$\frac{F \ A \ S \ C \ I \ C \ U \ L \ I \ M \ A \ T \ H \ E \ M \ A \ T \ I \ C \ I}{Nr \ 51} 2013}$

A. S. Sezer, A. O. Atagün and N. Çağman

A NEW VIEW TO *N*-GROUP THEORY: SOFT *N*-GROUPS

ABSTRACT. Molodtsov introduced the concept of soft sets. In this paper, we present the definition of soft N-groups and construct some basic properties by using N-groups and Molodtsov's definition of soft sets. We introduce the notions of soft N-subgroups, soft N-ideal, N-idealistic soft N-groups and soft N-group homomorphisms. Moreover, the relations between N-idealistic soft N-groups and soft N-groups are investigated under certain conditions of the near-ring N and these relations are illustrated by many examples.

KEY WORDS: uncertainty modeling, soft sets, soft N-groups, soft N-ideal, N-idealistic soft N-groups.

AMS Mathematics Subject Classification: 03E70, 16Y30, 58E40.

1. Introduction

Molodtsov [18] introduced soft set theory in 1999 by for dealing with uncertainties and it has not continued to experience tremendous growth and diversification in the mean of algebraic structures as in [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 21, 24, 25, 26, 23, 27] but also operations of soft sets as in [3, 15, 22]. Furthermore, soft set relations and functions [5] and soft mappings [17] with many related concepts were discussed. The theory of soft set has also a wide-ranging applications especially in soft decision making as in the following studies: [6, 7, 16, 19].

In this paper, we introduce a basic version of soft N-group theory, which extends the notion of N-group by including some algebraic structures in soft set theory. A soft N-group defined in this paper is actually a parametrized family of N-subgroups, and has some properties similar to those of N-groups.

2. Preliminaries

By a near-ring, we shall mean an algebraic system (N, +, .), where

• (N, +) forms a group (not necessarily abelian)

• (N, .) forms a semi-group and

• (a+b)c = ac+bc for all $a, b, c \in N$ (i.e. we study on right near-rings.) Throughout this paper, N will always denote a right near-ring. For a near-ring N, the zero-symmetric part of N denoted by N_0 is defined by $N_0 =$ $\{n \in N \mid n0 = 0\}$. If $N = N_0$, then N is called a zero-symmetric near-ring. A normal subgroup I of N is called a left ideal of N if $n(s+i) - ns \in I$ for all $n, s \in N$ and $i \in I$ and denoted by $I \lhd_{\ell} N$.

Let $(\Gamma, +)$ be a group and

$$\begin{array}{rcl} \mu : & N \times \Gamma & \to & \Gamma \\ & & (n, \gamma) & \to & n\gamma \, . \end{array}$$

 (Γ, μ) is called an N-group if $\forall x, y \in N, \forall \gamma \in \Gamma$,

- (i) $x(y\gamma) = (xy)\gamma$ and
- $(ii) (x+y)\gamma = x\gamma + y\gamma.$

It is denoted by N^{Γ} . Clearly N itself is an N-group. Let Γ be a group and $M(\Gamma) = \{f \mid f : \Gamma \to \Gamma\}$. Then Γ is an $M(\Gamma)$ -group, with

$$\begin{array}{rcl} \mu : & M(\Gamma) \times \Gamma & \to & \Gamma \\ & (f, \gamma) & \to & f(\gamma) \, . \end{array}$$

A subgroup Δ of N^{Γ} with $N\Delta \subseteq \Delta$ is said to be an *N*-subgroup of Γ and denoted by $\Delta \leq_N \Gamma$. A normal subgroup Δ of Γ is called an ideal of N^{Γ} and denoted by $\Delta \leq_N \Gamma$, if $\forall \gamma \in \Gamma$, $\forall \delta \in \Delta$, $\forall n \in N$, $n(\gamma + \delta) - n\gamma \in \Delta$. It is obvious that when we take $\Gamma = N$, the ideals of N^N coincide with the left ideals of *N*. Let *N* be a near-ring, Γ and Ψ two *N*- groups. Then $h : \Gamma \to \Psi$ is called an *N*-homomorphism if $\forall \gamma, \delta \in \Gamma$, $\forall n \in N$,

(i)
$$h(\gamma + \delta) = h(\gamma) + h(\delta)$$
 and

(*ii*)
$$h(n\gamma) = nh(\gamma)$$
.

 N^{Γ} is said to be a monogenic N-group if and only if there exists a $\gamma \in \Gamma$ such that $N\gamma = \Gamma$. In this case we say that N^{Γ} is monogenic by γ and γ is a generator for N^{Γ} . It is well-known that if Γ is a monogenic N-group by γ , then

$$h_{\gamma}: N \to \Gamma$$
$$n \to n\gamma$$

is an N-group epimorphism. For all undefined concepts and notions we refer to Pilz [20].

Molodtsov [18] defined the soft set in the following manner:

Let U be an initial universe set, E be a set of parameters, P(U) be the power set of U and $A \subseteq E$.

Definition 1 ([18]). A pair (F, A) is called a soft set over U, where F is a mapping given by

$$F: A \to P(U).$$

In other words, a soft set over U is a parameterized family of subsets of the universe U.

Definition 2 ([15]). The bi-intersection of two soft sets (F, A) and (G, B)over a common universe U is defined to be the soft set (H, C), where $C = A \cap B$ and $H : C \to P(U)$ is a mapping given by $H(x) = F(x) \cap G(x)$ for all $x \in C$. This is denoted by $(F, A) \widetilde{\cap} (G, B) = (H, C)$.

Definition 3 ([3]). Let (F, A) and (G, B) be two soft sets over a common universe U such that $A \cap B \neq \emptyset$. The restricted intersection of (F, A) and (G, B) is denoted by $(F, A) \cap (G, B)$, and is defined as $(F, A) \cap (G, B) =$ (H, C), where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cap G(c)$.

Definition 4 ([3]). Let (F, A) and (G, B) be two soft sets over a common universe U. The extended intersection of (F, A) and (G, B) is defined to be the soft set (H, C), where $C = A \cup B$ and for all $e \in C$,

$$H(e) = \begin{cases} F(e) & \text{if } e \in A \setminus B, \\ G(e) & \text{if } e \in B \setminus A, \\ F(e) \cap G(e) & \text{if } e \in A \cap B. \end{cases}$$

This relation is denoted by $(F, A) \sqcap_{\varepsilon} (G, B) = (H, C)$.

Definition 5 ([15]). Let (F, A) and (G, B) be two soft sets over a common universe U. The union of (F, A) and (G, B) is defined to be the soft set (H, C) satisfying the following conditions: (i) $C = A \cup B$; (ii) for all $e \in C$,

$$H(e) = \begin{cases} F(e) & \text{if } e \in A \setminus B, \\ G(e) & \text{if } e \in B \setminus A, \\ F(e) \cup G(e) & \text{if } e \in A \cap B. \end{cases}$$

This relation is denoted by $(F, A)\widetilde{\cup}(G, B) = (H, C)$.

Definition 6 ([15]). If (F, A) and (G, B) are two soft sets over a common universe U, then "(F, A) AND (G, B)" denoted by $(F, A) \widetilde{\wedge} (G, B)$ is defined by $(F, A) \widetilde{\wedge} (G, B) = (H, A \times B)$, where $H(x, y) = F(x) \cap G(y)$ for all $(x, y) \in A \times B$.

Definition 7 ([8]). Let $(F_i, A_i)_{i \in I}$ be a nonempty family of soft sets over a common universe U. The union of these soft sets is defined to be the soft set (G, B) such that $B = \bigcup_{i \in I} A_i$ and for all $x \in B$, $G(x) = \bigcup_{i \in I(x)} F_i(x)$ where $I(x) = \{i \in I \mid x \in A_i\}$. In this case we write $\bigcup_{i \in I} (F_i, A_i) = (G, B)$. **Definition 8** ([8]). Let $(F_i, A_i)_{i \in I}$ be a nonempty family of soft sets over a common universe set U. The AND-soft set $\widetilde{\bigwedge}_{i \in I}(F_i, A_i)$ of these soft sets is defined to be the soft set (H, B) such that $B = \prod_{i \in I} A_i$ and $H(x) = \bigcap_{i \in I(x)} F_i(x)$ for all $x = (x_i)_{i \in I} \in B$.

Note that if $A_i = A$ and $F_i = F$ for all $i \in I$, then $\widetilde{\bigwedge}_{i \in I}(F_i, A_i)$ is denoted by $\widetilde{\bigwedge}_{i \in I}(F, A)$. In this case, $\prod_{i \in I} A_i = \prod_{i \in I} A$ means the direct power A^I .

Definition 9. Let $(F_i, A_i)_{i \in I}$ be a nonempty family of soft sets over a common universe set U. The restricted intersection of these soft sets is defined to be the soft set (G, B) such that $B = \bigcap_{i \in I} A_i \neq \emptyset$ and for all $x \in B$, $G(x) = \bigcap_{i \in I} F_i(x)$. In this case we write $\bigcap_{i \in I} (F_i, A_i) = (G, B)$.

3. Soft *N*-groups

In the sequel, let N be a near-ring, Γ be an N-group and A be a nonempty set. R will refer to an arbitrary binary relation between an element of A and an element of Γ , that is, R is a subset of $A \times \Gamma$ without otherwise specified. A set-valued function $F : A \to P(\Gamma)$ can be defined as F(x) = $\{y \in \Gamma \mid (x, y) \in R\}$ for all $x \in A$. Then the pair (F, A) is a soft set over N, which is derived from the relation R. For a soft set (F, A), the set $Supp(F, A) = \{x \in A \mid F(x) \neq \emptyset\}$ is called the support of the soft set (F, A). The null soft set is a soft set with an empty support, and a soft set (F, A)is non-null if $Supp(F, A) \neq \emptyset$ [8].

Now we are ready to give the definition of soft N-groups.

Definition 10. Let (F, A) be a non-null soft set over an N-group Γ . Then (F, A) is called a soft N-group over Γ if F(x) is an N-subgroup of Γ for all $x \in Supp(F, A)$.

Example 1 (cf.,[21]). Let the additive group $(\mathbb{Z}_6, +)$. Under a multiplication defined by following table, $(\mathbb{Z}_6, +, \cdot)$ is a (right) near-ring.

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	3	1	5	3	1	5
2	0	2	4	0	2	4
3	3	3	3	3	3	3
4	0	4	2	0	4	2
5	3	5	$ \begin{array}{c} 2 \\ 0 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{array} $	3	5	1

Let $\Gamma = \mathbb{Z}_6$ and (F, A) be a soft set over Γ , where $A = \mathbb{Z}_6$ and $F : A \to P(\Gamma)$ is a set-valued function defined by

$$F(x) = \{ y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy \in \{0,3\} \}$$

for all $x \in A$. Then $F(0) = F(3) = \mathbb{Z}_6$ and $F(1) = F(2) = F(4) = F(5) = \{0,3\}$. Since \mathbb{Z}_6 and $\{0,3\}$ are both N-subgroups of \mathbb{Z}_6 , (F,A) is a soft N-group over \mathbb{Z}_6 .

Let $\Gamma = \mathbb{Z}_6$, $I = \{0, 2, 4\}$ and $G : I \to P(\Gamma)$ be a set-valued function defined by

$$G(x) = \{ y \in I \mid xRy \Leftrightarrow xy \in \{0, 2, 4\} \}$$

for all $x \in I$. Then we have $G(0) = G(2) = G(4) = \{0, 2, 4\}$. Since $N\{0, 2, 4\} \not\subseteq \{0, 2, 4\}, \{0, 2, 4\}$ is not an N-subgroup of \mathbb{Z}_6 , therefore (G, I) is not a soft N-group over \mathbb{Z}_6 .

Example 2. Let $\Gamma = \mathbb{Z}_2$. It is well-known that \mathbb{Z}_2 is an $M(\mathbb{Z}_2)$ -group. Let (F, A) be a soft set over \mathbb{Z}_2 , where $A = \mathbb{Z}_2$ and $F : A \to P(\Gamma)$ is a set-valued function defined by $F(0) = F(1) = \mathbb{Z}_2$. Since \mathbb{Z}_2 is an $M(\mathbb{Z}_2)$ -subgroup of \mathbb{Z}_2 , (F, A) is a soft $M(\mathbb{Z}_2)$ -group over \mathbb{Z}_2 .

Let $\Gamma = \mathbb{Z}_2$ and $K = \{0, I\} \subseteq M(\mathbb{Z}_2)$, where I is the identity function and 0 is the zero function. It is obvious that K is a near-ring with the operations of usual addition and composition of functions, also it is seen that \mathbb{Z}_2 is a K-group. Let (G, B) be a soft set over \mathbb{Z}_2 , where $B = \mathbb{Z}_2$ and $G: B \to P(\Gamma)$ is a set-valued function defined by

$$G(x) = \{ y \in \Gamma \mid x \alpha y \Leftrightarrow y = nx \text{ for some } n \in N \}$$

for all $x \in A$. Here $nx = x + x \dots + x$ means the *n*-fold sum of *x* and 0x = 0. Then $G(0) = \{0\}, G(1) = \{0, 1\}$. Since $\{0\}$ and $\{0, 1\}$ are both *K*-subgroup of \mathbb{Z}_2 , (G, B) is a soft *K*-group over \mathbb{Z}_2 . Note that, if we defined above *F* as *G*, then $F(0) = \{0\}, F(1) = \{0, 1\}$. Since $\{0\}$ is not an $M(\mathbb{Z}_2)$ -subgroup of \mathbb{Z}_2 , then (F, A) would not be a soft $M(\mathbb{Z}_2)$ -group over \mathbb{Z}_2 .

Theorem 1. Let (F, A), (G, B) and (K, A) be soft N-groups over Γ . Then

- a) If it is non-null, then the soft set $(F, A) \widetilde{\wedge} (G, B)$ is a soft N-group over Γ .
- b) If it is non-null, then the bi-intersection (F, A) Π(K, A) is a soft N-group over Γ.
- c) If it is non-null, then the restricted intersection $(F, A) \cap (G, B)$ is a soft N-group over Γ .
- d) If it is non-null, then the soft set $(F, A) \sqcap_{\varepsilon} (G, B)$ is a soft N-group over Γ .
- e) If A and B are disjoint, then $(F, A)\widetilde{\cup}(G, B)$ is a soft N-group over Γ .

Proof. a) Let $(F, A) \wedge (G, B) = (Q, A \times B)$, where $Q(x, y) = F(x) \cap G(y)$ for all $(x, y) \in A \times B$. Then by hypothesis, $(Q, A \times B)$ is a non-null soft set over Γ . If $(x, y) \in Supp(Q, A \times B)$, then $Q(x, y) = F(x) \cap G(y) \neq \emptyset$. It follows that $\emptyset \neq F(x)$ and $\emptyset \neq G(y)$ are both N-subgroups of Γ . Hence Q(x, y) is an N-subgroup of Γ for all $(x, y) \in Supp(Q, A \times B)$. Therefore $(Q, A \times B)$ is a soft N-group over Γ .

b) Let $(F, A) \widetilde{\sqcap}(K, A) = (W, A)$, where $W(x) = F(x) \cap K(x)$ for all $x \in A$. Suppose that (W, A) is a non-null soft set over Γ . If $x \in Supp(W, A)$, then $W(x) = F(x) \cap K(x) \neq \emptyset$. Thus $\emptyset \neq F(x)$ and $\emptyset \neq K(x)$ are both N-subgroups of Γ . Hence W(x) is an N-subgroup of Γ for all $x \in$ Supp(W, A). Therefore (W, A) is a soft N-group over Γ , as required.

c) Let $(F, A) \cap (G, B) = (H, C)$, where $H(x) = F(x) \cap G(x)$ for all $x \in C = A \cap B \neq \emptyset$. Suppose that (H, C) is a non-null soft set over Γ . If $x \in Supp(H, C)$, then $H(x) = F(x) \cap G(x) \neq \emptyset$. It follows that $\emptyset \neq F(x)$ and $\emptyset \neq G(x)$ are both N-subgroups of Γ . Hence H(x) is an N-subgroup of Γ for all $x \in Supp(H, C)$. Thus, (H, C) is a soft N-group over Γ .

d) Let $(F, A) \sqcap_{\varepsilon} (G, B) = (K, A \cup B)$, where

$$K(x) = \begin{cases} F(x) & \text{if } x \in A \setminus B, \\ G(x) & \text{if } x \in B \setminus A, \\ F(x) \cap G(x) & \text{if } x \in A \cap B \end{cases}$$

for all $x \in A \cup B$. Suppose that $(K, A \cup B)$ is a non-null soft set over Γ . Let $x \in Supp(K, A \cup B)$. If $x \in A \setminus B$, then $\emptyset \neq K(x) = F(x) \leq_N \Gamma$. If $x \in B \setminus A$, then $\emptyset \neq K(x) = G(x) \leq_N \Gamma$ and if $x \in A \cap B$, then $K(x) = F(x) \cap G(x) \neq \emptyset$. Since $\emptyset \neq F(x) \leq_N \Gamma$ and $\emptyset \neq G(x) \leq_N \Gamma$, it follows that $K(x) \leq_N \Gamma$ for all $x \in Supp(K, A \cup B)$. Therefore $(F, A) \sqcap_{\varepsilon} (G, B) = (K, A \cup B)$ is a soft N-group over Γ .

e) Let $(F, A) \widetilde{\cup} (G, B) = (T, A \cup B)$, where

$$T(x) = \begin{cases} F(x) & \text{if } x \in A \setminus B, \\ G(x) & \text{if } x \in B \setminus A, \\ F(x) \cup G(x) & \text{if } x \in A \cap B \end{cases}$$

for all $x \in A \cup B$. Since $A \cap B = \emptyset$, it follows that either $x \in A \setminus B$ or $x \in B \setminus A$ for all $x \in A \cup B$. If $x \in A \setminus B$, then T(x) = F(x) is an N-subgroup of Γ and if $x \in B \setminus A$, then T(x) = G(x) is an N-subgroup of Γ . Thus, $(T, A \cup B)$ is a soft N-group over Γ .

Definition 11. Let (F, A) and (G, B) be two soft N-groups over Γ and Ψ , respectively. The product of soft N-groups (F, A) and (G, B) is defined as $(F, A) \times (G, B) = (U, A \times B)$, where $U(x, y) = F(x) \times G(y)$ for all $(x, y) \in A \times B$.

Proposition 1. Let (F, A) and (G, B) be two soft N-groups over Γ and Ψ , respectively. Then if it is non-null, the product $(F, A) \times (G, B)$ is a soft N-group over $\Gamma \times \Psi$.

Proof. Let $(F, A) \times (G, B) = (U, A \times B)$, where $U(x, y) = F(x) \times G(y)$ for all $(x, y) \in A \times B$. Then by hypothesis, $(U, A \times B)$ is a non-null soft set over $\Gamma \times \Psi$. If $(x, y) \in Supp(U, A \times B)$, then $U(x, y) = F(x) \times G(y) \neq \emptyset$. Since $\emptyset \neq F(x)$ is an N-subgroup of Γ and $\emptyset \neq G(y)$ is an N-subgroup of Ψ , it follows that U(x, y) is an N-subgroup of $\Gamma \times \Psi$ for all $(x, y) \in Supp(U, A \times B)$. Therefore $(U, A \times B)$ is a soft N-group over $\Gamma \times \Psi$.

Example 3. Let N be the near-ring on S_3 with two binary operations as given in table below (cf.,[20] No 11 on S_3).

+	0	1	2	3	4	5		0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	0	5	4	3	2	1	1	1	1	1	1	1
2	2	4	0	5	1	3	2	1	1	3	2	2	3
3	3	5	4	0	2	1	3	1	1	2	3	3	2
4	4	2	3	1	5	0	4	0	0	5	4	4	5
5	5	3	1	2	0	4	5	0	0	4	5	5	4

Let $\Gamma = N$ and the soft set (F, A) over Γ , where $A = \{0, 3, 5\}$ and $F : A \to P(\Gamma)$ is a set-valued function defined by

$$F(x) = \{ y \in N \mid xRy \Leftrightarrow xy \in \{0,1\} \}$$

for all $x \in A$. Then F(0) = N and $F(3) = F(5) = \{0, 1\}$. Since N and $\{0, 1\}$ are both N-subgroups of Γ , (F, A) is a soft N-group over Γ .

Let $\Gamma = N$ and the soft set (G, B) over Γ , where $B = \{0, 4, 5\}$ and $G: B \to P(\Gamma)$ is a set-valued function defined by

$$G(x) = \{ y \in N \mid xRy \Leftrightarrow xy \in \{0, 4, 5\} \}$$

for all $x \in B$. Then G(0) = G(4) = G(5) = N. Since N is an N-subgroup of Γ , (G, B) is a soft N-group over Γ .

Let $(F, A) \wedge (G, B) = (Q, A \times B)$, where $Q(x) = F(x) \cap G(y)$ for all $(x, y) \in A \times B$. Then Q(0, 0) = Q(0, 4) = Q(0, 5) = N, $Q(3, 0) = Q(3, 4) = Q(3, 5) = Q(5, 0) = Q(5, 4) = Q(5, 5) = \{0, 1\}$. Since N and $\{0, 1\}$ are both N-subgroups of Γ , $(Q, A \times B)$ is a soft N-group over Γ .

Let $(F, A) \cap (G, B) = (H, C)$, where $H(x) = F(x) \cap G(x)$ for all $x \in C = A \cap B = \{0, 5\}$. Since $H(0) = F(0) \cap G(0) = N$ and $H(5) = F(5) \cap G(5) = \{0, 1\}$ are both N-subgroups of Γ , (H, C) is a soft N-group over Γ .

Assume that $(F, A) \sqcap_{\varepsilon} (G, B) = (T, A \cup B)$, where

$$T(x) = \begin{cases} F(x) & \text{if } x \in A \setminus B = \{3\}, \\ G(x) & \text{if } x \in B \setminus A = \{4\}, \\ F(x) \cap G(x) & \text{if } x \in A \cap B = \{0, 5\} \end{cases}$$

for all $x \in A \cup B$. Then $Supp(T, A \cup B) = \{0, 3, 4, 5\}$ and T(0) = N, $T(3) = \{0, 1\}, T(4) = N$ and $T(5) = \{0, 1\}$. Since $T(x) \leq_N \Gamma$ for all $x \in Supp(T, A \cup B), (T, A \cup B)$ is a soft N-group over Γ .

Let $(F, A) \times (G, B) = (W, A \times B)$, where $W(x) = F(x) \times G(y)$ for all $(x, y) \in A \times B$. Then $W(0, 0) = W(0, 4) = W(0, 5) = N \times N$, $W(3, 0) = W(3, 4) = W(3, 5) = W(5, 0) = W(5, 4) = W(5, 5) = \{0, 1\} \times N$. Since $N \times N \leq_N N \times N$ and $\{0, 1\} \times N \leq_N N \times N$, $(W, A \times B)$ is a soft N-group over $N \times N$.

Definition 12. Let (F, A) and (G, B) be two N-groups over Γ . Then (F, A) is called a soft N-subgroup of (G, B) if it satisfies:

(i) $A \subseteq B$

(ii) F(x) is an N-subgroup of G(x) for all $x \in Supp(F, A)$.

Proposition 2. Let (F, A), (G, A) and (H, B) be soft N-groups over Γ . Then we have the following:

- a) If $F(x) \subset G(x)$ for all $x \in A$, then (F, A) is a soft N-subgroup of (G, A).
- b) $(F, A) \cap (G, A)$ is a soft N-subgroup of both (F, A) and (G, A) if it is non-null.
- c) $(F, A) \cap (H, B)$ is a soft N-subgroup of both (F, A) and (H, B) if it is non-null.
- d) $(F, A) \sqcap_{\varepsilon} (G, A)$ is a soft N-subgroup of both (F, A) and (G, A) if it is non-null.

Proof. a) If $F(x) \subseteq G(x)$ for all $x \in A$, it is clear that F(x) is an N-subgroup of G(x). Thus, the proof is obvious.

b) It follows from (a) and Theorem 1(b).

c) Since $A \cap B \subseteq A$ (and $A \cap B \subseteq B$), the first condition of Definition 12 is satisfied. Let $(F, A) \cap (H, B) = (K, C)$, where $C = A \cap B$ and $K(x) = F(x) \cap H(x)$ for all $x \in C$. Since $K(x) = F(x) \cap H(x) \subseteq F(x)$ and $K(x) = F(x) \cap H(x) \subseteq H(x)$ for all $x \in C$, the proof is completed from Theorem 1(a).

d) Let $(F, A) \sqcap_{\varepsilon} (G, A) = (Q, A)$ where $Q(x) = F(x) \cap G(x)$ for all $x \in A$. Since $Q(x) = F(x) \cap G(x) \subseteq F(x)$ and $Q(x) = F(x) \cap G(x) \subseteq G(x)$ for all $x \in A$, the proof is completed from Theorem 1(a).

Theorem 2. Let (F, A) be a soft N-group over Γ and $(F_i, A_i)_{i \in I}$ be a nonempty family of soft N-subgroups of (F, A). Then we have the following:

- a) $\bigoplus_{i \in I} (F_i, A_i)$ is a soft N-subgroup of (F, A), if it is non-null.
- b) $\bigwedge_{i \in I}(F_i, A_i)$ is a soft N-subgroup of $\bigwedge_{i \in I}(F, A)$, if it is non-null.
- c) If $\{A_i \mid i \in I\}$ are pairwise disjoint, i.e., $i \neq j$ implies $A_i \cap A_j = \emptyset$, then $\widetilde{\bigcup}_{i \in I}(F_i, A_i)$ is soft N-subgroup of (F, A).

Proposition 3. Let (F, A) be a soft N-group over Γ and $(F_i, A_i)_{i \in I}$ be a nonempty family of soft N-subgroups of (F, A). Then $\bigcap_{i \in I} (F_i, A_i)$ is a soft N-subgroup of (F_i, A_i) for each $i \in I$, if it is non-null.

Proof. Let $\bigcap_{i \in I} (F_i, A_i) = (H, C)$, where $C = \bigcap_{i \in I} A_i \neq \emptyset$ and $H(x) = \bigcap_{i \in I} F_i(x)$ for all $x \in C$. The parameter set of the soft set $\bigcap_{i \in I} (F_i, A_i)$, that is, $\bigcap_{i \in I} A_i$ is a subset of the parameter set of the soft set $(F_i, A_i)_{i \in I}$ for all $i \in I$. Suppose that (H, C) is a non-null soft set over N. If $x \in Supp(H, C)$, then $H(x) = \bigcap_{i \in I} F_i(x) \neq \emptyset$. Thus $\emptyset \neq F_i(x)$ are N-subgroups of Γ for all $i \in I$. Therefore $H(x) = \bigcap_{i \in I} F_i(x)$ is an N-subgroup of Γ . Moreover, since $\bigcap_{i \in I} F_i(x) \subset F_i(x)$, for all $i \in I$ and for all $x \in \bigcap_{i \in I} A_i$, the rest of the proof is obvious.

Definition 13. Let (F, A) be a soft N-group over Γ and (H, B) be a soft N-subgroup of (F, A). Then we say that (H, B) is a soft N-ideal of (F, A), written $(H, B) \triangleleft_N (F, A)$, if H(x) is an ideal of F(x); i.e., $H(x) \triangleleft_N F(x)$ for all $x \in B$.

Theorem 3. Let (F, A) be a soft N-group over Γ and $(F_i, A_i)_{i \in I}$ be a nonempty family of soft N-ideals of (F, A). Then we have the following:

- a) $\bigcap_{i \in I} (F_i, A_i)$ is a soft N-ideal of (F, A), if it is non-null.
- b) $\bigwedge_{i \in I} (F_i, A_i)$ is a soft N-ideal of $\bigwedge_{i \in I} (F, A)$, if it is non-null.
- c) If $\{A_i \mid i \in I\}$ are pairwise disjoint, i.e., $i \neq j$ implies $A_i \cap A_j = \emptyset$, then $\widetilde{\bigcup}_{i \in I}(F_i, A_i)$ is soft N-ideal of (F, A).

Proposition 4. Let (F, A) be a soft N-group over Γ and $(F_i, A_i)_{i \in I}$ be a nonempty family of soft N-ideals of (F, A). Then $\bigcap_{i \in I} (F_i, A_i)$ is a soft N-ideal of (F_i, A_i) for each $i \in I$, if it is non-null.

Proposition 5. Let (F, A) and (G, A) be two soft N-ideals over Γ . Then $(F, A) \sqcap_{\varepsilon} (G, A)$ is a soft N-ideal of both (F, A) and (G, A), if it is non-null.

4. Soft *N*-ideals

Definition 14. Let (F, A) be a soft N-group over Γ . A non-null soft set (G, I) over Γ is called a soft N-ideal of (F, A) denoted by $(G, I) \underbrace{{} \trianglelefteq_N}(F, A)$ if it satisfies:

 $(i)/I \subset A$

 $(ii)/G(x) \leq_N F(x)$ for all $x \in Supp(G, I)$.

Example 4. Let $\Gamma = \mathbb{Z}_6$ and (F, A) be a soft set over Γ , where $A = \{0, 2, 4\}$ and $F : A \to P(\Gamma)$ is a set-valued function defined by

$$F(x) = \{ y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy \in \{0,3\} \}$$

for all $x \in A$. Then $F(0) = \mathbb{Z}_6$ and $F(2) = F(4) = \{0, 3\}$. It can be easily seen that (F, A) is a soft N-group over \mathbb{Z}_6 .

Let $\Gamma = \mathbb{Z}_6$ and $G: A \to P(\Gamma)$ be a set-valued function defined by

 $G(x) = \{ y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy \in \{0, 2, 4\} \}$

for all $x \in A = \{0, 2, 4\}$. Then, $G(0) = G(2) = G(4) = \mathbb{Z}_6$. It is easily seen that $F(x) \leq_N G(x)$ for all $x \in Supp(F, A) = \{0, 2, 4\}$, hence $(F, A) \overbrace{\triangleleft_N} (G, A)$.

Theorem 4. Let (F, A) be a soft N-group Γ , (G_1, I_1) and (G_2, I_2) be soft N-ideals of (F, A). Then the soft set $(G_1, I_1) \cap (G_2, I_2)$ is a soft N-ideal of (F, A) if it is non-null.

Proof. Assume that $(G_1, I_1) \trianglelefteq N(F, A)$ and $(G_2, I_2) \oiint N(F, A)$. Let $(G_1, I_1) \cap (G_2, I_2) = (G, I)$, where $I = I_1 \cap I_2 \neq \emptyset$ and $G(x) = G_1(x) \cap G_2(x)$ for all $x \in I$. Since $I_1 \subset A$ and $I_2 \subset A$, it is clear that $I \subset A$. Suppose that the soft set (G, I) is non-null. If $x \in Supp(G, I)$, then $G(x) = G_1(x) \cap G_2(x) \neq \emptyset$. Since $G_1(x) \trianglelefteq_N F(x)$, $G_2(x) \oiint_N F(x)$ and the intersection of ideals of Γ is an ideal of Γ , it follows that $G(x) \oiint_N F(x)$ for all $x \in Supp(G, I)$. Therefore $(G_1, I_1) \cap (G_2, I_2) \oiint_N (F, A)$.

Theorem 5. Let (F, A) be a soft N-group Γ , (G_1, I_1) and (G_2, I_2) be soft N-ideals of (F, A). Then the soft set $(G_1, I_1)\widetilde{\cup}(G_2, I_2)$ is a soft N-ideal of (F, A) if I_1 and I_2 are disjoint.

Proof. Assume that $(G_1, I_1) \subseteq \widetilde{\subseteq}_N(F, A)$ and $(G_2, I_2) \subseteq \widetilde{\subseteq}_N(F, A)$. Let $(G_1, I_1) = \widetilde{\cup}(G_2, I_2) = (G, I)$, where $I = I_1 \cup I_2$ and for all $x \in I$

$$G(x) = \begin{cases} G_1(x) & \text{if } x \in I_1 \setminus I_2, \\ G_2(x) & \text{if } x \in I_2 \setminus I_1, \\ G_1(x) \cup G_2(x) & \text{if } x \in I_1 \cap I_2. \end{cases}$$

Since $I_1 \subset A$ and $I_2 \subset A$, it is obvious that $I \subset A$. If $I_1 \cap I_2 = \emptyset$, then for all $x \in Supp(G, I)$, we know that either $x \in I_1 \setminus I_2$ or $x \in I_2 \setminus I_1$. If $x \in I_1 \setminus I_2$, then $\emptyset \neq G_1(x) = G(x) \trianglelefteq_N F(x)$ and if $x \in I_2 \setminus I_1$, then $\emptyset \neq G_2(x) = G(x) \trianglelefteq_N F(x)$ for all $x \in Supp(G, I)$. Therefore $(G_1, I_1) \widetilde{\cup} (G_2, I_2) \bowtie_N (F, A)$.

Theorem 6. Let (F, A) be a soft N-group Γ , (G_1, I_1) and (G_2, I_2) be soft N-ideals of (F, A). Then the soft set $(G_1, I_1) \sqcap_{\varepsilon} (G_2, I_2)$ is a soft N-ideal of (F, A) if it is non-null.

Proof. Assume that $(G_1, I_1) \overbrace{\lhd_N} (F, A)$ and $(G_2, I_2) \overbrace{\lhd_N} (F, A)$. Let $(G_1, I_1) \sqcap_{\varepsilon} (G_2, I_2) = (G, I)$, where $I = I_1 \cup I_2$ and

$$G(x) = \begin{cases} G_1(x) & \text{if } x \in I_1 \setminus I_2, \\ G_2(x) & \text{if } x \in I_2 \setminus I_1, \\ G_1(x) \cap G_2(x) & \text{if } x \in I_1 \cap I_2 \end{cases}$$

for all $x \in I$. Since $I_1 \subset A$ and $I_2 \subset A$, it is obvious that $I \subset A$. Suppose that the soft set (G, I) is non-null and $x \in Supp(G, I)$. If $x \in I_1 \setminus I_2$, then $\emptyset \neq G_1(x) = G(x) \trianglelefteq_N F(x)$ and if $x \in I_2 \setminus I_1$, then $\emptyset \neq G_2(x) = G(x) \trianglelefteq_N F(x)$. And if $x \in I_1 \cap I_2$, then $\emptyset \neq G(x) = G_1(x) \cap G_2(x)$. Since $(G_1, I_1) \trianglelefteq_N (F, A)$ and $(G_2, I_2) \bowtie_N (F, A)$, we know that the nonempty sets $G_1(x)$ and $G_2(x)$ are both ideals of F(x). It follows that $G(x) \trianglelefteq_N F(x)$ for all $x \in Supp(G, I)$. Therefore $(G_1, I_1) \sqcap_{\varepsilon} (G_2, I_2) \bowtie_N (F, A)$, as required.

Example 5. Let $\Gamma = \mathbb{Z}_6$ and $F : A \to P(\Gamma)$ be a set-valued function defined by $F(x) = \{y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy \in \{0,2,4\}\}$ if $x \in \{0,2,4\}$ and $F(x) = \mathbb{Z}_6$ if $x \in \{1,3,5\}$. Then, we have $F(0) = F(1) = F(2) = F(3) = F(4) = F(5) = \mathbb{Z}_6$.

Let $\Gamma = \mathbb{Z}_6$ and (G, B) be a soft set over Γ , where $B = \{2, 3, 4\}$ and $G: B \to P(\Gamma)$ is a set-valued function defined by

$$G(x) = \{ y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy \in \{0,3\} \}$$

for all $x \in B$. Then $G(3) = \mathbb{Z}_6$ and $G(2) = G(4) = \{0,3\}$. Since $G(2) \leq_N F(2)$, $G(3) \leq_N F(3)$ and $G(4) \leq_N F(4)$, it follows that $(G, B) \overbrace{\triangleleft_N} (F, A)$.

Let $\Gamma = \mathbb{Z}_6$ and (H, C) be a soft set over \mathbb{Z}_6 , where $C = \{0, 2, 4\}$ and $H: C \to P(\Gamma)$ is a set-valued function defined by

$$H(x) = \{ y \in C \mid xRy \Leftrightarrow xy \in \{0, 2, 4\} \}$$

for all $x \in C$. Then $H(0) = H(2) = H(4) = \{0, 2, 4\}$. Since $H(x) \leq_N F(x)$ for all $x \in \{0, 2, 4\}$, it follows that $(H, C) \leq_N (F, A)$.

Now we consider the restricted intersection of soft N-ideals (G, B) and (H, C) of (F, A). Let $(G, B) \cap (H, C) = (T, B \cap C)$ where $T(x) = G(x) \cap H(x)$ for all $x \in B \cap C = \{2, 4\}$. Then we have $T(2) = \{0\} \trianglelefteq_N F(2), T(4) = \{0\} \oiint_N F(4)$ for all $x \in Supp(T, B \cap C)$, which means that $(G, B) \cap (H, C) \oiint_N (F, A)$.

Now we consider $(G, B)\widetilde{\cup}(H, C)$. Let $(G, B)\widetilde{\cup}(H, C) = (W, B \cup C)$, where

$$W(x) = \begin{cases} G(x) & \text{if } x \in B \setminus C = \{3\}, \\ H(x) & \text{if } x \in C \setminus B = \{0\}, \\ G(x) \cup H(x) & \text{if } x \in B \cap C = \{2, 4\} \end{cases}$$

for all $x \in B \cup C = \{0, 2, 3, 4\}$. Then, $W(0) = \{0, 2, 4\}$, $W(2) = W(4) = \{0, 2, 3, 4\}$ and $W(3) = \mathbb{Z}_6$. Since W(2) and W(4) is not an ideal of F(2) and F(4) respectively, $(G, B)\widetilde{\cup}(H, C)$ is not a soft N-ideal of (F, A). That is to say, the condition 'disjoint' can not be removed from this theorem.

Furthermore, since $W(0) = \{0, 2, 4\} \leq_N F(0)$, and $W(2) = \{0\} \leq_N F(2)$, $W(3) = \mathbb{Z}_6 \leq_N F(3)$ and $W(4) = \{0\} \leq_N F(4)$, it is easy to see that $(G, B) \sqcap_{\varepsilon} (H, C)$ is a soft N-ideal of (F, A).

5. N-idealistic soft N-groups and the relationships between soft N-groups and N-idealistic soft N-groups

Definition 15. Let (F, A) be a soft N-group over Γ . If $F(x) \leq_N \Gamma$ for all $x \in Supp(F, A)$, then (F, A) is called an N-idealistic soft N-group over Γ . Here, (F, A) should be a non-null soft set over Γ .

Example 6. Let $\Gamma = \mathbb{Z}_6$ and the soft N-group (F, A) of Γ be the one given in Example 1. Since $F(x) \leq_N \Gamma$ for all $x \in Supp(F, A) = \mathbb{Z}_6$, (F, A) is an N-idealistic soft N-group over Γ .

Theorem 7. Let (F, A) and (G, B) be two N-idealistic soft N-groups over Γ . Then we have the following:

- a) If it is non-null, $(F, A) \cap (G, B)$ is an N-idealistic soft N-group over Γ .
- b) If A and B are disjoint, then (F, A) U(G, B) is an N-idealistic soft N-group over Γ.
- c) If it is non-null, $(F, A) \widetilde{\wedge} (G, B)$ is an N-idealistic soft N-group over Γ .
- d) If it is non-null, $(F, A) \sqcap_{\varepsilon} (G, B)$ is an N-idealistic soft N-group over Γ .

Proof. Straightforward, hence is omitted.

Definition 16. An N-group Γ is said to satisfy the condition (N) if $\Delta \leq_N \Theta \leq_N \Lambda$, then $\Delta \leq_N \Lambda$.

Proposition 6 ([20], 1.34 Proposition). If $N = N_0$, then every ideal of Γ is also an N-subgroup of Γ .

Proposition 7. Let $N = N_0$, Γ be an N-group which satisfies the condition (N) and let (F, A) be an N-idealistic soft N-group over Γ . If (G, I) is a soft N-ideal of (F, A), then (G, I) is also N-idealistic soft N-group over Γ .

Proof. If $(G, I) \trianglelefteq_N (F, A)$, then for all $x \in Supp(G, I)$, $G(x) \trianglelefteq_N F(x)$. Since (F, A) is an N-idealistic soft N-group over Γ , then for all $x \in Supp(F, A)$, $F(x) \trianglelefteq_N \Gamma$. Thus we have $G(x) \oiint_N F(x) \oiint_N \Gamma$ for all $x \in Supp(G, I)$. Since Γ satisfies condition (N), $G(x) \oiint_N \Gamma$ for all $x \in Supp(G, I)$. Because of the fact that every ideal of Γ is also an N-subgroup of Γ when N is a zero-symmetric near-ring, then G(x) is also an N-subgroup of Γ for all $x \in Supp(G, I)$. This means that (G, I) is a soft N-group over Γ . Moreover, (G, I) is an N-idealistic soft N-group over Γ .

Proposition 8. If N is a zero-symmetric near-ring, then every N-idealistic soft N-group over an N-group Γ is a soft N-group over Γ , however the converse is not true in general. The following example shows that the converse of Proposition 8 is not true in general.

Example 7 (cf.,[20]). Let Klein-4 group $N = \{0, 1, 2, 3\}$. Under the operations defined by the following tables, (N, +, .) is a (right) near-ring. It is easily seen that N is not a zero-symmetric near-ring.

		1					1			
0	0	1	2	3	0	0	0	0	0	
1	1	0	3	2			1			
2	2	$0 \\ 3$	0	1			0			
3	3	2	1	0	3	1	1	1	3	

Let $\Gamma = N$, $B = \{0, 1\}$ and (F, A) be a soft set over Γ , where $A = \{0, 2\}$ and assume that $F : A \to P(\Gamma)$ is a set-valued function defined by

$$F(x) = \{0\} \cup \{y \in B \mid xRy \Leftrightarrow xy = 0\}$$

for all $x \in A$. Then $F(0) = F(2) = \{0, 1\}$. It can be easily shown that $\{0, 1\} \leq_N \Gamma$. Hence (F, A) is a soft N-group over Γ . Nevertheless $F(0) = F(2) = \{0, 1\}$ is not an ideal of Γ , since $2 \cdot (3 + 1) - 2 \cdot 3 = 2 \notin \{0, 1\}$. It follows that (F, A) is not an N-idealistic soft N-group over Γ .

And let $\Gamma = N$ and (G, C) be a soft set over Γ , where $C = \{1, 3\}$ and assume that $G : C \to P(\Gamma)$ is a set-valued function defined by

$$G(x) = \{0\} \cup \{y \in N \setminus C \mid xRy \Leftrightarrow xy = 1\}$$

for all $x \in C$. Then we have $G(1) = G(3) = \{0, 2\}$. It can be easily illustrated that $\{0, 2\} \leq_N \Gamma$. Hence (G, C) is an N-idealistic soft N-group over Γ . However $\{0, 2\}$ is not an N-subgroup of Γ , since $N\{0, 2\} \not\subseteq \{0, 2\}$. It follows that (G, C) is not a soft N-group over Γ .

Similarly, let the soft set (G, I) in Example 1. It is obvious that $N = \mathbb{Z}_6$ is not a zero-symmetric near-ring, and since $\{0, 2, 4\}$ is an ideal of Γ ; but not an *N*-subgroup of Γ , it follows that (G, I) is an *N*-idealistic soft *N*-group but not a soft *N*-group over Γ .

Proposition 9. Let (F, A) be a soft set over Γ and $B \subset A$. If (F, A) is an N-idealistic soft N-group over Γ , then so is (F, B), whenever (F, B) is non-null.

Proof. It is obvious, hence omitted.

As can be seen from the following example, the converse of Proposition 8 is not true in general.

Example 8. Let $\Gamma = N$ in Example 7, $B = \{0, 1\}$ and (F, A) be a soft set over Γ , where A = N and assume that $F : A \to P(\Gamma)$ is a set-valued function defined by

$$F(x) = \{0\} \cup \{y \in B \mid xRy \Leftrightarrow xy = 0\}$$

for all $x \in A$. Then, $F(0) = F(2) = \{0,1\}$, $F(1) = F(3) = \{0\}$. Since $\{0,1\}$ is not an ideal of Γ as shown in Example 7, (F, A) is not an N-idealistic soft N-group over Γ . However, when we take $B = \{1,3\} \subset A$, then $(F \mid_B, B)$ is an N-idealistic soft N-group over Γ , where $F \mid_B$ is the restriction of F to B.

Definition 17. Let (F, A) be an N-idealistic soft N-group over an N-group Γ . Then,

a) (F, A) is called trivial if $F(x) = \{0_{\Gamma}\}$ for all $x \in Supp(F, A)$.

b) (F, A) is said to be whole if $F(x) = \Gamma$ for all $x \in Supp(F, A)$.

Example 9. The soft set (F, A) in Example 2 is a whole $M(\mathbb{Z}_2)$ -idealistic soft $M(\mathbb{Z}_2)$ -group over \mathbb{Z}_2 .

Let (F, A) be a soft N-group over an N-group Γ and let $f : \Gamma \to \Psi$ be a mapping of N-groups. Then the soft set (f(F), Supp(F, A)) over Ψ can be defined, where

$$f(F): Supp(F, A) \to P(\Psi)$$

is given by f(F)(x) = f(F(x)) for all $x \in Supp(F, A)$. It is also worth nothing that Supp(F, A) = Supp(f(F), Supp(F, A)).

Proposition 10. Let $f : \Gamma \to \Psi$ be an epimorphism of N-groups. If (F, A) is an N-idealistic soft N-group over Γ , then (f(F), Supp(F, A)) is an N-idealistic soft N-group over Ψ .

Proof. Note first that since (F, A) is an idealistic *N*-idealistic soft *N*-group over Γ , it has to be a non-null soft set over Γ , thus (f(F), Supp(F, A)) is a non-null soft set over Ψ , too. We have $f(F)(x) = f(F(x)) \neq \emptyset$ for all $x \in Supp(f(F), Supp(F, A))$. Because of the fact that (F, A) is an *N*-idealistic soft *N*-group over Γ , the nonempty set F(x) is an ideal of Γ . Thus, we can conclude that its onto homomorphic image f(F(x)) is an ideal of Ψ . So, f(F(x)) is an ideal of Ψ for all $x \in Supp(f(F), Supp(F, A))$. It means that (f(F), Supp(F, A)) is an *N*-idealistic soft *N*-group over Ψ .

Theorem 8. Let (F, A) be an N-idealistic soft N-group over Γ and let $f: \Gamma \to \Psi$ be an epimorphism of N-groups. Then

a) If F(x) = Ker(f) for all $x \in Supp(F, A)$, then (f(F), Supp(F, A)) is a trivial N-idealistic soft N-group over Ψ . b) If (F, A) is whole, then (f(F), Supp(F, A)) is a whole N-idealistic soft N-group over Ψ .

Proof. a) Assume that F(x) = Ker(f) for all $x \in Supp(F, A)$. Then $f(F)(x) = f(F(x)) = 0_{\Psi}$ for all $x \in Supp(F, A)$. That is to say (f(F), Supp(F, A)) is a trivial N-idealistic soft N-group over Ψ .

b) Suppose that (F, A) is whole. Then, $F(x) = \Gamma$ for all $x \in Supp(F, A)$. It follows that $f(F)(x) = f(F(x)) = F(\Gamma) = \Psi$ for all $x \in Supp(F, A)$, which means that (f(F), Supp(F, A)) is a whole N-idealistic soft N-group over Ψ .

Example 10. a) Let $\Gamma = N$ in Example 7, and (F, A) be a soft set over Γ , where $A = \{0, 1, 2\}$ and assume that $F : A \to P(\Gamma)$ is a set-valued function defined by

$$F(x) = \{ y \in N \mid xRy \Leftrightarrow 2x = y \}$$

for all $x \in A$. Then $F(0) = F(1) = F(2) = \{0\}$. It is obvious that (F, A) is a trivial N-idealistic soft N-group over Γ .

Let $f: \Gamma \to \Gamma$ be the mapping defined by $f(n) = n\gamma$, where $\gamma = 3 \in \Gamma$. Since Γ is a monogenic N-group by $\gamma = 3$, one can say that f is an epimorphism of N-groups. Also, it is obvious that f is an one-to-one mapping, therefore $Ker(f) = \{0\}$, which means that F(x) = Ker(f) for all $x \in Supp(F, A)$. We need to show that (f(F), A) is a trivial N-idealistic soft N-group over Γ . To see this, we construct the soft set (f(F), A) over Γ , where

$$f(F): A \to P(\Gamma)$$

is given by f(F)(x) = f(F(x)) for all $x \in A$. It follows that, $f(F)(0) = f(F(0)) = f(F)(1) = f(F(1)) = f(F)(2) = f(F(2)) = f(0) = \{0\}$. It is easy to see that (f(F), A) is an N-idealistic soft N-group over Γ , furthermore (f(F), A) is a trivial N-idealistic soft N-group over Γ , as required.

b) Let $\Gamma = N$ in Example 7, and (G, B) be a soft set over Γ , where B = Nand assume that $F : B \to P(\Gamma)$ is a set-valued function defined by

$$G(x) = \{3\} \cup \{y \in N \mid xRy \Leftrightarrow xy \in \{0,1\}\}$$

for all $x \in B$. Then G(0) = G(1) = G(2) = G(3) = N. Since $G(x) = \Gamma$ for all $x \in Supp(G, B)$, it follows that (G, B) is a whole N-idealistic soft N-group over Γ .

Let $f : \Gamma \to \Gamma$ be the above near-ring epimorphism. We need to show that (f(G), Supp(G, B)) is a whole N-idealistic soft N-group over Γ . To see this, let construct the soft set (f(G), Supp(G, B)) over Γ , where

$$f(G): Supp(G, B) \to P(\Gamma)$$

is given by f(G)(x) = f(G(x)) for all $x \in Supp(G, B)$. It follows that $f(G)(0) = f(G(0)) = f(G)(2) = f(G(2)) = f(G)(4) = f(G(4)) = f(\Gamma) = \Gamma$. It is easy to see that (f(G), Supp(G, B)) is an N-idealistic soft N-group over Γ , furthermore (f(G), Supp(G, B)) is a whole N-id1ealistic soft N-group over Γ , as required.

Definition 18. Let (F, A) and (G, B) be soft N-groups over Γ_1 and Γ_2 , respectively. Let $f : \Gamma_1 \to \Gamma_2$ and $g : A \to B$ be two mappings. Then the pair (f,g) is called a soft N-group homomorphism if it satisfies the conditions below:

(i) f is an epimorphism of N-groups.

(*ii*) g is a surjective mapping.

(iii) f(F(x)) = G(g(x)) for all $x \in A$. If there exists a soft N-group homomorphisms between (F, A) and (G, B), we mention that (F, A) is soft homomorphic to (G, B), which is denoted by $(F, A) \sim_N (G, B)$. Furthermore, if f is an isomorphism of N-groups and g is a bijective mapping, then (f,g) is said to be a soft N-group isomorphism. In this case, we say that (F, A) is soft isomorphic to (G, B), which is denoted by $(F, A) \simeq_N (G, B)$.

Example 11. Let $\Gamma = \mathbb{Z}_6$ and (F, A) be a soft set over Γ , where F: $A \to P(\Gamma)$ is a function by $F(x) = \{y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy \in \{0,3\}\}$ for all $x \in A = \{0, 1, 2, 4, 5\}$. Then we have $F(0) = \mathbb{Z}_6$, F(1) = F(2) = F(4) = F(4) $F(5) = \{0, 3\}$. It is obvious that (F, A) is a soft N-group over Γ . Let (G, B)be a soft set over $\Gamma = \mathbb{Z}_6$, where $G : B \to P(\Gamma)$ is a function defined by $G(x) = \{y \in \mathbb{Z}_6 \mid xRy \Leftrightarrow xy = 0\}$ for all $x \in B = \{0, 2, 4\}$. Then we have $G(0) = \mathbb{Z}_6, G(2) = G(4) = \{0, 3\}$. It is obvious that (G, B) is a soft N-group over Γ . Let $f: \mathbb{Z}_6 \to \{0, 2, 4\}$ be the mapping defined by $f(n) = n\gamma$, where $\gamma = 5 \in \mathbb{Z}_6$. Since \mathbb{Z}_6 is a monogenic N-group by $\gamma = 5$, one can say that f is an epimorphism of N-groups. Let $g: A \to B$ be the mapping defined by g(x) = 4x for all $x \in \mathbb{Z}_6$. Then one can easily say that g is surjective. Since $f(F(0)) = F(\mathbb{Z}_6) = \mathbb{Z}_6$, f(F(1)) = f(F(2)) = f(F(4)) = f(F(5)) = f(F(5)) $f(\{0,3\}) = \{0,3\}$ and $G(g(0)) = G(0) = \mathbb{Z}_6$, $G(g(1)) = G(4) = \{0,3\}$, $G(g(2)) = G(2) = \{0,3\}, G(g(4)) = G(4) = \{0,3\}, G(g(5)) = G(2) = G(2)$ $\{0,3\}, f(F(x)) = G(g(x))$ is satisfied for all $x \in A$. Therefore (f,g) is a soft N-homomorphism and $(F, A) \sim_N (G, B)$. Because of the fact that f is isomorphism of N- groups but g is not a bijective mapping, we can not say that (F, A) is soft isomorphic to (G, B).

6. Conclusion

Throughout this paper, in an N-group structure, we have studied the algebraic properties of soft sets which were introduced by Molodtsov as a

new mathematical tool for dealing with uncertainty. This work bears on soft N-groups, soft N-subgroups, soft N-ideals, N-idealistic soft N-groups and soft N-group homomorphisms. Moreover, the relation between soft N-groups and N-idealistic soft N-groups are investigated under certain conditions for the near-ring N and they are illustrated by many examples.

References

- ACAR U., KOYUNCU F., TANAY B., Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463.
- [2] AKTAS H, ÇAĞMAN N., Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
- [3] ALI M.I., FENG F., LIU X., MIN W.K., SHABIR M., On some new operations in soft set theory, *Comput. Math. Appl.*, 57(2009), 1547-1553.
- [4] ATAGÜN A.O., SEZGIN A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3)(2011), 592-601.
- [5] BABITHA K.V., SUNIL J.J., Soft set relations and functions, Comput. Math. Appl., 60(7)(2010), 1840–1849.
- [6] ÇAĞMAN N., ENGINOĞLU S., Soft matrix theory and its decision making, Comput. Math. Appl., 59(2010), 3308-3314.
- [7] ÇAĞMAN N., ENGINOĞLU S., Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207(2010), 848-855.
- [8] FENG F., JUN Y.B., ZHAO X., Soft semirings, Comput. Math. Appl., 56(2008), 2621-2628.
- [9] FENG F., LIU X.Y., LEOREANU-FOTEA V., JUN Y.B., Soft sets and soft rough sets, *Inform. Sci.*, 181(6)(2011), 1125-1137.
- [10] FENG F., LI C., DAVVAZ B., ALI M.I., Soft sets combined with fuzzy sets and rough sets: a tentative approach, *Soft Comput.*, 14(6)(2010), 899-911.
- [11] JUN Y.B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56(2008), 1408-1413.
- [12] JUN Y.B., PARK C.H., Applications of soft sets in ideal theory of BCK/ BCI-algebras, *Inform. Sci.*, 178(2008), 2466-2475.
- [13] JUN Y.B., LEE K.J., ZHAN J., Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060-2068.
- [14] KAZANCI O., YILMAZ Ş., YAMAK S., Soft sets and soft BCH-algebras, *Hacet. J. Math. Stat.*, 39(2)(2010), 205-217.
- [15] MAJI P.K., BISWAS R., ROY A.R., Soft set theory, Comput. Math. Appl., 45(2003), 555-562.
- [16] MAJI P.K., ROY A.R., BISWAS R., An application of soft sets in a decision making problem, *Comput. Math. Appl.*, 44(2002), 1077-1083.
- [17] MAJUMDAR P., SAMANTA S.K., On soft mappings, *Comput. Math. Appl.*, 60 (9)(2010), 2666-2672.
- [18] MOLODTSOV D., Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.
- [19] MOLODTSOV D.A., LEONOV V.YU., KOVKOV D.V., Soft sets technique and its application, *Nechetkie Sistemy i Myagkie Vychisleniya*, 1(1)(2006), 8-39.

- [20] PILZ G., *Near-rings*, North Holland Publishing Company, Amsterdam-New York-Oxford, 1983.
- [21] SEZGIN A., ATAGÜN A.O., AYGÜN E., A note on soft near-rings and idealistic soft near-rings, *Filomat*, 25(2)(2011), 53-68.
- [22] SEZGIN A., ATAGÜN A.O., On operations of soft sets, Comput. Math. Appl., 61(5)(2011), 1457-1467.
- [23] SEZGIN A., ATAGÜN A.O., Soft groups and normalistic soft groups, Comput. Math. Appl., 62(2)(2011), 685-698.
- [24] SEZGIN A., ATAGÜN A.O., ÇAĞMAN N., Union soft substructures of nearrings and N-groups, Neural Comput. Appl., 21 (Issue 1-Supplement) (2012), 133-143.
- [25] SEZGIN A., ATAGÜN A.O., ÇAĞMAN N., Soft intersection near-rings with applications, *Neural Comput. Appl.*, 21(Issue 1-Supplement)(2012), 221-229.
- [26] SEZER A.S., A new view to ring theory via soft union rings, ideals and biideals, *Knowledge-Based Systems*, 36(2012), 300-314.
- [27] ZHAN J., JUN Y.B., Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(6)(2010), 2037-2046.

ASLIHAN SEZGIN SEZER DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE AMASYA UNIVERSITY 05100 AMASYA, TURKEY *e-mail:* sezgin.nearring@hotmail.com *or* aslihan.sezgin@amasya.edu.tr

AKIN OSMAN ATAGÜN DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE BOZOK UNIVERSITY 66100 YOZGAT, TURKEY *e-mail:* aosman.atagun@bozok.edu.tr

NAIM ÇAĞMAN DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE GAZIOSMANPAŞA UNIVERSITY 60250 TOKAT, TURKEY *e-mail:* ncagman@gop.edu.tr

Received on 22.05.2012 and, in revised form, on 23.07.2013.