
F A S C I C U L I M A T H E M A T I C I

Nr 51 2013

K. Liu, P. Li and W. Zhong∗

ON A SYSTEM OF RATIONAL DIFFERENCE

EQUATIONS xn+1 =
xn−1

yn xn−1−1 ,

yn+1 =
yn−1

xn yn−1−1 , zn+1 =
1

yn zn−1

Abstract. In this paper, we are concerned with a three- dimen-
sional system of rational difference equations. We present solu-
tions of the system in an explicit way and obtain the asymptotical
behavior of solutions according to initial values. We also give suf-
ficient conditions of existing four-period solutions.
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1. Introduction

Difference equations, also referred to recursive sequence, is a hot topic.
Recently there has been an increasing interest in the study of qualitative
analysis of nonlinear difference equations and systems of difference equa-
tions. Difference equations appear naturally as discrete analogues and as
numerical solutions of differential and delay differential equations having
applications in biology, ecology, economics, physics, computer sciences and
so on. Especially, Gu and Ding[5] has considered the state space models
described by difference equations. Although difference equations’ forms are
very simple, it is extremely difficult to understand thoroughly the global be-
haviors of their solutions. The study of these equations is quite challenging
and rewarding and is still in its infancy. We believe that nonlinear rational
difference equations are of paramount importance in their own right, and
furthermore we believe that these results about such equations offer proto-
types towards the development of the basic theory of nonlinear difference
equations.
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Particularly, there is a class of nonlinear difference equations, known as
rational difference equation or fractional difference equation, which consists
of the ratio of two polynomials in the sequence terms. A lot of work has
been concentrated on it, see [12]–[13]. There is one way to study rational
difference equations–giving the exact expression of solutions[1, 2]. Another
way is studying the qualitative behavior such as asymptotical stability using
the linearized method[4, 18], semicycle analysis and so on[12].

At the same time, more and more attention is paid to systems of ra-
tional difference equations composed by two or three rational difference
equations[3]–[13]. The single equation is simple, but the coupled ways of
systems are various and thus such systems have no fixed ways to follow to
investigate their behavior.

In [1, 2], Çinar has obtained the solutions of the following difference
equations

xn+1 =
xn−1

1 + xn xn−1
,

xn+1 =
a xn−1

1 + b xn xn−1
.

In [4] and [18], more complicated equations have been investigated. In
[3], Çinar has proved the periodicity of positive solutions of the difference
equation system

xn+1 =
1

yn
, yn+1 =

yn
xn−1 yn−1

.

In [17] and [16], higher-ordered systems have been studied. In [15], Stevic
has investigated the following general system of difference equations

xn+1 =
axn−1

b yn xn−1 + c
, yn+1 =

αyn−1
β xn yn−1 + γ

.

In [11], Kurbanli, Çinar and Yalçinkaya has expressed solutions of the
system of rational difference equations

(1) xn+1 =
xn−1

yn xn−1 + 1
, yn+1 =

yn−1
xn yn−1 + 1

.

In [9], Kurbanli, Çinar and Simsek has also expressed solutions of the
system

(2) xn+1 =
xn−1 + yn
yn xn−1 − 1

, yn+1 =
yn−1 + xn
xn yn−1 − 1

.

In [10], Kurbanli, Çinar and Yalçinkaya has investigated the behavior of
positive solutions of the system of rational difference equations

(3) xn+1 =
xn−1

yn xn−1 − 1
, yn+1 =

yn−1
xn yn−1 − 1

.
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Based on it, three-dimensional systems have been investigated. In [6], [7]
and [8], Kurbanli and his collaborates has obtained the behavior of solutions
of the following systems, respectively,

(4) xn+1 =
xn−1

yn xn−1 − 1
, yn+1 =

yn−1
xn yn−1 − 1

, zn+1 =
zn−1

yn zn−1 − 1
;

(5) xn+1 =
xn−1

yn xn−1 − 1
, yn+1 =

yn−1
xn yn−1 − 1

, zn+1 =
1

yn zn
;

(6) xn+1 =
xn−1

yn xn−1 − 1
, yn+1 =

yn−1
xn yn−1 − 1

, zn+1 =
xn

yn zn−1
.

In [14], we have improved the results on (4) of those in [6] and also
investigated the system

(7) xn+1 =
xn−1

yn xn−1 − 1
, yn+1 =

yn−1
xn yn−1 − 1

, zn+1 =
zn−1

xn zn−1 − 1
.

And some other results would be presented in [13].
In this paper, motivated by the above references and the references cited

therein, we consider the following system

(8) xn+1 =
xn−1

yn xn−1 − 1
, yn+1 =

yn−1
xn yn−1 − 1

, zn+1 =
1

yn zn−1

where the initial conditions are nonzero real numbers. Here, (8) is a system
including three rational difference equations and the first two equations are
similar to those of [10, 6, 7], the third equation is different from [6, 7]. How
is the solution of (8) and is it similar to those of [7]? We try to answer these
problems in the following.

In next section, we express solutions of the system (8) and try to describe
the behavior of solutions.

2. Main results

Through the paper, we suppose the initial values to be

y0= a, x0= c, y−1= b, x−1= d, z0= e, z−1= f.

Here, a, b, c, d, e and f are real numbers such that (ad − 1)(cb − 1) 6= 0,
abef 6= 0. We call this to be the hypothesis H.

Theorem 1. Suppose that the hypothesis H holds and let {xn, yn, zn} be
a solution of the system (8). Then all solutions of (8) are

(9) xn =


d

(ad− 1)k
, n = 2k − 1,

c (cb− 1)k , n = 2k,

k = 1, 2, · · ·
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(10) yn =


b

(cb− 1)k
, n = 2k − 1,

a(ad− 1)k , n = 2k,

k = 1, 2, · · ·

(11) zn =



1

a f (ad− 1)k−1
, n = 4(k − 1) + 1,

(cb− 1)k

be
, n = 4(k − 1) + 2,

f

(ad− 1)k
, n = 4(k − 1) + 3,

e (bc− 1)k , n = 4(k − 1) + 4.

k = 1, 2, · · ·

Proof. It is obvious to obtain (9) and (10) and referred to [10]. Here,
we only focus on (11).

First, for k = 1, from (8) and (10), we easily check that

z1 =
1

y0 z−1
=

1

a f
,

z2 =
1

y1 z0
=

1
b

(cb−1) e
=

cb− 1

b e
,

z3 =
1

y2 z1
=

f

ad− 1
,

z4 =
1

y3 z2
= e (cb− 1) .

Next, we assume the conclusion is true for k, that is, (11) holds.
Then, for k + 1, we confirm it. In fact, from (8) and (10) and (11), we

have

z4k+1 =
1

y4k z4(k−1)+3
=

1

a (ad− 1)2k × f
(ad−1)k

=
1

a f (ad− 1)k
,

z4k+2 =
1

y4k+1 z4k
=

1
b

(cb−1)2k+1 × e (cb− 1)k
=

(cb− 1)k+1

b e
,

z4k+3 =
1

y4k+2 z4k+1
=

1

a (ad− 1)2k+1 × 1
a f (ad−1)k

=
f

(ad− 1)k+1
,

z4k+4 =
1

y4k+3 z4k+2
=

1

b
(cb−1)2k+2 ×

(cb−1)k+1

be

= e (cb− 1)k+1

and complete the proof. �



On a system of rational difference . . . 109

By Theorem 1, the expressions of (9), (10) and (11) will greatly help us
to investigate the asymptotical behavior of solutions of (11).

Corollary 1. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). Also, if ad = cb = 2, then all solutions of
(8) are four periodic.

Proof. In this case, from (9), (10) and (11), we have

(12) xn =

 d , n = 2k − 1,

c , n = 2k,
k = 1, 2, · · ·

(13) yn =

 b , n = 2k − 1,

a, n = 2k,
k = 1, 2, · · ·

(14) zn =



1

af
, n = 4(k − 1) + 1,

1

be
, n = 4(k − 1) + 2,

f , n = 4(k − 1) + 3,

e , n = 4(k − 1) + 4,

k = 1, 2, · · ·

and complete the proof. �

Corollary 2. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). Also, if ad, cb ∈ (1, 2) and a > 0, then all
solutions of (8) satisfy

lim
n→∞

(x2n−1, y2n−1, z2n−1 ) = (∞, ∞, ∞) ,(15)

lim
n→∞

(x2n, y2n, z2n ) = (0, 0, 0) .(16)

Proof. From the hypothesis and ad, cb ∈ (1, 2) and d > c, we obtain
that 0 < ad− 1 < 1, 0 < cb− 1 < 1 and thus, (ad− 1)n and (cb− 1)n tend
to zero as n tends to ∞.

First, from (9), we have

lim
n→∞

x2n−1 = lim
n→∞

d

(ad− 1)n
= d · ∞ =

{
−∞, d < 0,
+∞, d > 0.
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Similarly, from (10), we have

lim
n→∞

y2n−1 = lim
n→∞

b

(cb− 1)n
= b · ∞ =

{
−∞, b < 0,
+∞, b > 0.

As far as z2n−1 is concerned, from (11) we could consider z4k+1 and z4k+3

for n = k + 1, respectively,

lim
n→∞

z4k+1 = lim
n→∞

1

a f (ad− 1)k
=

1

a f
· ∞ =

{
−∞, f < 0, a > 0,
+∞, f > 0.

lim
n→∞

z4k+3 = lim
n→∞

=
f

(ad− 1)k+1
= f · ∞ =

{
−∞, f < 0,
+∞, f > 0.

and thus

lim
n→∞

z2n−1 =

{
−∞, f < 0,
+∞, f > 0.

Therefore,

lim
n→∞

(x2n−1, y2n−1, z2n−1 ) = (∞, ∞, ∞) .

Next, from (9) and (10), we have

lim
n→∞

x2n = lim
n→∞

c (cb− 1)n = 0,

lim
n→∞

y2n = lim
n→∞

a (ad− 1)n = 0.

At last, for z2n, we have

lim
n→∞

z4k+2 = lim
n→∞

(cb− 1)k+1

be
= 0 ,

lim
n→∞

z4k+4 = lim
n→∞

e (cb− 1)k+1 = 0

and thus

lim
n→∞

z2n = 0

and complete the proof. �

Corollary 3. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). Also, if a, b, c, d ∈ (0, 1), then all solutions
of (8) satisfy

lim
n→∞

(x2n−1, y2n−1, z2n−1 ) = (∞, ∞, ∞) ,(17)

lim
n→∞

(x2n, y2n, z2n ) = (0, 0, 0) .(18)



On a system of rational difference . . . 111

Proof. From a, b, c, d ∈ (0, 1), we have −1 < ad−1 < 0, −1 < cb−1 < 0.
The remainder is similar to that of Corollary 2 and we omit here. �

And we also have the following and omit the proof.

Corollary 4. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). Also, if ad, cb ∈ (2,+∞) and b > 0, then all
solutions of (8) satisfy

lim
n→∞

(x2n−1, y2n−1, z2n−1 ) = (0, 0, 0) ,(19)

lim
n→∞

(x2n, y2n, z2n ) = (∞, ∞, ∞) .(20)

Corollary 5. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). Also, if ad, cb ∈ (−∞, 0) and b > 0, then all
solutions of (8) satisfy

lim
n→∞

(x2n−1, y2n−1, z2n−1 ) = (0, 0, 0) ,(21)

lim
n→∞

(x2n, y2n, z2n ) = (∞, ∞, ∞) .(22)

The above theorems describe the asymptotical behavior of solutions in
case of the initial values existing in different intervals. At last, we describe
the behavior in another way.

Corollary 6. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). If one of the following holds,

(a) 1 < cb < ad ;
(b) ad < cb < 1 ;
(c) ad < 1 < cb and ad+ cb < 2 ;
(d) cb < 1 < ad and ad+ cb > 2

then all solutions of (8) satisfy

lim
n→∞

x2n y2n−1 = cb ,(23)

lim
n→∞

x2n−1 y2n = ad ,(24)

lim
n→∞

z2n−1 z2n = 0.(25)

Proof. In view of (9), (10) and (11), we have

lim
n→∞

x2n y2n−1 = lim
n→∞

(
c (cb− 1)n × b

(cb− 1)n

)
= cb,

lim
n→∞

x2n−1 y2n = lim
n→∞

(
d

(ad− 1)n
× a(ad− 1)n

)
= ad.
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As far as z2n−1 and z2n are concerned, from (11) we could consider z4k+1

and z4k+2, z4k+3 and z4k+4 for n = k + 1, respectively. In fact, we have

z4k+1 z4k+2 =
1

a f (ad− 1)k
× (cb− 1)k+1

b e
=

cb− 1

abef

(
cb− 1

ad− 1

)k

,

z4k+3 z4k+4 =
f

(ad− 1)k+1
× e (cb− 1)k+1 = ef

(
cb− 1

ad− 1

)k+1

.

If one of the four conditions holds, we obtain |(cb− 1)/(ad− 1)| < 1 and the
conclusion is apparent. �

Corollary 7. Suppose that the hypothesis H holds and let {xn, yn, zn}
be a solution of the system (8). If one of the following holds,

(a) 1 < ad < cb ;
(b) cb < ad < 1 ;
(c) ad < 1 < cb and ad+ cb > 2 ;
(d) cb < 1 < ad and ad+ cb < 2 ,

and (cb− 1)/ab > 0, then all solutions of (8) satisfy

lim
n→∞

x2n y2n−1 = cb ,(26)

lim
n→∞

x2n−1 y2n = ad ,(27)

lim
n→∞

z2n−1 z2n = ∞.(28)

The proof is omitted here. In fact, we could obtain |(ad−1)/(cb−1)| > 1
if one of the four conditions holds and the condition of (ad− 1)/cd > 0 is to
keep the sign.
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