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CONDITIONAL RECIPROCAL CONTINUITY

AND COMMON FIXED POINTS

Abstract. The aim of the present paper is to obtain common
fixed point theorems by employing the recently introduced notion
of conditional reciprocal continuity. We demonstrate that condi-
tional reciprocal continuity ensures the existence of fixed points
under contractive conditions which otherwise do not ensure the
existence of fixed points. Our results generalize and extend several
well-known fixed point theorems in the setting of metric spaces.
We also provide more answers to the open problem posed by B. E.
Rhoades [Contractive Definitions and Continuity, Contemporary
Math. 72 (1988), 233-245] regarding existence of a contractive
condition which is strong enough to generate a fixed point, but
which does not force the map to be continuous at the fixed point.
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1. Introduction

In 1998, Pant [9] introduced the concept of reciprocal continuity and
obtained the first result that established a situation in which a collection
of mappings has a fixed point which is a point of discontinuity for all the
mappings. The notion of reciprocal continuity has been employed by many
researchers in diverse settings to establish fixed point theorems which admit
discontinuity at the fixed point. Imdad and Ali [3] have used this concept in
the setting of non-self mappings. Singh and Mishra [16] have used reciprocal
continuity to establish general fixed point theorems for hybrid pairs of single
valued and multi-valued maps. Pant and Pant [14] extended the study of
reciprocal continuity to fuzzy metric spaces. Kumar and Pant [6] studied
this concept in the setting of probabilistic metric space. Murlishankar and
Kalpna [8] established a common fixed point theorem in an intuitionistic
fuzzy metric space using contractive condition of integral type. To widen the
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scope of the study of common fixed points from the class of compatible map-
pings satisfying contractive conditions to a wider class including compatible
as well as noncompatible mappings satisfying contractive, nonexpansive or
Lipschitz type condition Pant and Bisht [12] generalized the notion of re-
ciprocal continuity by introducing the new concept of conditional reciprocal
continuity which is the weakest form of continuity condition known so far.

In 1986, Jungck [4] generalized the notion of weakly commuting maps by
introducing the concept of compatible maps.

Definition 1 ([4]). Two self-maps f and g of a metric space (X, d) are
called compatible iff limn d(fgxn, gfxn) = 0, whenever {xn} is a sequence
in X such that limn fxn = limn gxn = t for some t in X.

The definition of compatibility implies that the mappings f and g will be
noncompatible in there exists a sequence {xn} in X such that limn fxn =
limn gxn = t for some t in X but limn d(fgxn, gfxn) is either non zero or
nonexistent.

Definition 2 ([10]). Two self-maps f and g are called pointwise R-weakly
commuting on X if given x in X there exists R ≥ 0 such that d(fgx, gfx) ≤
Rd(fx, gx).

It is well known now that pointwise R-weak commutativity is equivalent
to commutativity at coincidence points and in the setting of metric space
this notion is equivalent to weak compatibility [5].

Definition 3 ([2]). Let f and g (f 6= g) be two self maps of a metric
space (X, d), then f is called g-absorbing [2] if there exists some positive real
number R such that d(gx, gfx) ≤ Rd(fx, gx) for all x in X. Similarly g
will be called f−absorbing if there exists some positive real number R such
that d(fx, fgx) ≤ Rd(fx, gx) for all x in X.

It may be observed that the absorbing maps are neither a subclass of
compatible maps nor a subclass of noncompatible maps [2].

Definition 4 ([9]). Two self-mappings f and g of a metric space (X, d)
are called reciprocally continuous iff limn fgxn = ft and limn gfxn = gt,
whenever {xn} is a sequence such that limn fxn = limn gxn = t for some t
in X.

If f and g are both continuous then they are obviously reciprocally con-
tinuous but the converse is not true [9].

Definition 5 ([12]). Two selfmappings f and g of a set X are called
conditionally reciprocal continuous (CRC) iff whenever the set of sequences
{xn} satisfying limn fxn = limn gxn is nonempty, there exists a sequence
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{yn} satisfying limn fyn = limn gyn = t(say) for some t in X such that
limn fgyn = ft and limn gfyn = gt.

If f and g are either continuous or reciprocally continuous then they are
obviously conditionally reciprocally continuous but, as shown in Example 1
below, the converse is not true (see also [12]).

As an application of conditional reciprocal continuity we prove common
fixed point theorems under contractive conditions that extend the scope
of the study of common fixed point theorems from the class of compatible
continuous mappings to a wider class of mappings which also includes non-
compatible and discontinuous mappings. Our results also demonstrate the
usefulness of the notion of the absorbing maps in fixed point considerations.

The question whether there exists a contractive definition which is strong
enough to generate a fixed point but which does not force the map to be
continuous at the fixed point was reiterated by Rhoades in [15] as an existing
open problem. Gopat et al. [2], Imdad and Ali [3], Pant [9], Bisht [1] and
Pant and Bisht [12] have provided some solutions to this problem. In the
followings theorems we have provided more answers to this problem. It
may be observed that in the examples illustrating the theorems, none of the
mapping is continuous at their common fixed point.

2. Main results

Theorem 1. Let f and g be conditionally reciprocally continuous point-
wise R-weakly commuting self-mappings of a complete metric space (X, d)
such that

(i) fX ⊆ gX
(ii) d(fx, fy) ≤ kd(gx, gy), k ∈ [0, 1).

If g is f -absorbing or f is g-absorbing then f and g have a unique common
fixed point.

Proof. Let x0 be any point in X. Define sequences {xn} and {yn} in X
by

(1) yn = fxn = gxn+1, n = 0, 1, 2, . . . .

We claim that {yn} is a Cauchy sequence. Using (ii) we obtain

d(yn, yn+1) = d(fxn, fxn+1) ≤ kd(gxn, gxn+1) = kd(yn−1, yn),

i.e., d(yn, yn+1) ≤ knd (y0, y1).
Moreover, for every p > 0, we get

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+2) + . . .+ d(yn+p−1, yn+p)

≤ (kn + kn+1 + . . .+ kn+p−1)d(y0, y1) ≤
kn

1− k
d(y0, y1).
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This means that d(yn, yn+p)→ 0 as n→∞. Therefore {yn} is a Cauchy
sequence. Since X is complete, there exists a point t in X such that yn → t
as n→∞. Moreover, yn = fxn = gxn+1 → t.

Since f and g are conditionally reciprocally continuous and limn fxn = t,
limn gxn = t, there exists a sequence {yn} satisfying limn fyn = limn gyn =
u(say) such that limn fgyn = fu and limn gfyn = gu. Since fX ⊆ gX, for
each yn there exists a zn in X such that fyn = gzn. thus fyn → u, gyn → u,
and gzn → u as n→∞. By virtue of this and using (ii) we obtain fzn → u.
Therefore, we have

(2) fyn = gzn → u, gyn → u, fzn → u.

Suppose that g is f -absorbing, d(fzn, fgzn) ≤ Rd(fzn, gzn). On letting
n→∞, we obtain fgzn → u. Using (ii) we get d(fu, fgzn) ≤ kd(gu, ggzn).
On making n → ∞ and in view of gfyn = ggzn → gu we get u = fu.
Since fX ⊆ gX, there exists v in X such that u = fu = gv. Now using
(ii),we obtain d(fyn, fv) ≤ kd(gyn, gv). On letting n→∞, we get fv = gv.
Pointwise R-weak commutativity of f and g implies that d(fgu, gfu) ≤
R1d(fu, gu) for some R1 > 0, that is, fgv = gfv. Thus fgv = gfv = ggv =
ffv. Finally using (ii), we obtain d(fv, ffv) ≤ kd(gv, gfv) = kd(fv, ffv),
that is, (1− k)d(fv, ffv) = 0. Hence fv = ffv = gfv and fv is a common
fixed point of f and g.

Next suppose that f is g-absorbing, d(gyn, gfyn) ≤ Rd(fyn, gyn). On
making n→∞ we get u = gu. Using (ii) we get d(fyn, fu) ≤ kd(gyn, gu).
On letting n→∞ we get fyn → fu. Hence u = fu = gu and u is a common
fixed point of f and g. �

Uniqueness of the common fixed point theorem follows easily in each of
the two cases. We now give example to illustrate the above theorem:

Example 1 ([12]). Let X = [2, 20] and d be the usual metric on X.
Define f, g : X → X as follows

fx = 2 if x = 2 or x > 5, fx = 6 if 2 < x ≤ 5,

g2 = 2, gx = 12, if 2 < x ≤ 5, gx =
(x+ 1)

3
if x > 5.

Then f and g satisfy all the condition of Theorem 1 and have a unique
common fixed point at x = 2. It can be verified in this example that f
and g satisfy the contraction condition (ii) for k = 4

5 . The mapping f and
g are pointwise R-weakly commuting maps as they commute at their only
coincidence point x = 2. Furthermore, f is g-absorbing with R = 29

18 . It can
also be noted that f and g are conditionally reciprocally continuous. To see
this, let {xn} be the constant sequence given by xn. Then fxn → 2,gxn → 2.
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Also fgxn → 2 = f2 and gfxn → 2 = g2. Hence f and g are conditionally
reciprocally continuous. It is also obvious that f and g are not reciprocally
continuous. To see this, {yn} be the sequence inX given by yn = 5+εn where
εn → 0 as n→∞. Then fyn → 2,gyn → 2, limn fgyn = f(2 + εn

3 ) = 6 6= f2
and limn gfyn = g2 = 2. Thus limn gfyn = g2 but limn→∞ fgyn 6= f2.
Hence f and g are not reciprocally continuous mappings.

Example 2. Let X = [1,∞) and d be the usual metric on X. Define
f, g : X → X by

fx = 2x− 1, gx = 3x− 2.

Then f and g satisfy all the conditions of Theorem 1 and have a unique
common fixed point at x = 1. It can be verified in this example that f
and g satisfy the contraction condition (ii) for k = 2

3 . Furthermore, g is
f -absorbing with R = 4. The mappings f and g are pointwise R-weakly
commuting since they commute at their only coincidence point x = 1. It
can be noted that f and g are condittionally reciprocally continuous since
both f and g are continuous.

We now prove a common fixed point theorem for a pair of mappings
satisfy an (ε, δ) type contractive condition. It is now well known (e.g.,
Example 3 below) that an (ε, δ) contrative condition does not ensure the
existence of a fixed point.

Example 3 ([13]). Let X = [0, 2] and d be the Euclidean metric on X.
Define f, : X → X by

fx =
(1 + x)

2
if x < 1, fx = 0 if x ≥ 1.

Then f satisfy the contractive condition

ε ≤ max {d(x, y), d(x, fx), d(y, fy)} < ε+ δ ⇒ d(fx, fy) < ε

with δ(ε) = 1 for ε ≥ 1 and δ(ε) = 1 − ε for ε < 1 but f does not have a
fixed point.

In view of the above example, the next theorem demonstrates the useful-
ness of be conditional reciprocal continuity and shows that the new notion
ensure the existence of a common fixed point under an (ε, δ) contractive
condition.

Theorem 2. Let f and g be conditionally reciprocally continuous point-
wise R-weakly commuting self-mappings of a complete metric space (X, d)
such that

(i) fX ⊆ gX
(ii) d(fx, fy) < d(gx, gy), whenever gx 6= gy
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(iii) given ε > 0 there exists δ > 0 such that

ε < d(gx, gy) < ε+ δ ⇒ d(fx, fy) ≤ ε.

If g is f -absorbing or f is g-absorbing then f and g have a unique common
fixed point.

Proof. Let x0 be any point in X. Define sequences {xn} and {yn} in X
by

(3) yn = fxn = gxn+1.

We claim that {yn} is a Cauchy sequence. Using (ii) we obtain

d(yn, yn+1) = d(fxn, fxn+1) < d(gxn, gxn+1) = d(yn−1, yn).

Thus {d(yn, yn+1)} is a strictly decreasing sequence of positive real num-
bers and, tends to a limit r ≥ 0, that is, limn→∞ d(yn, yn+1) = r, r ≥ 0.

We assert that r = 0. For, if not, suppose that r > 0. Then given δ > 0,
however small δ may be, there exists a positive integer N such that for each
n ≥ N , we have

r < d(yn, yn+1) = d(fxn, fxn+1) < r + δ,

that is,

(4) r < d(gxn+1, gxn+2) < r + δ.

Selecting δ in (4) accordance with (iii), for each n ≥ N we get d(fxn+1,
fxn+2) ≤ r, that is, d(yn+1, yn+2) ≤ r, a contradiction to (4). Therefore
limn→∞ d(yn, yn+1) = 0. We now show that {yn} is a Cauchy sequence.
Suppose it is not. Then there exists an ε > 0 and a subsequence {yni} of
{yn} such that d(yni , yni+1) ≥ 2ε. Select δ in (iii) so that 0 < δ ≤ ε. Since
limn→∞ d(yn, yn+1) = 0, there exists an integer N such that d(yn, yn+1) <

δ
6

whenever n ≥ N .
Let ni ≥ N . Then, there exists integers mi satisfying ni < mi < ni+1

such that d(yni , ymi) ≥ ε+ δ
3 . If not, then

d(yni , yni+1) ≤ d(yni , yni+1−1) + d(yni+1−1, yni+1) < ε+
δ

3
+
δ

6
< 2ε,

a contradiction. Let mi be the smallest integer such that d(yni , ymi) ≥ ε+ δ
3 .

Then d(yni , ymi−2) < ε+ δ
3 and

ε+
δ

3
≤ d(yni , ymi) ≤ d(yni , ymi−2) + d(ymi−2, ymi−1) + d(ymi−1, ymi)

< ε+
δ

3
+
δ

6
+
δ

6
< ε+

2δ

3
,
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that is, ε < ε+ δ
3 ≤ d(gxni+1, gxmi+1) < ε+ 2δ

3 . In view of (iii), this yields
d(yni+1, ymi+1) ≤ ε. But then

d(yni , ymi) ≤ d(yni , yni+1) + d(yni+1, ymi+1) + d(ymi+1, ymi)

<
δ

6
+ ε+

δ

6
= ε+

δ

3
,

which contradicts the previous said statement. Hence {yn} is a Cauchy
sequence. Since X is a complete, there exists a point t in X such that
yn → t. Moreover, yn = fxn = gxn+1 → t.

Since f and g are conditionally reciprocally continuous and limn→∞ fxn =
t, limn→∞ gxn = t there exists a sequence {yn} satisfying limn→∞ fyn =
limn→∞ gyn = u(say) such that limn→∞ fgyn = fu and limn→∞ gfyn = gu.
Since fX ⊆ gX, for each yn there exists a zn in X such that fyn = gzn.
Thus fyn → u,gyn → u and gzn → u as n→∞. By virtue of this and using
(ii) we obtain fzn → u. Therefore, we have

gyn → u, fzn → u, fyn = gzn → u.

Suppose that g is f -absorbing, d(fzn, fgzn) ≤ Rd(fzn, gzn). On letting
n → ∞, we obtain fgzn → u. Using (ii) we get d(fu, fgzn) < d(gu, ggzn).
On makking n → ∞ and in view of gfyn = ggzn → gu we get u = fu.
Since fX ⊆ gX, there exists v in X such that u = fu = gv. Now using
(ii) we obtain d(fyn, fv) < d(gyn, gv). On letting n→∞, we get fv = gv.
Pointwise R-weak commutativity of f and g implies that d(fgu, gfu) ≤
R1d(fu, gu) for some R1 > 0, that is, fgv = gfv. Thus fgv = gfv = ggv =
ffv. If fv 6= ffv then using (ii) we obtain d(fv, ffv) < d(gv, gfv) =
d(fv, ffv), a contradiction. Hence fv = ffv = gfv and fv is a common
fixed point of f and g.

Next suppose that f is g-absorbing, d(gyn, gfyn) ≤ Rd(fyn, gyn). On
making n → ∞ we get u = gu. Using (ii) we get d(fyn, fu) < d(gyn, gu).
On letting n→∞ we get fyn → fu. Hence u = fu = gu and u is a common
fixed point of f and g. �

We now give an example to illustrate Theorem 2.

Example 4 ([12]). Let X = [2, 20] and d be the usual metric on X.
Define f, g : X → X as follows

fx = 2 if x = 2 or x > 5, fx = 6 if 2 < x ≤ 5,

g2 = 2, gx =
(x+ 31)

3
if 2 < x ≤ 5, gx =

(x+ 1)

3
if x > 5.

Then f and g satisfy all the condition of Theorem 2 and have a unique
common fixed point at x = 2. It can be seen in this example that f and g
satisfy the condition (ii) and the condition

ε < d(gx, gy) < ε+ δ ⇒ d(fx, fy) ≤ ε
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with δ(ε) = 1 for ε ≥ 4 and δ(ε) = 4 − ε for ε < 4. Furthermore, f is
g-absorbing with R = 2. It can also be noted that f and g are conditionally
reciprocally continuous. To see this, let{xn} be the constant sequence given
by xn = 2. Then fxn → 2, gxn → 2. Also fgxn → 2 = f2 and gfxn →
2 = g2. Hence f and g are conditionally reciprocally continuous. It is also
obvious that f and g are not reciprocally continuous. To see this,let {yn}
be the sequence in X given by yn = 5 + εn where εn → 0 as n→∞. Then
fyn → 2, gyn → 2, limn fgyn = f

(
2 + εn

3

)
= 6 6= f2 and limn gfyn =

g2 = 2. Thus limn gfyn = g2 but limn fgyn 6= f2. Hence f and g are not
reciprocally continuous mappings. Further, f and g are pointwise R-weakly
commuting maps as they commute at their only coincidence point x = 2.

Remark 1. By putting g = IX , i.e., identity mapping in Theorem 2 we
get the generalized version of the main theorem of Meir and Keeler [7].

We now prove a common fixed point theorem for a noncompatible pair
of self-mappings satisfying a nonexpansive type condition.

Theorem 3. Let f and g be conditionally reciprocally continuous non-
compatible self-mappings of a metric space (X, d) satisfying

(i) fX ⊆ gX
(ii) d(fx, fy) ≤ d(gx, gy).

If f and g are pointwise R-weakly commuting and g is f -absorbing or f is
g-absorbing then f and g have a common fixed point.

Proof. Since f and g are noncompatible maps, there exists a sequence
{xn} in X such that fxn → t and gxn → t for some t in X but either
limn d(fgxn, gfxn) 6= 0 or the limit does not exist. Also, since f and g are
conditionally reciprocally continuous and fxn → t and gxn → t, there exists
a sequence {yn} satisfying limn→∞ fyn = limn→∞ gyn = u(say) such that
limn→∞ fgyn = fu and limn→∞ gfyn = gu. Since fX ⊆ gX, for each yn
there exists zn in X such that fyn = gzn. Thus fyn → u, gyn → u and
gzn → u as n → ∞. By virtue of this and using (ii) we obtain fzn → u.
Therefore, we have

(5) fyn = gzn → u, gyn → u, fzn → u.

Suppose that g is f -absorbing, then d(fyn, fgyn) ≤ Rd(fyn, gyn). On
letting n → ∞, we get u = fu. Since fX ⊆ gX, there exists v in X such
that u = fu = gv. Now using (ii), we obtain d(fyn, fv) ≤ d(gyn, gv). On
letting n → ∞, we get fv = gv. Pointwise R-weak commutativity of f
and g implies that d(fgv, gfv) ≤ R1d(fv, gv) for some R1 > 0, that is,
fgv = gfv and hence fgv = gfv = ggv = ffv. Since g is f -absorbing,
d(fv, fgv) ≤ Rd(fv, gv). This yields fv = fgv. Hence gv = fgv = ggv and
gv is a common fixed point of f and g.
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Finally suppose that f is g-absorbing, d(gyn, gfyn) ≤ Rd(fyn, gyn). On
making n→∞ we get u = gu. Using (ii) we get d(fyn, fu) ≤ (gyn, gu). On
letting n → ∞ we get fyn → fu. Hence u = fu = gu and u is a common
fixed point of f and g. �

Remark 2. In all the results proved in this paper, we have not assumed
any mappings to be continuous. In fact the mappings assumed by us become
discontinuous at their common fixed point. Thus we provide more answers
to the problem posed by Rhoades [15] regarding existence a contractive
condition which is strong enough to generate a fixed point, but which does
not force the map to be continuous at the fixed point.
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of the paper.
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