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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively. We write w2 for the set of all complex
sequences (xmn), where m,n ∈ N, the set of positive integers. Then, w2 is
a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4].
Later on, they were investigated by Hardy [5], Moricz [9], Moricz and
Rhoades [10], BaŞarir and Solancan [2], Tripathy [17], Türkmenoglu [19],
and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : sup
m,n∈N

|xmn|tmn <∞
}
,

Cp (t) :=
{

(xmn) ∈ w2 : p− lim
m,n→∞

|xmn − l|tmn = 1 for some l ∈ C
}
,

C0p (t) :=
{

(xmn) ∈ w2 : p− lim
m,n→∞

|xmn|tmn = 1
}
,

Lu (t) :=
{

(xmn) ∈ w2 :
∞∑
m=1

∞∑
n=1

|xmn|tmn <∞
}
,

Cbp (t) := Cp (t)
⋂
Mu (t) and C0bp (t) = C0p (t)

⋂
Mu (t) ;

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N
and p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case
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tmn = 1 for all m,n ∈ N; Mu (t), Cp (t), C0p (t), Lu (t), Cbp (t) and C0bp (t)
reduce to the setsMu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we may
summarize the knowledge given in some document related to the double
sequence spaces. Gökhan and Çolak [21,22] have proved that Mu (t) and
Cp (t), Cbp (t) are complete paranormed spaces of double sequences and gave
the α−, β−, γ− duals of the spacesMu (t) and Cbp (t). Quite recently, in her
PhD thesis, Zelter [23] has essentially studied both the theory of topological
double sequence spaces and the theory of summability of double sequences.
Mursaleen and Edely [24] have recently introduced the statistical conver-
gence and Cauchy for double sequences and given the relation between sta-
tistical convergent and strongly Cesàro summable double sequences. Nextly,
Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong
regularity of matrices for double sequences and applied these matrices to
establish a core theorem and introduced the M−core for double sequences
and determined those four dimensional matrices transforming every bounded
double sequences x = (xjk) into one whose core is a subset of the M−core of
x. More recently, Altay and BaŞar [27] have defined the spaces BS, BS (t),
CSp, CSbp, CSr and BV of double sequences consisting of all double series
whose sequence of partial sums are in the spacesMu,Mu (t), Cp, Cbp, Cr and
Lu, respectively, and also examined some properties of those sequence spaces
and determined the α− duals of the spaces BS, BV, CSbp and the β (ϑ)−
duals of the spaces CSbp and CSr of double series. Quite recently BaŞar
and Sever [28] have introduced the Banach space Lq of double sequences
corresponding to the well-known space `q of single sequences and examined
some properties of the space Lq. Quite recently Subramanian and Misra
[29] have studied the space χ2

M (p, q, u) of double sequences and gave some
inclusion relations.

Spaces are strongly summable sequences were discussed by Kuttner [31],
Maddox [32], and others. The class of sequences which are strongly Cesàro
summable with respect to a modulus was introduced by Maddox [8] as an
extension of the definition of strongly Cesàro summable sequences. Connor
[33] further extended this definition to a definition of strong A− summability
with respect to a modulus where A = (an,k) is a nonnegative regular matrix
and established some connections between strong A− summability, strong
A− summability with respect to a modulus, and A− statistical convergence.
In [34] the notion of convergence of double sequences was presented by A.
Pringsheim. Also, in [35]-[38], and [39] the four dimensional matrix transfor-
mation (Ax)k,` =

∑∞
m=1

∑∞
n=1 a

mn
k` xmn was studied extensively by Robison

and Hamilton. This will be accomplished by presenting the following se-
quence spaces:
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χ2
fmn

(
∆µ

(ηγ), p, q, r
)

=
{
x ∈ w2 (X)

:= lim
m,n→∞

(mn)
−r
[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)

Big)
]pmn

= 0
}

and

∆2
fmn

(
∆µ

(ηγ), p, q, r
)

=
{
x ∈ w2 (X)

:= sup
mn

(mn)−r
[
fmn

(
q
(∣∣∣∆µ

(ηγ)xmn

∣∣∣1/(m+n)))]pmn

<∞
}

where f is a modulus function. Other implications,general properties and
variations will also be presented.

We need the following inequality in the sequel of the paper. For a, b ≥ 0
and 0 < p < 1, we have

(1) (a+ b)p ≤ ap + bp

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double
sequence (smn) is convergent, where smn =

∑m,n
i,j=1 xij(m,n ∈ N) (see[1]).

A sequence x = (xmn) is said to be double analytic if supmn ‖xmn‖1/(m+n)

< ∞. The vector space of all double analytic sequences will be denoted
by Λ2. A sequence x = (xmn) is called double gai sequence if ((m +
n)!‖xmn‖)1/(m+n) → 0 as m,n → ∞. The double gai sequences will be
denoted by χ2. Let φ = {allfinitesequences}.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the
sequence is defined by x[m,n] =

∑m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij

denotes the double sequence whose only non zero term is a 1
(i+j)! in the

(i, j)th place for each i, j ∈ N.
An FK-space(or a metric space)X is said to have AK property if (=mn)

is a Schauder basis for X. Or equivalently x[m,n] → x.
An FDK-space is a double sequence space endowed with a complete

metrizable; locally convex topology under which the coordinate mappings
x = (xk)→ (xmn)(m,n ∈ N) are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space
(
LM
)
.

Lindenstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more
detail, and they proved that every Orlicz sequence space `M contains a
subspace isomorphic to `p (1 ≤ p <∞) . subsequently, different classes of
sequence spaces were defined by Parashar and Choudhary [14], Mursaleen
et al. [11], BektaŞ and Altin [3], Tripathy et al. [18], Rao and Subramanian
[15], and many others. The Orlicz sequence spaces are the special cases of
Orlicz spaces studied in [6].
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Recalling [13] and [6], an Orlicz function is a function M : [0,∞t) →
[0,∞) which is continuous, non-decreasing, and convex with M(0) = 0,
M(x) > 0, for x > 0 and M(x) → ∞ as x → ∞. If convexity of Orlicz
function M is replaced by subadditivity of M , then this function is called
modulus function, defined by Nakano [12] and further discussed by Ruckle
[16] and Maddox [8], and many others.

An Orlicz function M is said to satisfy the ∆2-condition for all values of
u if there exists a constant K > 0 such that M(2u) ≤ KM(u)(u ≥ 0). The
∆2-condition is equivalent to M(`ut) ≤ K`M(u), for all values of u and for
` > 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct
Orlicz sequence space

`M =
{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
,

The space `M with the norm

‖x‖ = inf
{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1
}
,

becomes a Banach space which is called an Orlicz sequence space. For
M(t = tp(1 ≤ p < ∞), the spaces `M coincide with the classical sequence
space `p. If X is a sequence space, we give the following definitions:

(i) X
′

= the continuous dual of X;
(ii) Xα =

{
a = (amn) :

∑∞
m,n=1 |amnxmn| <∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, for each x ∈ X

}
;

(iv)Xγ =
{
a = (amn) : supM,N≥1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ <∞, for each x ∈ X
}

;

(v) let X be an FK-space ⊃ φ; then Xf =
{
f(=mn) : f ∈ X ′

}
;

(vi) Xδ =
{
a = (amn) : supmn |amnxmn|

1/(m+n) <∞, for each x ∈ X
}

;

Xα, Xβ, Xγ are called α-(or Köthe-Toeplitz) dual ofX, β-(or generalized-
Köthe-Toeplitz) dual of X, γ-dual of X, δ-dual of X respectively. Xα is de-
fined by Gupta and Kamptan [20]. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ ,
but Xβ ⊂ Xγ does not hold, since the sequence of partial sums of a double
convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was intro-
duced by Kizmaz [30] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N. Here c, c0 and
`∞ denote the classes of convergent, null and bounded sclar valued single
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sequences respectively. The difference space bvp of the classical space `p is
introduced and studied in the case 1 ≤ p ≤ ∞ by BaŞar and Altay in [42]
and in the case 0 < p < 1 by Altay and BaŞar in [43]. The spaces c (∆) ,
c0 (∆), `∞ (∆) and bvp are Banach spaces normed by

‖x‖ = |x1|+ sup
k≥1
|∆xk| and ‖x‖bvp =

( ∞∑
k=1

|xk|p
)1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now
introduce the following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) =
xmn − xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N

2. Definitions and preliminaries

χ2
fmn

(∆µ
(ηγ), p, q, r) and Λ2

fmn
(∆µ

(ηγ), p, q, r) denote the Pringscheims sense
of vector valued difference double gai sequence space of modulus and Pring-
scheims sense of vector valued difference double analytic sequence space of
modulus respecctively.

By w2(X), we shall denote the space of all X− valued sequences , where
(X, q) is a semi normed space, semi normed by q. For X = C, the space of
complex numbers, these reduce to the corresponding scalar valued sequence
spaces. The zero sequence is denoted by

θ̄ =



θ, θ, · · · θ
θ, θ, · · · θ
.
.
.
θ, θ, · · · θ


, where θ is the zero element of X.

Let γ and µ be non-negative integers and η = (ηmn) be a sequence of
non-zero scalars. Also let Z ∈

{
Λ2, χ2

}
and define the following sequence

spaces
Z
(
∆µ
ηγxmn

)
=
{
x = (xmn) ∈ w2 :

(
∆µ
ηγxmn

)
∈ Z

}
,

where ∆µ
ηγxmn = ∆ηγ∆µ−1

ηγ xmn = ∆µ−1
ηγ xmn −∆µ−1

ηγ xmn+1 −∆µ−1
ηγ xm+1n +

∆µ−1
ηγ xm+1n+1 and ∆0

ηγxmn = ηmnxmn for all m,n ∈ N.
In this expansion we take ηmn = 0 and xmn = 0 for non-positive values

of m,n ∈ N.
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Definition 1. A modulus function was introduced by Nakano [12]. We
recall that a modulus f is a function from [0,∞) to itself such that

(a) f (x) = 0 if and only if x = 0
(b) f (x+ y) ≤ f (x) + f (y), for all x ≥ 0, y ≥ 0,
(c) f is increasing,
(d) f is continuous from the right at 0. Since |(x)− f(y)| ≤ f (|x− y|),

it follows from here that f is continuous on [0,∞).

Definition 2. Let f = (fmn) be a sequence of modulus functions, X be
a semi normed space with semi norm q, p = (pmn) be a sequence of positive
real numbers and η = (ηmn) be a fixed sequence of non-zero scalars. Then
for non-negative real numbers r, γ and µ, we define

χ2
fmn

(∆µ
(ηγ), p, q, r) =

{
x ∈ w2 (X)

:= lim
m,n→∞

(mn)−r
[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n) )]pmn

= 0
}

∆2
fmn

(∆µ
(ηγ), p, q, r) =

{
x ∈ w2 (X)

:= sup
mn

(mn)−r
[
fmn

(
q
(∣∣∣∆µ

(ηγ)xmn

∣∣∣1/(m+n)))]pmn

<∞
}
.

Considering X = C, q (x) = |x|, pmn = 1, ηmn = 1 for all m,n ∈ N; r = 0
and µ = 0, we get the spaces of χ2

fmn
and Λ2

fmn
respectively.

The space χ2
fmn

is a metric space with the metric

d (x, y) = inf
{

sup
(

(mn)−r
[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

−∆µ
(ηγ)ymn

∣∣∣)1/(m+n) )]pmn
)
≤ 1
}

and Λ2
fmn

is a metric space with the metric

d (x, y) = inf
{

sup
(

(mn)−r
[
fmn

(
q
(∣∣∣∆µ

(ηγ)xmn

−∆µ
(ηγ)ymn

∣∣∣)1/(m+n) )]pmn
)
≤ 1
}

Definition 3. Let A = (amnk,` ) be a four dimensional summability method
that maps the complex double sequences x into the double sequence Ax where
the k, `− th term of Ax is as follows:

(Ax)k` =

∞∑
m=1

∞∑
n=1

amnk` xmn

such transformation is said to be nonnegative if amnk` is nonnegative.
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The notion of regularity for two dimensional matrix transformations was
presented by Silverman [40] and Toeplitz [41]. Following Silverman and
Toeplitz, Robison and Hamilton presented the following four dimensional
analog of regularity for double sequences in which they both added an adidi-
tional assumption of boundedness. This assumption was made because a
double sequence which is P− convergent is not necessarily bounded.

3. Main results

Theorem 1. Let p = (pmn) be a analytic double sequence of strictly
positive reals, then χ2

fmn
(∆µ

(ηγ), p, q, r) is a linear space over the filed C.

Proof. It is easy. Therefore omit the proof. �

Theorem 2. χ2
fmn

(∆µ
(ηγ), p, q, r) is a paranormed space (need not total

paranorm) space with paranorm g, defined as follows:

g (x) = lim
N→∞

sup
m,n≥N

(mn)−r(2)

×
[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]pmn/M

.

if and only if µ > 0, where µ = lim
n→∞

inf
mn≥N

pmn and M = max(1, sup
mn≥N

pmn)

Proof. Necessity. Let χ2
fmn

(∆µ
(ηγ), p, q, r) be a paranormed space with

(3.1) and suppose that µ = 0.Then α = infmn≥Npmn = 0 for all N ∈ N and

hence we obtain g (λx) = limN→∞ supmn≥N |λ|
pmn/M = 1 for all λ ∈ (0, 1] ,

where x = (α) ∈ χ2
fmn

(∆µ
(ηγ), p, q, r) whence λ → 0 does not imply λx → θ,

when x is fixed. But this contradicts (2) to be a paranorm.
Sufficiency. Let µ > 0. It is trivial that g (θ) = 0, g (−x) = g (x) and

g (x+ y) ≤ g (x) + g (y). Since µ > 0 there exists a positive number β
such that pmn > β for sufficiently large positive integer m, n. Hence for
any λ ∈ C, we may write |λ|pmn ≤ max(|λ|M , |λ|β)g (x) using this, one can
prove that λx→ θ, whenever x is fixed and λ→ 0, or λ→ 0 and x→ θ, or
λ is fixed and x→ θ. �

Theorem 3. Let f = (fmn) and s = (smn) be two sequences of modulus
functions. Then

χ2
fmn

(∆µ
(ηγ), p, q, r)

⋂
χ2
smn

(∆µ
(ηγ), p, q, r) ⊆ χ

2
(f+s)mn

(∆µ
(ηγ), p, q, r)

Proof. The proof is easy, so omitted. �
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Remark 1. Let f = (fmn) be a sequence of modulus functions q1 and
q2 be two semi norm on X, we have

(i) χ2
fmn

(∆µ
(ηγ), p, q1, r)

⋂
χ2
fmn

(∆µ
(ηγ), p, q2, r) ⊆ χ

2
fmn

(∆µ
(ηγ), p, q1 + q2, r).

(ii) If q1 is stronger than q2 then χ2
fmn

(∆µ
(ηγ), p, q1, r) ⊆ χ

2
fmn

(∆µ
(ηγ), p, q2, r).

(iii) If q1 is equivalent to q2 then χ2
fmn

(∆µ
(ηγ), p, q1, r) = χ2

fmn
(∆µ

(ηγ), p, q2, r).

Theorem 4. Let f = (fmn) and s = (smn) be the sequences of modulus
functions. If fmn ≈ smn for each m,n ∈ N, then χ2

fmn
(∆µ

(ηγ), p, q, r) =

χ2
smn

(∆µ
(ηγ), p, q, r).

Proof. It is obvious. �

Theorem 5. Let f = (fmn) be a sequence of modulus functions. If

limt→0
fmn(t)

t > 0 and limt→0
fmn(t)

t <∞ for each m,n ∈ N, then

χ2
fmn

(∆µ
(ηγ), p, q, r) = χ2(∆µ

(ηγ), p, q1, r).

Proof. If the given conditions are satisfied, we have fmn ≈ t for each
m, n.

If we take r = 0, the sequence space χ2
fmn

(∆µ
(ηγ), p, q, r) reduces to the

following sequence space

χ2
fmn

(∆µ
(ηγ), p, q) =

{
x ∈ w2 (X)

:= lim
m,n→∞

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n) )]pmn

= 0
}
.

�

Proposition 1. χ2
fmn

(∆µ
(ηγ), q) is a BK-space.

Definition 4. For any sequence f = (fmn) of modulus functions,

h2fmn
(∆µ

(ηγ), q) =
{
x ∈ w2 (X) :

lim
m,n→∞

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n) )]
= 0
}
.

Clearly h2fmn
(∆µ

(ηγ), q) is a subspace of χ2
fmn

(∆µ
(ηγ), q). The topology of

h2fmn
(∆µ

(ηγ), q) is the one it inherits from the metric d (x, y).

Proposition 2. Let f = (fmn) be a sequence of modulus functions which
satisfies the ∆2− condition. Then χ2

fmn
(∆µ

(ηγ), q) = h2fmn
(∆µ

(ηγ), q).
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Proof. It is enough to prove that χ2
fmn

(∆µ
(ηγ), q) ⊆ h2fmn

(∆µ
(ηγ), q). Let

x ∈ h2fmn
(∆µ

(ηγ), q). Then
[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n) )]
≤ ε for

sufficiently large m,n and every ε > 0.[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]
≤ fmn (ε)

(becausefmnis non-decreasing)[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]
≤ Kfmn (ε)

(by the ∆2 - condition, for some K > 0)

≤ ε (by defining fmn (ε) < εK)

lim
m,n→∞

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]

= 0.

�

Proposition 3. Let (X, q) be a complete metric space, then h2fmn
(∆µ

(ηγ), q)
is an AK-space.

Proof. Let x = (xmn) ∈ h2fmn
(∆µ

(ηγ), q) and take the [m,n]th sectional
sequence of x. We have

d
(
x, x[r,s]

)
= inf

{
sup

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]
≤ 1 :

m ≥ r, n ≥ s
}
→ 0

as r, s → ∞. Therefore x[r,s] → x in h2fmn
(∆µ

(ηγ), q) as r, s → ∞. Thus

h2fmn
(∆µ

(ηγ), q) has AK. �

Combining Proposition 2 and Proposition 3, we have the following The-
orem.

Theorem 6. Let f = (fmn) be a sequence of modulus functions which
satisfy ∆2-condition, then χ2

fmn
(∆µ

(ηγ), q) is an AK-space.

Proposition 4. h2fmn
(∆µ

(ηγ), q) is a closed subspace of χ2
fmn

(∆µ
(ηγ), q).

Proof. Let
{
x[rs]

}
be a sequence of in h2fmn

(∆µ
(ηγ), q) such that d

(
x, x[rs]

)
→ 0 as r, s→∞, where x ∈ h2fmn

(∆µ
(ηγ), q). To complete the proof we need

to prove that x ∈ h2fmn
(∆µ

(ηγ), q),

(i.e) lim
m,n→∞

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/m+n
)]

= 0.
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There corresponds on [i, j] such that d
(
x, x[i,j]

)
< 1

2 . Then using convexity
of each fmn,[

fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]

=

fmn
q
2

(
(m+ n)!

∣∣∣∆µ
(ηγ)x

[ij]
mn

∣∣∣)1/(m+n)

2

−
2

((
(m+ n)!

∣∣∣∆µ
(ηγ)x

[ij]
mn

∣∣∣)1/(m+n)

2

−

(
(m+ n)!

∣∣∣∆µ
(ηγ)xmn

∣∣∣)1/(m+n)
)

2





≤ 1

2

[
fmn

(
q
(

2 (m+ n)!
∣∣∣∆µ

(ηγ)x
[rs]
mn

∣∣∣)1/(m+n)
)]

+
1

2

[
fmn

(
q
(

2 (m+ n)!
∣∣∣∆µ

(ηγ)

(
x[rs]mn − xmn

)∣∣∣)1/(m+n)
)]

≤ 1

2

[
fmn

(
q
(

2 (m+ n)!
∣∣∣∆µ

(ηγ)x
[rs]
mn

∣∣∣)1/(m+n)
)]

+
1

2

fmn
q

(

2 (m+ n)!
∣∣∣∆µ

(ηγ)

(
x
[rs]
mn − xmn

)∣∣∣)1/(m+n)

d
(
x, x[i,j]

)


 .

Now from Theorem 7, using the definition of metric, we havefmn
q

(

(m+ n)!
∣∣∣∆µ

(ηγ)

(
x
[rs]
mn − xmn

)∣∣∣)1/(m+n)

d
(
x, x[i,j]

)


 ≤ 1.

It follows that

lim
m,n→∞

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]

= 0.

Thus x ∈ h2fmn
(∆µ

(ηγ), q). �

Corollary 1. h2fmn
(∆µ

(ηγ), q) is a BK-space.
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Theorem 7. Let

N1 = min
{
n0 : sup

m,n≥n0

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n) )]pmn

<∞
}

N2 = min
{
n0 : sup

m,n≥n0

pmn <∞
}

and N = max (N1, N2). Let p = (pmn) be double analytic sequence of positive
reals and (X, q) be a complete seminormed space, then χ2

fmn
(∆µ

(ηγ), p, q) is a
complete paranormed

(3) g (x) = lim
N→∞

sup
m,n≥N

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n) )]pmn/M
.

Proof. Let (∆µ
(ηγ)x

k`
mn) be a Cauchy sequence in χ2

fmn
(∆µ

(ηγ), p, q), where

(∆µ
(ηγ)x

k`) = (∆µ
(ηγ)x

k`
mn)m,n∈N. Then for every ε > 0 (0 < ε < 1) there

exists positive integer s0 such that

g(xk,` − xrt)(4)

= lim
N→∞

sup
m,n≥N

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]pmn/M

< ε/2

for all k, `, r, t > s0.
By (4) there exists a positive integer n0 such that

sup
m,n≥N

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn −∆µ

(ηγ)x
rt
mn

∣∣∣)1/(m+n)
)]pmn/M

< ε/2

for all k, `, r, t > s0, and for n > n0. Hence we obtain

(5)

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn −∆µ

(ηγ)x
rt
mn

∣∣∣)1/(m+n)
)]pmn/M

< ε/2 < 1

so that[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn −∆µ

(ηγ)x
rt
mn

∣∣∣)1/m+n
)]

<

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn −∆µ

(ηγ)x
rt
mn

∣∣∣)1/m+n
)]pmn/M

< ε/2 for all k, `, r, t > s0.

This implies that (∆µ
(ηγ)x

k`
mn)k`∈N is a Cauchy sequence in C for each fixed

m,n > n0. Hence the sequence (∆µ
(ηγ)x

k`
mn)k`∈N is convergent to (∆xmn) say,

(6) lim
k`→∞

∆µ
(ηγ)x

k`
mn = (∆µ

(ηγ)xmn) for each fixed m,n > n0.
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Getting (∆xmn), we define x = (∆xmn) . From (4) we obtain

gt
(
xk,` − x

)
= lim

N→∞
sup

m,n≥N
(7) [

fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn −∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]pmn/M

< ε/2.

as r, t→∞ for all k, ` > s0, by (6). This implies that limk,`→∞∆µ
(ηγ)x

k`
mn =

∆µ
(ηγ)xmn.

Now we show that x = (xmn) ∈ χ2
fmn

(∆µ
(ηγ), p, q). Since ∆µ

(ηγ)x
k`
mn ∈

χ2
fmn

(∆µ
(ηγ), p, q) for each (k, 1) ∈ N × N for every ε > 0 (0 < ε < 1) there

exists a positive integer n1 ∈ N such that

(8)

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn

∣∣∣)1/(m+n)
)]pmn/M

< ε/2

for every m,n > n1.
From (6) and (7) in (1) we obtain[

fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]pmn/M

≤
[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn

∣∣∣)1/m+n
)]pmn/M

+

[
fmn

(
q
(

(m+ n)!
∣∣∣∆µ

(ηγ)x
k`
mn −∆µ

(ηγ)xmn

∣∣∣)1/(m+n)
)]pmn/M

< ε/2 + ε/2 = ε,

for all k` > max(s0, s1) and m,n > max(n0, n1). This implies that x ∈
χ2
fmn

(∆µ
(ηγ), p, q). �
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[7] Bektaş C., Altin Y., The sequence space `M (p, q, s) on seminormed spaces,
Indian J. Pure Appl. Math., 34(4)(2003), 529-534.

[8] Bromwich T.J.I’A., An Introduction to the Theory of Infinite Series,
Macmillan and Co.Ltd., New York, 1965.

[9] Cannor J., On strong matrix summability with respect to a modulus and
statistical convergence, Canad. Math. Bull., 32(2)(1989), 194-198.
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