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Abstract. Molodtsov introduced the concept of soft sets. In this
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some basic properties by using N -groups and Molodtsov’s defini-
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1. Introduction

Molodtsov [18] introduced soft set theory in 1999 by for dealing with
uncertainties and it has not continued to experience tremendous growth
and diversification in the mean of algebraic structures as in [1, 2, 4, 8, 9,
10, 11, 12, 13, 14, 21, 24, 25, 26, 23, 27] but also operations of soft sets
as in [3, 15, 22]. Furthermore, soft set relations and functions [5] and soft
mappings [17] with many related concepts were discussed. The theory of soft
set has also a wide-ranging applications especially in soft decision making
as in the following studies: [6, 7, 16, 19].

In this paper, we introduce a basic version of soft N -group theory, which
extends the notion of N -group by including some algebraic structures in soft
set theory. A soft N -group defined in this paper is actually a parametrized
family ofN -subgroups, and has some properties similar to those ofN -groups.

2. Preliminaries

By a near-ring, we shall mean an algebraic system (N,+, .), where
• (N,+) forms a group (not necessarily abelian)
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• (N, .) forms a semi-group and
• (a+ b)c = ac+ bc for all a, b, c ∈ N (i.e. we study on right near-rings.)

Throughout this paper, N will always denote a right near-ring. For a
near-ring N , the zero-symmetric part of N denoted by N0 is defined by N0 =
{n ∈ N | n0 = 0}. If N = N0, then N is called a zero-symmetric near-ring.
A normal subgroup I of N is called a left ideal of N if n(s+ i)− ns ∈ I for
all n, s ∈ N and i ∈ I and denoted by I C` N .

Let (Γ,+) be a group and

µ : N × Γ → Γ

(n, γ) → nγ .

(Γ, µ) is called an N -group if ∀x, y ∈ N , ∀γ ∈ Γ,
(i) x(yγ) = (xy)γ and
(ii) (x+ y)γ = xγ + yγ.

It is denoted by NΓ. Clearly N itself is an N -group. Let Γ be a group and
M(Γ) = {f | f : Γ→ Γ}. Then Γ is an M(Γ)-group, with

µ : M(Γ)× Γ → Γ

(f, γ) → f(γ) .

A subgroup ∆ of NΓ with N∆ ⊆ ∆ is said to be an N -subgroup of Γ and
denoted by ∆ ≤N Γ. A normal subgroup ∆ of Γ is called an ideal of NΓ

and denoted by ∆ �N Γ, if ∀γ ∈ Γ, ∀δ ∈ ∆, ∀n ∈ N , n(γ + δ)− nγ ∈ ∆. It
is obvious that when we take Γ = N , the ideals of NN coincide with the left
ideals of N . Let N be a near-ring, Γ and Ψ two N - groups. Then h : Γ→ Ψ
is called an N -homomorphism if ∀γ, δ ∈ Γ, ∀n ∈ N ,

(i) h(γ + δ) = h(γ) + h(δ) and
(ii) h(nγ) = nh(γ).

NΓ is said to be a monogenic N -group if and only if there exists a γ ∈ Γ
such that Nγ = Γ. In this case we say that NΓ is monogenic by γ and γ is
a generator for NΓ. It is well-known that if Γ is a monogenic N -group by
γ, then

hγ : N → Γ

n → nγ

is an N -group epimorphism. For all undefined concepts and notions we refer
to Pilz [20].

Molodtsov [18] defined the soft set in the following manner:
Let U be an initial universe set, E be a set of parameters, P (U) be the

power set of U and A ⊆ E.
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Definition 1 ([18]). A pair (F,A) is called a soft set over U , where F
is a mapping given by

F : A→ P (U).

In other words, a soft set over U is a parameterized family of subsets of
the universe U .

Definition 2 ([15]). The bi-intersection of two soft sets (F,A) and(G,B)
over a common universe U is defined to be the soft set (H,C), where C =
A ∩ B and H : C → P (U) is a mapping given by H(x) = F (x) ∩ G(x) for
all x ∈ C. This is denoted by (F,A)ũ(G,B) = (H,C).

Definition 3 ([3]). Let (F,A) and (G,B) be two soft sets over a common
universe U such that A ∩ B 6= ∅. The restricted intersection of (F,A) and
(G,B) is denoted by (F,A) e (G,B), and is defined as (F,A) e (G,B) =
(H,C), where C = A ∩B and for all c ∈ C, H(c) = F (c) ∩G(c).

Definition 4 ([3]). Let (F,A) and (G,B) be two soft sets over a common
universe U . The extended intersection of (F,A) and (G,B) is defined to be
the soft set (H,C), where C = A ∪B and for all e ∈ C,

H(e) =


F (e) if e ∈ A \B,
G(e) if e ∈ B \A,
F (e) ∩G(e) if e ∈ A ∩B.

This relation is denoted by (F,A) uε (G,B) = (H,C).

Definition 5 ([15]). Let (F,A) and (G,B) be two soft sets over a com-
mon universe U . The union of (F,A) and (G,B) is defined to be the soft set
(H,C) satisfying the following conditions: (i) C = A∪B; (ii) for all e ∈ C,

H(e) =


F (e) if e ∈ A \B,
G(e) if e ∈ B \A,
F (e) ∪G(e) if e ∈ A ∩B.

This relation is denoted by (F,A)∪̃(G,B) = (H,C).

Definition 6 ([15]). If (F,A) and (G,B) are two soft sets over a common
universe U , then ”(F,A) AND (G,B)” denoted by (F,A)∧̃(G,B) is defined
by (F,A)∧̃(G,B) = (H,A×B), where H(x, y) = F (x)∩G(y) for all (x, y) ∈
A×B.

Definition 7 ([8]). Let (Fi, Ai)i∈I be a nonempty family of soft sets over
a common universe U . The union of these soft sets is defined to be the soft
set (G,B) such that B =

⋃
i∈I Ai and for all x ∈ B, G(x) =

⋃
i∈I(x) Fi(x)

where I(x) = {i ∈ I | x ∈ Ai}. In this case we write
⋃̃
i∈I(Fi, Ai) = (G,B).
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Definition 8 ([8]). Let (Fi, Ai)i∈I be a nonempty family of soft sets

over a common universe set U . The AND-soft set
∧̃
i∈I(Fi, Ai) of these

soft sets is defined to be the soft set (H,B) such that B =
∏
i∈I Ai and

H(x) =
⋂
i∈I(x) Fi(x) for all x = (xi)i∈I ∈ B.

Note that if Ai = A and Fi = F for all i ∈ I, then
∧̃
i∈I(Fi, Ai) is denoted

by
∧̃
i∈I(F,A). In this case,

∏
i∈I Ai =

∏
i∈I A means the direct power AI .

Definition 9. Let (Fi, Ai)i∈I be a nonempty family of soft sets over a
common universe set U . The restricted intersection of these soft sets is
defined to be the soft set (G,B) such that B =

⋂
i∈I Ai 6= ∅ and for all

x ∈ B, G(x) =
⋂
i∈I Fi(x). In this case we write ei∈I(Fi, Ai) = (G,B).

3. Soft N-groups

In the sequel, let N be a near-ring, Γ be an N -group and A be a nonempty
set. R will refer to an arbitrary binary relation between an element of A
and an element of Γ, that is, R is a subset of A × Γ without otherwise
specified. A set-valued function F : A → P (Γ) can be defined as F (x) =
{y ∈ Γ | (x, y) ∈ R} for all x ∈ A. Then the pair (F,A) is a soft set
over N , which is derived from the relation R. For a soft set (F,A), the set
Supp(F,A) = {x ∈ A | F (x) 6= ∅} is called the support of the soft set (F,A).
The null soft set is a soft set with an empty support, and a soft set (F,A)
is non-null if Supp(F,A) 6= ∅ [8].

Now we are ready to give the definition of soft N -groups.

Definition 10. Let (F,A) be a non-null soft set over an N -group Γ.
Then (F,A) is called a soft N-group over Γ if F (x) is an N -subgroup of Γ
for all x ∈ Supp(F,A).

Example 1 (cf.,[21]). Let the additive group (Z6,+). Under a multipli-
cation defined by following table, (Z6,+, ·) is a (right) near-ring.

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 3 1 5 3 1 5
2 0 2 4 0 2 4
3 3 3 3 3 3 3
4 0 4 2 0 4 2
5 3 5 1 3 5 1

Let Γ = Z6 and (F,A) be a soft set over Γ, where A = Z6 and F : A→ P (Γ)
is a set-valued function defined by

F (x) = {y ∈ Z6 | xRy ⇔ xy ∈ {0, 3}}



A new view to N-group theory: 127

for all x ∈ A. Then F (0) = F (3) = Z6 and F (1) = F (2) = F (4) = F (5) =
{0, 3}. Since Z6 and {0, 3} are both N -subgroups of Z6, (F,A) is a soft
N -group over Z6.

Let Γ = Z6, I = {0, 2, 4} and G : I → P (Γ) be a set-valued function
defined by

G(x) = {y ∈ I | xRy ⇔ xy ∈ {0, 2, 4}}

for all x ∈ I. Then we have G(0) = G(2) = G(4) = {0, 2, 4}. Since
N{0, 2, 4} * {0, 2, 4}, {0, 2, 4} is not an N -subgroup of Z6, therefore (G, I)
is not a soft N -group over Z6.

Example 2. Let Γ = Z2. It is well-known that Z2 is an M(Z2)-group.
Let (F,A) be a soft set over Z2, where A = Z2 and F : A → P (Γ)
is a set-valued function defined by F (0) = F (1) = Z2. Since Z2 is an
M(Z2)-subgroup of Z2, (F,A) is a soft M(Z2)-group over Z2.

Let Γ = Z2 and K = {0, I} ⊆ M(Z2), where I is the identity function
and 0 is the zero function. It is obvious that K is a near-ring with the
operations of usual addition and composition of functions, also it is seen
that Z2 is a K-group. Let (G,B) be a soft set over Z2, where B = Z2 and
G : B → P (Γ) is a set-valued function defined by

G(x) = {y ∈ Γ | xαy ⇔ y = nx for some n ∈ N}

for all x ∈ A. Here nx = x+x...+x means the n -fold sum of x and 0x = 0.
Then G(0) = {0}, G(1) = {0, 1}. Since {0} and {0, 1} are both K-subgroup
of Z2, (G,B) is a soft K-group over Z2. Note that, if we defined above F as
G, then F (0) = {0}, F (1) = {0, 1}. Since {0} is not an M(Z2)-subgroup of
Z2, then (F,A) would not be a soft M(Z2)-group over Z2.

Theorem 1. Let (F,A), (G,B) and (K,A) be soft N -groups over Γ.
Then
a)If it is non-null, then the soft set (F,A)∧̃(G,B) is a soft N -group

over Γ.
b) If it is non-null, then the bi-intersection (F,A)ũ(K,A) is a soft N -group

over Γ.
c) If it is non-null, then the restricted intersection (F,A) e (G,B) is a

soft N -group over Γ.
d) If it is non-null, then the soft set (F,A) uε (G,B) is a soft N -group

over Γ.
e) If A and B are disjoint, then (F,A)∪̃(G,B) is a soft N -group over Γ.

Proof. a) Let (F,A)∧̃(G,B) = (Q,A×B), where Q(x, y) = F (x)∩G(y)
for all (x, y) ∈ A × B. Then by hypothesis, (Q,A × B) is a non-null soft
set over Γ. If (x, y) ∈ Supp(Q,A × B), then Q(x, y) = F (x) ∩ G(y) 6= ∅.
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It follows that ∅ 6= F (x) and ∅ 6= G(y) are both N -subgroups of Γ. Hence
Q(x, y) is an N -subgroup of Γ for all (x, y) ∈ Supp(Q,A × B). Therefore
(Q,A×B) is a soft N -group over Γ.
b) Let (F,A)ũ(K,A) = (W,A), where W (x) = F (x)∩K(x) for all x ∈ A.

Suppose that (W,A) is a non-null soft set over Γ. If x ∈ Supp(W,A),
then W (x) = F (x) ∩ K(x) 6= ∅. Thus ∅ 6= F (x) and ∅ 6= K(x) are
both N -subgroups of Γ. Hence W (x) is an N -subgroup of Γ for all x ∈
Supp(W,A). Therefore (W,A) is a soft N -group over Γ, as required.
c) Let (F,A) e (G,B) = (H,C), where H(x) = F (x) ∩ G(x) for all

x ∈ C = A ∩ B 6= ∅. Suppose that (H,C) is a non-null soft set over Γ. If
x ∈ Supp(H,C), then H(x) = F (x) ∩ G(x) 6= ∅. It follows that ∅ 6= F (x)
and ∅ 6= G(x) are both N -subgroups of Γ. Hence H(x) is an N -subgroup of
Γ for all x ∈ Supp(H,C). Thus, (H,C) is a soft N -group over Γ.
d) Let (F,A) uε (G,B) = (K,A ∪B), where

K(x) =


F (x) if x ∈ A \B,
G(x) if x ∈ B \A,
F (x) ∩G(x) if x ∈ A ∩B

for all x ∈ A∪B. Suppose that (K,A∪B) is a non-null soft set over Γ. Let
x ∈ Supp(K,A∪B). If x ∈ A\B, then ∅ 6= K(x) = F (x) ≤N Γ. If x ∈ B\A,
then ∅ 6= K(x) = G(x) ≤N Γ and if x ∈ A∩B, then K(x) = F (x)∩G(x) 6= ∅.
Since ∅ 6= F (x) ≤N Γ and ∅ 6= G(x) ≤N Γ, it follows that K(x) ≤N Γ for
all x ∈ Supp(K,A ∪ B). Therefore (F,A) uε (G,B) = (K,A ∪ B) is a soft
N -group over Γ.
e) Let (F,A)∪̃(G,B) = (T,A ∪B), where

T (x) =


F (x) if x ∈ A \B,
G(x) if x ∈ B \A,
F (x) ∪G(x) if x ∈ A ∩B

for all x ∈ A∪B. Since A∩B = ∅, it follows that either x ∈ A\B or x ∈ B\A
for all x ∈ A ∪ B. If x ∈ A \ B, then T (x) = F (x) is an N -subgroup of Γ
and if x ∈ B \A, then T (x) = G(x) is an N -subgroup of Γ. Thus, (T,A∪B)
is a soft N -group over Γ. �

Definition 11. Let (F,A) and (G,B) be two soft N -groups over Γ and
Ψ, respectively. The product of soft N -groups (F,A) and (G,B) is defined
as (F,A) × (G,B) = (U,A × B), where U(x, y) = F (x) × G(y) for all
(x, y) ∈ A×B.

Proposition 1. Let (F,A) and (G,B) be two soft N -groups over Γ and
Ψ, respectively. Then if it is non-null, the product (F,A)× (G,B) is a soft
N -group over Γ×Ψ.
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Proof. Let (F,A)×(G,B) = (U,A×B), where U(x, y) = F (x)×G(y) for
all (x, y) ∈ A×B. Then by hypothesis, (U,A×B) is a non-null soft set over
Γ × Ψ. If (x, y) ∈ Supp(U,A × B), then U(x, y) = F (x) ×G(y) 6= ∅. Since
∅ 6= F (x) is an N -subgroup of Γ and ∅ 6= G(y) is an N -subgroup of Ψ, it
follows that U(x, y) is an N -subgroup of Γ×Ψ for all (x, y) ∈ Supp(U,A×B).
Therefore (U,A×B) is a soft N -group over Γ×Ψ. �

Example 3. Let N be the near-ring on S3 with two binary operations
as given in table below (cf.,[20] No 11 on S3).

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 5 4 3 2
2 2 4 0 5 1 3
3 3 5 4 0 2 1
4 4 2 3 1 5 0
5 5 3 1 2 0 4

. 0 1 2 3 4 5

0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 1 1 3 2 2 3
3 1 1 2 3 3 2
4 0 0 5 4 4 5
5 0 0 4 5 5 4

Let Γ = N and the soft set (F,A) over Γ, where A = {0, 3, 5} and F : A→
P (Γ) is a set-valued function defined by

F (x) = {y ∈ N | xRy ⇔ xy ∈ {0, 1}}

for all x ∈ A. Then F (0) = N and F (3) = F (5) = {0, 1}. Since N and
{0, 1} are both N -subgroups of Γ, (F,A) is a soft N -group over Γ.

Let Γ = N and the soft set (G,B) over Γ, where B = {0, 4, 5} and
G : B → P (Γ) is a set-valued function defined by

G(x) = {y ∈ N | xRy ⇔ xy ∈ {0, 4, 5}}

for all x ∈ B. Then G(0) = G(4) = G(5) = N . Since N is an N -subgroup
of Γ, (G,B) is a soft N -group over Γ.

Let (F,A)∧̃(G,B) = (Q,A × B), where Q(x) = F (x) ∩ G(y) for all
(x, y) ∈ A× B. Then Q(0, 0) = Q(0, 4) = Q(0, 5) = N , Q(3, 0) = Q(3, 4) =
Q(3, 5) = Q(5, 0) = Q(5, 4) = Q(5, 5) = {0, 1}. Since N and {0, 1} are both
N -subgroups of Γ, (Q,A×B) is a soft N -group over Γ.

Let (F,A)e (G,B) = (H,C), where H(x) = F (x)∩G(x) for all x ∈ C =
A ∩B = {0, 5}. Since H(0) = F (0) ∩G(0) = N and H(5) = F (5) ∩G(5) =
{0, 1} are both N -subgroups of Γ, (H,C) is a soft N -group over Γ.

Assume that (F,A) uε (G,B) = (T,A ∪B), where

T (x) =


F (x) if x ∈ A \B = {3},
G(x) if x ∈ B \A = {4},
F (x) ∩G(x) if x ∈ A ∩B = {0, 5}
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for all x ∈ A ∪ B. Then Supp(T,A ∪ B) = {0, 3, 4, 5} and T (0) = N ,
T (3) = {0, 1}, T (4) = N and T (5) = {0, 1}. Since T (x) ≤N Γ for all
x ∈ Supp(T,A ∪B), (T,A ∪B) is a soft N -group over Γ.

Let (F,A) × (G,B) = (W,A × B), where W (x) = F (x) × G(y) for all
(x, y) ∈ A × B. Then W (0, 0) = W (0, 4) = W (0, 5) = N × N , W (3, 0) =
W (3, 4) = W (3, 5) = W (5, 0) = W (5, 4) = W (5, 5) = {0, 1} × N . Since
N ×N ≤N N ×N and {0, 1}×N ≤N N ×N , (W,A×B) is a soft N -group
over N ×N .

Definition 12. Let (F,A) and (G,B) be two N -groups over Γ. Then
(F,A) is called a soft N-subgroup of (G,B) if it satisfies:

(i) A ⊆ B
(ii) F (x) is an N -subgroup of G(x) for all x ∈ Supp(F,A).

Proposition 2. Let (F,A), (G,A) and (H,B) be soft N -groups over Γ.
Then we have the following:
a) If F (x) ⊂ G(x) for all x ∈ A, then (F,A) is a soft N -subgroup of

(G,A).
b) (F,A)ũ(G,A) is a soft N -subgroup of both (F,A) and (G,A) if it is

non-null.
c) (F,A) e (H,B) is a soft N -subgroup of both (F,A) and (H,B) if it is

non-null.
d) (F,A)uε (G,A) is a soft N -subgroup of both (F,A) and (G,A) if it is

non-null.

Proof. a) If F (x) ⊆ G(x) for all x ∈ A, it is clear that F (x) is an
N -subgroup of G(x). Thus, the proof is obvious.
b) It follows from (a) and Theorem 1(b).
c) Since A∩B ⊆ A (and A∩B ⊆ B), the first condition of Definition 12

is satisfied. Let (F,A) e (H,B) = (K,C), where C = A ∩ B and K(x) =
F (x) ∩H(x) for all x ∈ C. Since K(x) = F (x) ∩H(x) ⊆ F (x) and K(x) =
F (x) ∩ H(x) ⊆ H(x) for all x ∈ C, the proof is completed from Theorem
1(a).
d) Let (F,A)uε (G,A) = (Q,A) where Q(x) = F (x)∩G(x) for all x ∈ A.

Since Q(x) = F (x) ∩ G(x) ⊆ F (x) and Q(x) = F (x) ∩ G(x) ⊆ G(x) for all
x ∈ A, the proof is completed from Theorem 1(a). �

Theorem 2. Let (F,A) be a soft N -group over Γ and (Fi, Ai)i∈I be a
nonempty family of soft N -subgroups of (F,A). Then we have the following:
a) ei∈I(Fi, Ai) is a soft N -subgroup of (F,A), if it is non-null.

b)
∧̃
i∈I(Fi, Ai) is a soft N -subgroup of

∧̃
i∈I(F,A), if it is non-null.

c) If {Ai | i ∈ I} are pairwise disjoint, i.e., i 6= j implies Ai ∩Aj = ∅,
then

⋃̃
i∈I(Fi, Ai) is soft N -subgroup of (F,A).
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Proposition 3. Let (F,A) be a soft N -group over Γ and (Fi, Ai)i∈I be a
nonempty family of soft N -subgroups of (F,A). Then ei∈I(Fi, Ai) is a soft
N -subgroup of (Fi, Ai) for each i ∈ I, if it is non-null.

Proof. Let ei∈I(Fi, Ai) = (H,C), where C =
⋂
i∈I Ai 6= ∅ and H(x) =⋂

i∈I Fi(x) for all x ∈ C. The parameter set of the soft set ei∈I(Fi, Ai), that
is,

⋂
i∈I Ai is a subset of the parameter set of the soft set (Fi, Ai)i∈I for all

i ∈ I. Suppose that (H,C) is a non-null soft set over N . If x ∈ Supp(H,C),
then H(x) =

⋂
i∈I Fi(x) 6= ∅. Thus ∅ 6= Fi(x) are N -subgroups of Γ for all

i ∈ I. Therefore H(x) =
⋂
i∈I Fi(x) is an N -subgroup of Γ. Moreover, since⋂

i∈I Fi(x) ⊂ Fi(x), for all i ∈ I and for all x ∈
⋂
i∈I Ai, the rest of the proof

is obvious. �

Definition 13. Let (F,A) be a soft N -group over Γ and (H,B) be a soft
N -subgroup of (F,A). Then we say that (H,B) is a soft N -ideal of (F,A),
written (H,B)�̃N (F,A), if H(x) is an ideal of F (x); i.e., H(x)�N F (x) for
all x ∈ B.

Theorem 3. Let (F,A) be a soft N -group over Γ and (Fi, Ai)i∈I be a
nonempty family of soft N -ideals of (F,A). Then we have the following:
a) ei∈I(Fi, Ai) is a soft N -ideal of (F,A), if it is non-null.

b)
∧̃
i∈I(Fi, Ai) is a soft N -ideal of

∧̃
i∈I(F,A), if it is non-null.

c) If {Ai | i ∈ I} are pairwise disjoint, i.e., i 6= j implies Ai ∩Aj = ∅,
then

⋃̃
i∈I(Fi, Ai) is soft N -ideal of (F,A).

Proposition 4. Let (F,A) be a soft N -group over Γ and (Fi, Ai)i∈I be
a nonempty family of soft N -ideals of (F,A). Then ei∈I(Fi, Ai) is a soft
N -ideal of (Fi, Ai) for each i ∈ I, if it is non-null.

Proposition 5. Let (F,A) and (G,A) be two soft N -ideals over Γ. Then
(F,A)uε (G,A) is a soft N -ideal of both (F,A) and (G,A), if it is non-null.

4. Soft N-ideals

Definition 14. Let (F,A) be a soft N -group over Γ. A non-null soft set
(G, I) over Γ is called a soft N-ideal of (F,A) denoted by (G, I)�̃N (F,A) if
it satisfies:

(i)] I ⊂ A
(ii)] G(x) �N F (x) for all x ∈ Supp(G, I).

Example 4. Let Γ = Z6 and (F,A) be a soft set over Γ, where A =
{0, 2, 4} and F : A→ P (Γ) is a set-valued function defined by

F (x) = {y ∈ Z6 | xRy ⇔ xy ∈ {0, 3}}
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for all x ∈ A. Then F (0) = Z6 and F (2) = F (4) = {0, 3}. It can be easily
seen that (F,A) is a soft N -group over Z6.

Let Γ = Z6 and G : A→ P (Γ) be a set-valued function defined by

G(x) = {y ∈ Z6 | xRy ⇔ xy ∈ {0, 2, 4}}

for all x ∈ A = {0, 2, 4}. Then, G(0) = G(2) = G(4) = Z6. It is easily seen
that F (x)�NG(x) for all x ∈ Supp(F,A) = {0, 2, 4}, hence (F,A)�̃N (G,A).

Theorem 4. Let (F,A) be a soft N -group Γ, (G1, I1) and (G2, I2) be
soft N -ideals of (F,A). Then the soft set (G1, I1)e (G2, I2) is a soft N -ideal
of (F,A) if it is non-null.

Proof. Assume that (G1, I1)�̃N (F,A) and (G2, I2)�̃N (F,A). Let (G1, I1)
e(G2, I2) = (G, I), where I = I1 ∩ I2 6= ∅ and G(x) = G1(x) ∩G2(x) for all
x ∈ I. Since I1 ⊂ A and I2 ⊂ A, it is clear that I ⊂ A. Suppose that the soft
set (G, I) is non-null. If x ∈ Supp(G, I), then G(x) = G1(x) ∩ G2(x) 6= ∅.
Since G1(x) �N F (x), G2(x) �N F (x) and the intersection of ideals of Γ is
an ideal of Γ, it follows that G(x)�N F (x) for all x ∈ Supp(G, I). Therefore
(G1, I1) e (G2, I2)�̃N (F,A). �

Theorem 5. Let (F,A) be a soft N -group Γ, (G1, I1) and (G2, I2) be
soft N -ideals of (F,A). Then the soft set (G1, I1)∪̃(G2, I2) is a soft N -ideal
of (F,A) if I1 and I2 are disjoint.

Proof. Assume that (G1, I1)�̃N (F,A) and (G2, I2)�̃N (F,A). Let (G1, I1)
∪̃(G2, I2) = (G, I), where I = I1 ∪ I2 and for all x ∈ I

G(x) =


G1(x) if x ∈ I1 \ I2,
G2(x) if x ∈ I2 \ I1,
G1(x) ∪G2(x) if x ∈ I1 ∩ I2.

Since I1 ⊂ A and I2 ⊂ A, it is obvious that I ⊂ A. If I1∩I2 = ∅, then for all
x ∈ Supp(G, I), we know that either x ∈ I1 \ I2 or x ∈ I2 \ I1. If x ∈ I1 \ I2,
then ∅ 6= G1(x) = G(x)�NF (x) and if x ∈ I2\I1, then ∅ 6= G2(x) = G(x)�N

F (x) for all x ∈ Supp(G, I). Therefore (G1, I1)∪̃(G2, I2)�̃N (F,A). �

Theorem 6. Let (F,A) be a soft N -group Γ, (G1, I1) and (G2, I2) be soft
N -ideals of (F,A). Then the soft set (G1, I1)uε (G2, I2) is a soft N -ideal of
(F,A) if it is non-null.

Proof. Assume that (G1, I1)�̃N (F,A) and (G2, I2)�̃N (F,A). Let (G1, I1)
uε(G2, I2) = (G, I), where I = I1 ∪ I2 and

G(x) =


G1(x) if x ∈ I1 \ I2,
G2(x) if x ∈ I2 \ I1,
G1(x) ∩G2(x) if x ∈ I1 ∩ I2
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for all x ∈ I. Since I1 ⊂ A and I2 ⊂ A, it is obvious that I ⊂ A. Suppose
that the soft set (G, I) is non-null and x ∈ Supp(G, I). If x ∈ I1\I2, then ∅ 6=
G1(x) = G(x) �N F (x) and if x ∈ I2 \ I1, then ∅ 6= G2(x) = G(x) �N F (x).
And if x ∈ I1 ∩ I2, then ∅ 6= G(x) = G1(x) ∩G2(x). Since (G1, I1)�̃N (F,A)
and (G2, I2)�̃N (F,A), we know that the nonempty sets G1(x) and G2(x)
are both ideals of F (x). It follows that G(x)�N F (x) for all x ∈ Supp(G, I).
Therefore (G1, I1) uε (G2, I2)�̃N (F,A), as required. �

Example 5. Let Γ = Z6 and F : A → P (Γ) be a set-valued function
defined by F (x) = {y ∈ Z6 | xRy ⇔ xy ∈ {0, 2, 4}} if x ∈ {0, 2, 4} and
F (x) = Z6 if x ∈ {1, 3, 5}. Then, we have F (0) = F (1) = F (2) = F (3) =
F (4) = F (5) = Z6.

Let Γ = Z6 and (G,B) be a soft set over Γ, where B = {2, 3, 4} and
G : B → P (Γ) is a set-valued function defined by

G(x) = {y ∈ Z6 | xRy ⇔ xy ∈ {0, 3}}

for all x ∈ B. Then G(3) = Z6 and G(2) = G(4) = {0, 3}. Since G(2) �N

F (2), G(3) �N F (3) and G(4) �N F (4), it follows that (G,B)�̃N (F,A).
Let Γ = Z6 and (H,C) be a soft set over Z6, where C = {0, 2, 4} and

H : C → P (Γ) is a set-valued function defined by

H(x) = {y ∈ C | xRy ⇔ xy ∈ {0, 2, 4}}

for all x ∈ C. Then H(0) = H(2) = H(4) = {0, 2, 4}. Since H(x) �N F (x)
for all x ∈ {0, 2, 4}, it follows that (H,C)�̃N (F,A).

Now we consider the restricted intersection of soft N -ideals (G,B) and
(H,C) of (F,A). Let (G,B)e(H,C) = (T,B∩C) where T (x) = G(x)∩H(x)
for all x ∈ B∩C = {2, 4}. Then we have T (2) = {0}�NF (2), T (4) = {0}�N

F (4) for all x ∈ Supp(T,B∩C), which means that (G,B)e(H,C)�̃N (F,A).
Now we consider (G,B)∪̃(H,C). Let (G,B)∪̃(H,C) = (W,B∪C), where

W (x) =


G(x) if x ∈ B \ C = {3},
H(x) if x ∈ C \B = {0},
G(x) ∪H(x) if x ∈ B ∩ C = {2, 4}

for all x ∈ B ∪ C = {0, 2, 3, 4}. Then, W (0) = {0, 2, 4}, W (2) = W (4) =
{0, 2, 3, 4} and W (3) = Z6. Since W (2) and W (4) is not an ideal of F (2)
and F (4) respectively, (G,B)∪̃(H,C) is not a soft N -ideal of (F,A). That
is to say, the condition ’disjoint’ can not be removed from this theorem.

Furthermore, since W (0) = {0, 2, 4}�N F (0), and W (2) = {0}�N F (2),
W (3) = Z6�N F (3) and W (4) = {0}�N F (4), it is easy to see that (G,B)uε
(H,C) is a soft N -ideal of (F,A).
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5. N-idealistic soft N-groups and the relationships between

soft N-groups and N-idealistic soft N-groups

Definition 15. Let (F,A) be a soft N -group over Γ. If F (x)�̃NΓ for
all x ∈ Supp(F,A), then (F,A) is called an N -idealistic soft N -group over
Γ. Here, (F,A) should be a non-null soft set over Γ.

Example 6. Let Γ = Z6 and the soft N -group (F,A) of Γ be the one
given in Example 1. Since F (x)�N Γ for all x ∈ Supp(F,A) = Z6, (F,A) is
an N -idealistic soft N -group over Γ.

Theorem 7. Let (F,A) and (G,B) be two N -idealistic soft N -groups
over Γ. Then we have the following:
a) If it is non-null, (F,A) e (G,B) is an N -idealistic soft N -group over

Γ.
b) If A and B are disjoint, then (F,A)∪̃(G,B) is an N -idealistic soft

N -group over Γ.
c) If it is non-null, (F,A)∧̃(G,B) is an N -idealistic soft N -group over Γ.
d) If it is non-null, (F,A)uε (G,B) is an N -idealistic soft N -group over

Γ.

Proof. Straightforward, hence is omitted. �

Definition 16. An N -group Γ is said to satisfy the condition (N) if
∆ �N Θ �N Λ, then ∆ �N Λ.

Proposition 6 ([20], 1.34 Proposition). If N = N0 , then every ideal of
Γ is also an N -subgroup of Γ.

Proposition 7. Let N = N0, Γ be an N -group which satisfies the condi-
tion (N) and let (F,A) be an N -idealistic soft N -group over Γ. If (G, I) is a
soft N -ideal of (F,A), then (G, I) is also N -idealistic soft N -group over Γ.

Proof. If (G, I)�̃N (F,A), then for all x ∈ Supp(G, I), G(x) �N F (x).
Since (F,A) is anN -idealistic softN -group over Γ, then for all x ∈ Supp(F,A),
F (x)�N Γ. Thus we have G(x)�N F (x)�N Γ for all x ∈ Supp(G, I). Since Γ
satisfies condition (N), G(x)�NΓ for all x ∈ Supp(G, I). Because of the fact
that every ideal of Γ is also an N -subgroup of Γ when N is a zero-symmetric
near-ring, then G(x) is also an N -subgroup of Γ for all x ∈ Supp(G, I).
This means that (G, I) is a soft N -group over Γ. Moreover, (G, I) is an
N -idealistic soft N -group over Γ. �

Proposition 8. If N is a zero-symmetric near-ring, then every N -ideali-
stic soft N -group over an N -group Γ is a soft N -group over Γ, however the
converse is not true in general.
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The following example shows that the converse of Proposition 8 is not
true in general.

Example 7 (cf.,[20]). Let Klein-4 group N = {0, 1, 2, 3}. Under the
operations defined by the following tables, (N,+, .) is a (right) near-ring. It
is easily seen that N is not a zero-symmetric near-ring.

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

. 0 1 2 3

0 0 0 0 0
1 1 1 1 1
2 0 0 0 2
3 1 1 1 3

Let Γ = N , B = {0, 1} and (F,A) be a soft set over Γ, where A = {0, 2}
and assume that F : A→ P (Γ) is a set-valued function defined by

F (x) = {0} ∪ {y ∈ B | xRy ⇔ xy = 0}

for all x ∈ A. Then F (0) = F (2) = {0, 1}. It can be easily shown that
{0, 1} ≤N Γ. Hence (F,A) is a soft N -group over Γ. Nevertheless F (0) =
F (2) = {0, 1} is not an ideal of Γ, since 2.(3 + 1) − 2.3 = 2 /∈ {0, 1}. It
follows that (F,A) is not an N -idealistic soft N -group over Γ.

And let Γ = N and (G,C) be a soft set over Γ, where C = {1, 3} and
assume that G : C → P (Γ) is a set-valued function defined by

G(x) = {0} ∪ {y ∈ N \ C | xRy ⇔ xy = 1}

for all x ∈ C. Then we have G(1) = G(3) = {0, 2}. It can be easily
illustrated that {0, 2} �N Γ. Hence (G,C) is an N -idealistic soft N -group
over Γ. However {0, 2} is not an N -subgroup of Γ, since N{0, 2} * {0, 2}.
It follows that (G,C) is not a soft N -group over Γ.

Similarly, let the soft set (G, I) in Example 1. It is obvious that N = Z6

is not a zero-symmetric near-ring, and since {0, 2, 4} is an ideal of Γ; but not
an N -subgroup of Γ, it follows that (G, I) is an N -idealistic soft N -group
but not a soft N -group over Γ.

Proposition 9. Let (F,A) be a soft set over Γ and B ⊂ A. If (F,A) is
an N -idealistic soft N -group over Γ, then so is (F,B), whenever (F,B) is
non-null.

Proof. It is obvious, hence omitted. �

As can be seen from the following example, the converse of Proposition 8
is not true in general.
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Example 8. Let Γ = N in Example 7, B = {0, 1} and (F,A) be a soft
set over Γ, where A = N and assume that F : A → P (Γ) is a set-valued
function defined by

F (x) = {0} ∪ {y ∈ B | xRy ⇔ xy = 0}

for all x ∈ A. Then, F (0) = F (2) = {0, 1}, F (1) = F (3) = {0}. Since {0, 1}
is not an ideal of Γ as shown in Example 7, (F,A) is not an N -idealistic soft
N -group over Γ. However, when we take B = {1, 3} ⊂ A, then (F |B, B) is
an N -idealistic soft N -group over Γ, where F |B is the restriction of F to
B.

Definition 17. Let (F,A) be an N -idealistic soft N -group over an
N -group Γ. Then,
a) (F,A) is called trivial if F (x) = {0Γ} for all x ∈ Supp(F,A).
b) (F,A) is said to be whole if F (x) = Γ for all x ∈ Supp(F,A).

Example 9. The soft set (F,A) in Example 2 is a whole M(Z2)-idealistic
soft M(Z2)-group over Z2.

Let (F,A) be a soft N -group over an N -group Γ and let f : Γ→ Ψ be a
mapping of N -groups. Then the soft set (f(F ), Supp(F,A)) over Ψ can be
defined, where

f(F ) : Supp(F,A)→ P (Ψ)

is given by f(F )(x) = f(F (x)) for all x ∈ Supp(F,A). It is also worth
nothing that Supp(F,A) = Supp(f(F ), Supp(F,A)).

Proposition 10. Let f : Γ → Ψ be an epimorphism of N -groups. If
(F,A) is an N -idealistic soft N -group over Γ, then (f(F ), Supp(F,A)) is an
N -idealistic soft N -group over Ψ.

Proof. Note first that since (F,A) is an idealistic N -idealistic soft
N -group over Γ, it has to be a non-null soft set over Γ, thus (f(F ), Supp(F,A))
is a non-null soft set over Ψ, too. We have f(F )(x) = f(F (x)) 6= ∅ for
all x ∈ Supp(f(F ), Supp(F,A)). Because of the fact that (F,A) is an
N -idealistic soft N -group over Γ, the nonempty set F (x) is an ideal of Γ.
Thus, we can conclude that its onto homomorphic image f(F (x)) is an ideal
of Ψ. So, f(F (x)) is an ideal of Ψ for all x ∈ Supp(f(F ), Supp(F,A)). It
means that (f(F ), Supp(F,A)) is an N -idealistic soft N -group over Ψ. �

Theorem 8. Let (F,A) be an N -idealistic soft N -group over Γ and let
f : Γ→ Ψ be an epimorphism of N -groups. Then
a) If F (x) = Ker(f) for all x ∈ Supp(F,A), then (f(F ), Supp(F,A)) is

a trivial N -idealistic soft N -group over Ψ.
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b) If (F,A) is whole, then (f(F ), Supp(F,A)) is a whole N -idealistic soft
N -group over Ψ.

Proof. a) Assume that F (x) = Ker(f) for all x ∈ Supp(F,A). Then
f(F )(x) = f(F (x)) = 0Ψ for all x ∈ Supp(F,A). That is to say (f(F ),
Supp(F,A)) is a trivial N -idealistic soft N -group over Ψ.
b) Suppose that (F,A) is whole. Then, F (x) = Γ for all x ∈ Supp(F,A).

It follows that f(F )(x) = f(F (x)) = F (Γ) = Ψ for all x ∈ Supp(F,A),
which means that (f(F ), Supp(F,A)) is a whole N -idealistic soft N -group
over Ψ. �

Example 10. a) Let Γ = N in Example 7, and (F,A) be a soft set
over Γ, where A = {0, 1, 2} and assume that F : A → P (Γ) is a set-valued
function defined by

F (x) = {y ∈ N | xRy ⇔ 2x = y}

for all x ∈ A. Then F (0) = F (1) = F (2) = {0}. It is obvious that (F,A) is
a trivial N -idealistic soft N -group over Γ.

Let f : Γ → Γ be the mapping defined by f(n) = nγ, where γ = 3 ∈ Γ.
Since Γ is a monogenic N -group by γ = 3, one can say that f is an epi-
morphism of N -groups. Also, it is obvious that f is an one-to-one map-
ping, therefore Ker(f) = {0}, which means that F (x) = Ker(f) for all
x ∈ Supp(F,A). We need to show that (f(F ), A) is a trivial N -idealistic
soft N -group over Γ. To see this, we construct the soft set (f(F ), A) over
Γ, where

f(F ) : A→ P (Γ)

is given by f(F )(x) = f(F (x)) for all x ∈ A. It follows that, f(F )(0) =
f(F (0)) = f(F )(1) = f(F (1)) = f(F )(2) = f(F (2)) = f(0) = {0}. It is
easy to see that (f(F ), A) is an N -idealistic softN -group over Γ, furthermore
(f(F ), A) is a trivial N -idealistic soft N -group over Γ, as required.
b) Let Γ = N in Example 7, and (G,B) be a soft set over Γ, where B = N

and assume that F : B → P (Γ) is a set-valued function defined by

G(x) = {3} ∪ {y ∈ N | xRy ⇔ xy ∈ {0, 1}}

for all x ∈ B. Then G(0) = G(1) = G(2) = G(3) = N . Since G(x) = Γ
for all x ∈ Supp(G,B), it follows that (G,B) is a whole N -idealistic soft
N -group over Γ.

Let f : Γ → Γ be the above near-ring epimorphism. We need to show
that (f(G), Supp(G,B)) is a whole N -idealistic soft N -group over Γ. To see
this, let construct the soft set (f(G), Supp(G,B)) over Γ, where

f(G) : Supp(G,B)→ P (Γ)
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is given by f(G)(x) = f(G(x)) for all x ∈ Supp(G,B). It follows that
f(G)(0) = f(G(0)) = f(G)(2) = f(G(2)) = f(G)(4) = f(G(4)) = f(Γ) = Γ.
It is easy to see that (f(G), Supp(G,B)) is an N -idealistic soft N -group over
Γ, furthermore (f(G), Supp(G,B)) is a whole N -id1ealistic soft N -group
over Γ, as required.

Definition 18. Let (F,A) and (G,B) be soft N -groups over Γ1 and Γ2,
respectively. Let f : Γ1 → Γ2 and g : A→ B be two mappings. Then the pair
(f, g) is called a soft N-group homomorphism if it satisfies the conditions
below:

(i) f is an epimorphism of N -groups.
(ii) g is a surjective mapping.

(iii) f(F (x)) = G(g(x)) for all x ∈ A. If there exists a soft N -group
homomorphisms between (F,A) and (G,B), we mention that (F,A) is soft
homomorphic to (G,B), which is denoted by (F,A) ∼N (G,B). Further-
more, if f is an isomorphism of N-groups and g is a bijective mapping, then
(f, g) is said to be a soft N-group isomorphism. In this case, we say that
(F,A) is soft isomorphic to (G,B), which is denoted by (F,A) 'N (G,B).

Example 11. Let Γ = Z6 and (F,A) be a soft set over Γ, where F :
A → P (Γ) is a function by F (x) = {y ∈ Z6 | xRy ⇔ xy ∈ {0, 3}} for all
x ∈ A = {0, 1, 2, 4, 5}. Then we have F (0) = Z6, F (1) = F (2) = F (4) =
F (5) = {0, 3}. It is obvious that (F,A) is a soft N -group over Γ. Let (G,B)
be a soft set over Γ = Z6, where G : B → P (Γ) is a function defined by
G(x) = {y ∈ Z6 | xRy ⇔ xy = 0} for all x ∈ B = {0, 2, 4}. Then we have
G(0) = Z6, G(2) = G(4) = {0, 3}. It is obvious that (G,B) is a soft N -group
over Γ. Let f : Z6 → {0, 2, 4} be the mapping defined by f(n) = nγ, where
γ = 5 ∈ Z6. Since Z6 is a monogenic N -group by γ = 5, one can say that
f is an epimorphism of N -groups. Let g : A → B be the mapping defined
by g(x) = 4x for all x ∈ Z6. Then one can easily say that g is surjective.
Since f(F (0)) = F (Z6) = Z6, f(F (1)) = f(F (2)) = f(F (4)) = f(F (5)) =
f({0, 3}) = {0, 3} and G(g(0)) = G(0) = Z6, G(g(1)) = G(4) = {0, 3},
G(g(2)) = G(2) = {0, 3}, G(g(4)) = G(4) = {0, 3}, G(g(5)) = G(2) =
{0, 3}, f(F (x)) = G(g(x)) is satisfied for all x ∈ A. Therefore (f, g) is a
soft N -homomorphism and (F,A) ∼N (G,B). Because of the fact that f is
isomorphism of N - groups but g is not a bijective mapping, we can not say
that (F,A) is soft isomorphic to (G,B).

6. Conclusion

Throughout this paper, in an N -group structure, we have studied the
algebraic properties of soft sets which were introduced by Molodtsov as a
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new mathematical tool for dealing with uncertainty. This work bears on
soft N -groups, soft N -subgroups, soft N -ideals, N -idealistic soft N -groups
and soft N -group homomorphisms. Moreover, the relation between soft
N -groups and N -idealistic soft N -groups are investigated under certain con-
ditions for the near-ring N and they are illustrated by many examples.
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[14] Kazancı O., Yılmaz Ş., Yamak S., Soft sets and soft BCH-algebras, Hacet.
J. Math. Stat., 39(2)(2010), 205-217.

[15] Maji P.K., Biswas R., Roy A.R., Soft set theory, Comput. Math. Appl.,
45(2003), 555-562.

[16] Maji P.K., Roy A.R., Biswas R., An application of soft sets in a decision
making problem, Comput. Math. Appl., 44(2002), 1077-1083.

[17] Majumdar P., Samanta S.K., On soft mappings, Comput. Math. Appl., 60
(9)(2010), 2666-2672.

[18] Molodtsov D., Soft set theory-first results, Comput. Math. Appl., 37(1999),
19-31.

[19] Molodtsov D.A., Leonov V.Yu., Kovkov D.V., Soft sets technique and
its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1(1)(2006), 8-39.



140 A. S. Sezer, A. O. Atagün and N. Çağman
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