re (λi)|

where λi are the eigenvalues of s×s matrix A, and the stiff ratio is Max|Re(λi)|
Min|Re(λi)| .
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Backward Differentiation Formulas (BDF) were the first numerical meth-
ods to be proposed for stiff initial value problems (IVPs) as discussed in pio-
neering work of Curtiss and Hirschfelder [9] and Gear’s [12] book. For many
years, these methods have been the most prominent and most widely used
for stiff computation. More recently, Cash [8] introduced a class of methods
known as the Extended Backward Differentiation Formula (EBDF) which
are known to be advantageous over the usual BDF.

The concept of exponential fitting was originally proposed by Liniger and
Willoughby [17]. The method is derived such that a LMM allows for free
parameters which are chosen to fit some given exponential function that
satisfies the integration formula exactly. Exponential fitting are numerical
methods which are very robust for the integration of differential equations
whose Jacobian has large imaginary eigenvalues. Cash [7].

Second derivative methods have been derived by Enright [10] and Cash [8]
where he introduced a multistep formula containing the second derivatives,
and was later implemented as a computer code for the integration of stiff
system.

Jackson and Kenue [14] developed a fourth order method with exponen-
tial fitting based on a linear 2-step method and the method is A(α)-stable
for α very near π

2 . Cash [7] used the Jackson and Kenue [14] method as a
predictor to a second order derivative method which he found to be A-Stable.
Okunuga [19] derived a fourth order composite LMM in the spirit of Cash,
and obtained a very high accuracy compared to methods by Jackson et al.
and Cash.

In this paper, a class of exponentially fitted second derivative extended
backward differentiation formula shall be derived. This method is developed
as an hybrid of extended backward differentiation formula of Cash [8], the
second derivative multistep methods of Enright [10] and the exponential
fitting of Okunuga [18]. Hence, the new method shall contain an extra
superfuture point and a second order derivative term to the usual BDF.
The method shall be derived using the Taylors series approach conforming
to the general composite LMM.

2. Theoretical procedure

There are various techniques which can be used to derive this type of
methods. However in this paper, the procedure for the derivation of the
new method shall be the Taylors series approach.

Consider the Initial Value Problem (IVP),

(2) y′ = f(x, y), y(x0) = y0 .
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The general form of a composite, multiderivative linear multistep method is
given by,

(3)
k∑
j=0

αjyn+j = h
k+1∑
j=0

βjfn+j + h2
k∑
j=0

δjgn+j

where yn+j ≈ y(xn + jh), fn+j ≡ f (xn + jh, y(xn + jh)) and

gn+j ≡
df(x, y(x))

dx
|x=xn+j
y=yn+j

xn is a discrete point at node point n. where αj , βj and δj are parameters
to be determined and usually βk+1 6= 0 to preserve the composite nature of
the formula.

From the general class (3), we proposed a second derivative EBDF as,

(4)
k∑
j=0

αjyn+j = hβkfn+k + hβk+1fn+k+1 + h2δjgn+k

that is, βn+j = 0, 0 ≤ j ≤ k− 1 and δn+j = 0, 0 ≤ j ≤ k− 1 in (3) and this
class of method shall be associated with a predictor formula,

(5)

k∑
j=0

αjyn+j = hβkfn+k + h2δjgn+k

that is, βn+j = 0, 0 ≤ j ≤ k − 1, βn+k+1 = 0 and δn+j = 0, 0 ≤ j ≤ k − 1
in (3). The two formulas shall be as a predictor-corrector pair assuming
that the back values are provided i.e yn+j , 0 ≤ j ≤ k − 1. We illustrate the
implementation of the schemes with a proposed algorithm in the following
stages:
1. Compute yn+k as a solution of the predictor (5)

yn+k +

k−1∑
j=0

αjyn+j = hβkfn+k + h2δjgn+k .

2. Compute yn+k+1 as a solution of the predictor (5) after one step,

yn+k+1 + yn+k +

k−1∑
j=0

αjyn+j = hβkfn+k+1 + h2δjgn+k+1 .

3. Compute fn+k ≡ f(xn+k, yn+k), gn+k ≡ g(xn+k, yn+k) and fn+k+1 ≡
f(xn+k+1, yn+k+1), gn+k+1 ≡ g(xn+k+1, yn+k+1).
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4. Compute yn+k as a solution of the corrector (4),

yn+k +

k−1∑
j=0

αjyn+j = hβkfn+k + hβk+1fn+k+1 + h2δjgn+k .

The process above helps in the practical implementation of the exponen-
tially fitted extended second derivative BDFs on IVPs. In deriving the
new method we shall allow free parameters a and b for the predictor and
corrector respectively so as to fit the method with parameter a and b to
exponential functions. The predictor used shall be a method of order k
while the corrector is a method of k + 1.

3. Derivation of the method

The predictor formula for k = 2 will be of the form,

(6) α2yn+2 + α1yn+1 + α0yn = hβ2fn+2 + h2δ2gn+2

and the corresponding corrector formula will be of the form,

(7) α2yn+2 + α1yn+1 + α0yn = hβ2fn+2 + hβ3fn+3 + h2δ2gn+2

using the Taylors series approach, setting αk = 1 and allowing a free param-
eter a and b for the predictor and corrector formula respectively, we obtain
a predictor formula of as,

(8) yn+2 + (a− 2) yn+1 + (1− a) yn = hafn+2 + h2
(

1− 3

2
a

)
gn+2

and the corresponding corrector formula as,

yn+2 +

(
−8

7
+

3

7
b

)
yn+1 +

(
1

7
− 3

7
b

)
yn(9)

= h

(
6

7
− 4

7
b

)
fn+2 + hbfn+3 + h2

(
−2

7
− 23

14
b

)
gn+2.

Applying the test IVP to the predictor formula (8) that is,

(10) y′ = λy, q = λh

with an exact solution as y(x) = eλx

(11) yn+2 = − (−2 + a) yn+1− (1− a) yn+haλyn+2 +h2
(

1− 3

2
a

)
λ2yn+2
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and substituting,
yn+1

yn
= eq,

yn+2

yn
= e2q

dividing (11) through by yn, we obtain,

(12) e2q = − (−2 + a) eq − (1− a) + qae2q + q2
(

1− 3

2
a

)
e2q

simplifying for a in terms of q to obtain,

(13) a =
e2q
(
1− q2

)
− 2eq + 1

1− eq + qe2q − 3
2q

2e2q
.

Therefore the predictor formula of the exponentially fitted extended second
derivative BDF (6) shall have coefficients,

α0 =
e2q
(
2− 2q + q2

)
− 2eq

(3q2 − 2q) e2q + 2eq − 2

α1 =
2− 2e2q

(
1− 2q + 2q2

)
(3q2 − 2q) e2q + 2eq − 2

β2 =
e2q
(
1− q2

)
− 2eq + 1

1− eq + qe2q − 3
2q

2e2q

δ2 =
e2q (2q − 3) + 4eq − 1

(3q2 − 2q) e2q + 2eq − 2
.

Again applying the test problem (10) on the corrector formula (9) yields,

yn+2 +

(
−8

7
+

3

7
b

)
yn+1 +

(
1

7
− 3

7
b

)
yn

= h

(
6

7
− 4

7
b

)
λyn+2 + hbλyn+3 + h2

(
−2

7
− 23

14
b

)
λ2yn+2

substituting q = λh yields,

yn+2 +

(
−8

7
+

3

7
b

)
yn+1 +

(
1

7
− 3

7
b

)
yn(14)

=

(
6

7
− 4

7
b

)
qyn+2 + bqyn+3 +

(
−2

7
− 23

14
b

)
q2yn+2

simplifying and obtaining b in terms of q, we obtain,

(15) b =
e2q
(
14− 12q + 4q2

)
− 16eq + 2

6− 6eq − e2q (8q + 23q2) + 14qe3q
.
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This implies that the exponentially fitted 2-step extended second derivative
BDF of the form (7) has coefficients,

α1 =
−2
(
e2q
(
2q + 14q2 + 3

)
− 8qe3q − 3

)
6eq + (8q + 23q2)e2q − 6 + 14qe3q

α0 =
e2q
(
6− 4q + 5q2

)
− 2qe3q − 6eq

6eq + (8q + 23q2)e2q − 6 + 14qe3q

β2 =
2
(
e2q
(
11q2 + 4

)
− 6qe3q − 2eq − 2

)
6eq + (8q + 23q2)e2q − 6 + 14qe3q

β3 =
e2q
(
14− 12q + 4q2

)
− 16eq + 2

6− 6eq − e2q (8q + 23q2) + 14qe3q

δ2 = − (22q − 23) e2q + 28eq − 4qe3q − 5

6− 6eq − e2q (8q + 23q2) + 14qe3q
.

4. Stability analysis of the method

Stability of a LMM determines the manner in which the error is prop-
agated as the numerical computation proceeds. Lambert [15, 16]. Hence
it would be necessary to investigate the stability criteria of the methods
(8) and (9). Since these methods involve free parameters a and b for the
method to satisfy some A-stability conditions, therefore the determination
of the range of values for the free parameter a and b in the open left plane
(−∞, 0] will be required.

The stability functions R(q) and R(q) are functions derived from a and b
respectively which reveal some conditions the free parameters must satisfy
before the range of values for the fitting condition is obtained. This implies
that, the condition where a and b satisfy such that,

(16) |R(q)| =
∣∣∣∣yn+2

yn

∣∣∣∣ < 1, ∀q, with Re(q) < 0

is sought for.
To obtain the stability function R(q), applying (8) to the test problem

(10), substituting q = λh and dividing both sides by yn, we have,

yn+2

yn
+ (−2 + a)

yn+1

yn
+ (1− a) = aq

yn+2

yn
+

(
1− 3

2
a

)
q2
yn+2

yn
.

Using the substitution, (
yn+2

yn

) 1
2

=
yn+1

yn
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we obtain an equation of the form,

(17) A

(
yn+2

yn

)
+B

(
yn+2

yn

) 1
2

+ C = 0

with,

A = 1− aq −
(

1− 3

2
a

)
q2, B = a− 2, C = −(a− 1).

Solving (17) for
(
yn+2

yn

)
, we obtain two solutions,

(
yn+2

yn

)
= −1

2

(
−B2 +B

√
b2 − 4AC + 2AC

A2

)
= R1(q)

or (
yn+2

yn

)
= −1

2

(
−B2 −B

√
b2 − 4AC + 2AC

A2

)
= R2(q).

To actually obtain the stability function R(q) which is the stability func-
tion for the corrector, we apply the corrector formula (9) to the test problem
(10) and diving through by yn. The substitution,(

yn+3

yn

)
=

(
yn+2

yn

) 3
2

= R
3
2 (q)

(
yn+1

yn

)
=

(
yn+2

yn

) 1
2

= R
1
2 (q)

reduces (9) to,

yn+2

yn
=
bqR

3
2 (q)−

(
−8

7 + 3
7b
)
R

1
2 (q)−

(
1
7 −

3
7b
)

1− q
(
6
7 −

4
7b
)

+ q2
(
2
7 + 23

14b
) = R(q),

R(q) here is known as the stability function for the SDEBDF, it unites the
predictor formula (5) and the corrector formula (4).

By application of maximum modulus theorem, we establish that the nec-
essary and sufficient conditions for the inequality (16) to hold are given by:

(i) |R(q)| ≤ 1 on Re(q)=0
(ii) R(q) analytic in Re(q) < 0
If condition (i) holds it means that R(q) is analytic in q = −∞, therefore

by maximum modulus theorem (i) and (ii) will guarantee A-stability. To
examine this, we consider |R(q)| ≤ 1 for the corrector. this implies that,

−1 ≤ R(q) ≤ 1
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(18)
bqR

3
2 (q)−

(
−8

7 + 3
7b
)
R

1
2 (q) +

(
1
7 −

3
7b
)

1− q
(
6
7 −

4
7b
)

+ q2
(
2
7 + 23

14b
) − 1 ≤ 0

taking limit as q → −∞, we have that b ≥ − 4
23 . Repeating the same process

for R(q), we obtain that a ≥ 2
3 .

Also showing analytically that a and b have finite limits for both q = 0
and q = −∞, and at q = 0 we have a = 6

7 , b = 0 while at q = −∞ we have
a = 1, b = 1

3 . This means that the SDEBDF will be A-stable in the interval
b ∈

[
8
73 ,

1
3

]
and a ∈

[
6
7 , 1
]
.

The values of some sample of q is given in the Table 1, this is to show
the relationship between the numerically stability of the the method within
the range a and b. It is however observed that as q is decreasing a and b are
monotonically increasing for the samples q. This suggest that all values a
and b within this range are convergent and bounded in the range as obtained
by the maximum modulus theorem as q → 0 and q → −∞.

Table 1. Parameter values a and b as a function of q associated
with the SDEBDF

q a b

-1.0 0.89945 0.16327

-2.0 0.93907 0.22103

-5.0 0.99405 0.32014

-10.0 0.99995 0.33323

-20.0 0.99999 0.33333

-50.0 1.00000 0.33333

-100.0 1.00000 0.33333

Lemma 1 (Cash [8]). If equation (4) is of order k+ 1 and the BDF for
predictor are of order k, then the whole Predictor-Corrector method (5) -
(4) is of order k + 1.

Theorem 1. The 2-step SDEBDF is of order 3.

Proof. The theorem is proved based on the lemma of Cash [8]. The
proof of this theorem shall involve the Predictor-Corrector Pair (8) and
(9). Suppose the exact solution of yn and yn+1 are given, then by Taylors
expansion of y(xn+2)− yn+2, it is easily derived that,

(19) y(xn+2)− yn+2 = h3
(

5

3
+ 2a

)
y′′′(xn) +O(h4)

this implies that the predictor is of order 2 whenever a 6= −5
6 . Following the

proposed algorithm, step 2 implies,

(20) yn+3 = (a− 1) yn+1 + (2− a) yn+2 + hafn+3 + h2
(

1− 3

2
a

)
gn+3.
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Also expanding by Taylor series and simplifying, we obtain,

(21) yn+3 − yn+3 = h3
(
−1 +

7

6
a

)
y′′′(xn) +O(h4)

which shows that it also of order 2 which is dependent on
(
y(xn+2)− yn+2

)
.

On approaching stage four(4) of the algorithm which replaces yn+3 in fn+3

as f(xn+3, yn+3). The corrector (9) becomes,

yn+2 +

(
−8

7
+

3

7
b

)
yn+1 +

(
1

7
− 3

7
b

)
yn(22)

= h

((
6

7
− 4

7
b

)
fn+2 + bf

(
xn+3, yn+3

))
+ h2

((
−2

7
− 23

14
b

))
gn+2.

But,

yn+3 = y (xn) + 3hy′ (xn) +
(3h)2

2!
y′′ (xn)(23)

+

(
−7

6
a+

11

2

)
h3y′′′ (xn) + o(h4)

simplifying using some elementary algebra, we have,

yn+2 = y (xn) + 2hy′ (xn) +
(2h)2

2!
y′′ (xn) +

(2h)3

3!
y′′′ (xn)(24)

+

(
13

21
+

241

168
b− 7

6
ab

)
h4y(iv) (xn)

hence the method (8)-(9) P-C pair is of order 3 depending on the choice of
a and b. �

Theorem 2. The 2-step SDEBDF has a Local Truncation Error (L.T.E)
of
(

1
21 −

241
168b+ 7

6ab
)
h4y(iv) (xn)

Proof. The L.T.E is defined as,

L.T.E = y (xn+2)− yn+2

hence, expanding y(xn+2) with Taylors series and subtracting (24) from it,
the result follows. �

5. Numerical experiment

In this paper we apply the 2-step SDEBDF to some standard problem
in the literatures [1, 4, 7, 11, 14]. The implementation of the schemes were
carried out on a digital computer.
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Problem 1. We consider the linear problem considered by Jackson et
al. [14] and Cash [7].

y′ = −y + 95z, y(0) = 1, z′ = −y − 97z, z(0) = 1, x ∈ [0, 1]

The eigenvalues of the Jacobian matrix at x = 0 are λ1 = −2 and λ2 =
−96. The analytical solution of Problem 1 is given as:

y =
1

47

(
95e−2x − 48e−96x

)
, z =

1

47

(
48e−96x − e−2x

)
.

Problem 2. The Second problem considered is a problem considered
from Enright and Pryce [11],

y′1 = −104y1 + 100y2 − 10y3 + y4; y1(0) = 1

y′2 = −1000y2 + 10y3 − 10y4; y2(0) = 1

y′3 = −y3 + 10y4; y3(0) = 1

y′4 = −0.1y3; y4(0) = 1.

This problem is solved within the range 0 ≤ x ≤ 20. The eigenvalues
of the Jacobian matrix are λ1 = −0.1, λ2 = −1.0, λ3 = −1000.0 and
λ4 = −10000.0. The analytical solution of Problem 2 is given as:

y1(x) = − 89990090

8999010009
e−0.1x +

818090

89901009
e−x

+
9989911

899010090
e−1000x +

89071119179

89990100090
e−10000x

y2(x) =
9100

89991
e−0.1x − 910

8991
e−x +

9989911

9989001
e−1000x

y3(x) =
100

9
e−0.1x − 91

9
e−x

y4(x) = e−0.1x.

Problem 3. A mildly stiff linear problem considered by Akinfenwa,
Jator and Yao [4] given by,

(25)
y1
′ = 998y1 + 1998y2 , y1(0) = 1

y2
′ = −999y1 − 1999y2 , y2(0) = 1

is also considered on the interval 0 < x < 10 having an analytical solution
given by the sum of two decaying components.

y1(x) = 4e−x − 3e−1000x

y2(x) = −2e−x + 3e−1000x .
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With an eigenvalue of 1 and 1000, the problem has a stiffness ratio of 1 :
1000. Solving this problem with SDEBDF, we compare the absolute errors
on the interval at x = 10 with the Block Backward Differentiation Formula
of Order 8 of Akinfenwa et al. [4] (BBDF8) using a step length h = 0.1.

Problem 4. A second order ordinary differential equation given by,

(26) y′′ + 1001y′ + 1000y = 0, y(0) = 1, y′(0) = 1

transformed to a system of first order equation as,

(27)
y′ = z , y(0) = 1
z′ = −1000y − 1001z , z(0) = 0

is also considered. The stiff system has eigenvalues λ1 = −1 and λ2 =
1000. For the purpose of comparison, we solve the problem on the interval
0 < x < 1. Numerical results is compared with methods of Abhulimen and
Okunuga [2], Okunuga [18] and Abhulimen [1] denoted as AB-OK, OK, and
AB5 respectively and presented in Table 5.

The result obtained for Problem 1 using stepsizes of 0.0625 and 0.03125
are given in Table 1. The method is implemented with these stepsizes to be
able to compare the newly developed method with the existing methods. In
this paper, we denote J-K, Cash4, Cash5 and ABOT due to the method of
Jackson and Kenue, Cash of Order 4 and Cash of Order 5 and the method
of Abhulimen et al. [3] respectively. While SDEBDF denotes the newly
derived method.

Table 2. Result of the Problem 1.

h Method y(1)(|error|) z(1)× 102(|error| × 102)
0.0625 J-K 0.2735503(3× 10−7) −0.2879477(4× 10−7)

Cash4 0.2735498(3× 10−7) −0.2879471(3× 10−7)
Cash5 0.27355005(1× 10−8) −0.28794742(1× 10−8)
ABOT 0.27354656(3.5× 10−6) −0.2879474(1.1× 10−8)

SDEBDF 0.27355004(3.4× 10−9) −0.28794741(3.6× 10−9)

Analytical Solution 0.2735500405 −0.2879474111× 102

0.03125 J-K 0.2735505(1× 10−8) −0.28794742(1× 10−8)
Cash4 0.27354004(1× 10−8) −0.28794740(1× 10−8)
ABOT 0.27355046(4.2× 10−7) −0.28796700(1.9× 10−5)

SDEBDF 0.2735500371(3.4× 10−9) −0.2879474081(3.5× 10−9)

The result in the Table 2 above shows the superiority of the newly derived
method, SDEBDF with the existing methods and it shows the method is
efficient for the integration of stiff problems.

The results obtained from the solution of Problem 2 is solved with the
new SDEBDF using stepsizes 0.05 and 0.1 and numerical results are also
compared with . The result is shown in the Table 2 below.
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Table 3. Result of the Problem 2.

h Method y1(20)(|error|) y2(20)(|error|)
0.05 SDEBDF (−0.00135335)5.31× 10−12 (0.01368527)7.27× 10−11

0.1 SDEBDF (−0.00135335)2.25× 10−10 (0.01368527)2.29× 10−9

Analytical Solution −0.00135335 0.01368527

h Method y3(20)(|error|) y4(20)(|error|)
0.05 SDEBDF (1.50372535)5.90× 10−9 (0.13533528)1.34× 10−9

0.1 SDEBDF (1.50372560)2.50× 10−7 (0.13533530)2.06× 10−8

Analytical Solution 1.50372535 0.13533528

The numerical results presented in Table 3 shows that the error tolerance could be
raise to 10−7 as against 10−4 prescribed in Enright and Pryce [11]. It is observed
that the results for the numerical solution for y1(20) for both stepsizes was the most
accurate of all other dependent variables.

Numerical results for problem 3 was compared with the Block Backward Differ-
entiation formula of order 8 as derived in Akinfenwa et al. [4] denoted by BBDF8
in Table 4.

Table 4. Result of the Problem 3.

Method x |y1,100 − y1(1)|
BBDF8 10 4.18× 10−13

SDEBDF 10 8.92× 10−18

Our results also generates a more accurate result than the block methods of
Akinfenwa [4].

Table 5. Result of the Problem 4.

Method x |y10 − y(1)|
AB-OK 1 5.29× 10−9

OK 1 5.26× 10−8

AB5 1 1.8× 10−7

SEDBDF 1 1.83× 10−15

Clearly from Table 4, it is easily observed that our method yields a more accurate
result than the methods derived in Abhulimen and Okunuga [2], Okunuga [18], and
Abhulimen [1].

6. Conclusion

An A-stable exponentially fitted second derivative extended backward differen-
tiation method has been derived for the integration of Stiff problems, the method
is found to be A-stable within some range of free parameters. The method is found
to be highly efficient on some standard problems which shows its superiority over
some existing methods.
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