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ON RELATIVE ORDER OF ENTIRE FUNCTIONS

OF SEVERAL COMPLEX VARIABLES

Abstract. In this paper we obtain some relationship between
relative order, relative lower order,Gol’dberg order and lower
Gol’dberg order of an entire functions of several complex veriables
which improves some earlier results.
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1. Introduction, definitions and notations

Let f be a non constant entire function of a single complex variable in
the open complex plane C and Mf (r) = max{|f(z)| : |z| = r}. Then Mf (r)
is strictly increasing, its inverse

M−1f : (|f(0)| ,∞)→ (0,∞)

exists and is such that

lim
r→∞

M−1f (r) =∞.

The order and lower order of an entire function are defined in the following
way:

Definition 1. The order ρf and lower order λf of an entire function f
are defined as follows:

ρf = lim sup
r→∞

log logMf (r)

log r
and λf = lim inf

r→∞

log logMf (r)

log r
.

The function f is said to be of regular growth if ρf = λf .

For two entire functions f and g, Bernal [2] introduced the definition of
relative order ρg(f) of f with respect to g as follows:
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Definition 2 ([2]). Let f and g be two entire functions.The relative order
ρg(f) of f with respect to g is defined as:

ρg(f) = inf{µ > 0 : Mf (r) < Mg(r
µ)

for all sufficiently large values of r}

= lim sup
r→∞

logM−1g Mf (r)

log r
.

It is easy to see that if g (z) = exp z then ρg(f) = ρf .

Similarly the relative lower order λg(f) of f with respect to g is defined
by

λg(f) = lim inf
r→∞

logM−1g Mf (r)

log r
.

The function f is said to be of regular relative growth with respect to g if
ρg(f) = λg(f).

The notion of relative order of two complex variables was introduced by
Banerjee and Dutta [1]. They defined the relative order for two complex
variables as follows:

Definition 3 ([1]). Let f (z1, z2) and g (z1, z2) be two non constant en-
tire functions of two complex variables z1 and z2 holomorphic in the closed
polydisc

{(z1, z2) : |zj | ≤ rj ; j = 1, 2 }

and let

F (r1, r2) = max {|f (z1, z2)| : |zj | ≤ rj ; j = 1, 2} ,
G (r1, r2) = max {|g (z1, z2)| : |zj | ≤ rj ; j = 1, 2} .

The relative order of f with respect to g denoted by ρg(f), is defined as

ρg(f) = inf{µ > 0 : F (r1, r2) < G (rµ1 , r
µ
2 )

for r1 ≥ R (µ) , r2 ≥ R (µ)}.

To study the notion of the relative order of entire functions of n complex
variables we first recall the following notations and definitions.

Let Cn be the n-dimentional complex space.We denote the point (z1, z2,
. . . , zn) ∈ Cn and (m1,m2, . . . ,mn) ∈ In by z and m respectively where I
denotes the set of all non negetive integers. The modulus of z, denoted by
|z| is defined as

|z| =
(
|z1|2 + |z2|2 + . . .+ |zn|2

) 1
2
.

Also we write ‖m‖ = m1 +m2 + . . .+mn.
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Let D ⊂ Cn be an arbitrary bounded complete n−circular domain with
centre at origin.Let

Mf,D(R) = sup
z∈DR

|f (z)|

where f is an entire function of n complex variables and for R > 0 a point
z ∈ DR iff z

R ∈ D.
Let g be a non constant entire function. Then Mg,D(R) is strictly in-

creasing, continuous and its inverse

M−1g,D : (|g(0)| ,∞)→ (0,∞)

exists and is such that
lim
R→∞

M−1g,D(R) =∞.

The Gol’dberg order (briefly G-order) of an entire function of n complex
variables is defined in the following way.

Definition 4 ([3]). The Gol’dberg order (briefly G-order) ρf,D of f with
respect to domain D is defined as follows:

ρf,D = lim sup
R→∞

log logMf,D(R)

logR
.

The lower Gol’dberg order λf,D of f with respect to domain D is defined as

λf,D = lim inf
R→∞

log logMf,D(R)

logR
.

We say that f is of regular growth if λf,D = ρf,D.
It is known that {cf.[3]} the order ρf,D is independent of the choice of

the domain D and therefore we denote the order of f as ρf .
In a recent paper Mondal and Roy [4] introduced the concept of relative

order of entire functions of n complex variables.In this regard they gave the
following definition.

Definition 5 ([4]). Let f and g be entire functions of n complex variables
and D be a bounded complete n−circular domain with centre at the origin
in Cn. Then the relative order ρg,D(f) of f with respect to g in the domain
D is defined by

ρg,D(f) = inf{µ > 0 : Mf,D(R) < Mg,D(Rµ) for R ≥ R (µ)}

= lim sup
R→∞

logM−1g,D (Mf,D(R))

logR
.

If we take g (z) = ez = e(z1,z2,...,zn) then the relative order ρg,D(f) of f with
respect to g in the domain D coincides with the Goldberg order ρf,D of f
with respect to domain D.
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We define the relative lower order λg,D(f) of f with respect to g in the
domain D as

λg,D(f) = lim inf
R→∞

logM−1g,D (Mf,D(R))

logR
.

We say that f is of regular relative growth in the domain D if λg,D(f) =
ρg,D(f).

Mondal and Roy [4] proved that the relative order of f with respect to
g is independent of the choice of the domain D and therefore we denote the
relative order of f with respect to g as

ρg,D(f) = ρg(f) = lim sup
R→∞

logM−1g Mf (R)

logR
.

Similarly we denote the relative lower order as

λg,D(f) = λg(f) = lim sup
R→∞

logM−1g (Mf (R))

logR
.

Throughout the paper, unless otherwise mentioned, we consider transcen-
dental entire functions of n complex variables andD will represent a bounded
complete n−circular domain.

In this paper we obtain some relationship between relative order, relative
lower order,Gol’dberg order and lower Gol’dberg order of an entire functions
of several complex veriables which improves some earlier results of [4] and
[5].

2. Theorems

In this section we present the main results of the paper.

Theorem 1. Let f and g be entire functions of n complex variables such
that 0 < λg ≤ ρg and 0 < λf ≤ ρf .Then

λf
ρg
≤ λg(f) ≤ min

{
λf
λg
,
ρf
ρg

}
≤ max

{
λf
λg
,
ρf
ρg

}
≤ ρg(f) ≤

ρf
λg
.

Proof. From the definition of Gol’dberg order and lower Gol’dberg order
we get for arbitrary ε(> 0) and all large values of R that

(1) Mf (R) < exp(Rρf+ε),

(2) Mg(R) < exp(Rρg+ε),

(3) Mf (R) > exp(Rλf−ε)
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and

(4) Mg(R) > exp(Rλg−ε).

Also for a sequence {Rn} tending to infinity we get that

(5) Mf (Rn) > exp(R
ρf−ε
n ),

(6) Mg(Rn) > exp(R
ρg−ε
n ),

(7) Mf (Rn) < exp(R
λf+ε
n )

and

(8) Mf (Rn) < exp(R
λg+ε
n ).

Now from the definition of relative order we get for arbitrary ε1(> 0) and
all large values of R that

ρg(f) + ε1 >
logM−1g Mf (R)

logR
.

Now from (5) we get for a sequence {Rn} tending to infinity that

ρg(f) + ε1 >
logM−1g

[
exp(R

ρf−ε
n )

]
logRn

=

logM−1g

[
exp

(
R

ρf−ε
ρg+ε
n

)ρg+ε]
logRn

>

logM−1g Mg

(
R

ρf−ε
ρg+ε
n

)
logRn

=
ρf − ε
ρg + ε

.

As ε1(> 0) and ε(> 0) are arbitrary we obtain that

(9) ρg(f) ≥
ρf
ρg
.

Also from (1) we get for arbitrary ε(> 0) and for all large values of R that

logM−1g Mf (R)

logR
<

logM−1g [exp(Rρf+ε)]

logR

=

logM−1g

[
exp

(
R
ρf+ε

ρg−ε

)ρg−ε]
logR

.
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Now from (6) we get for a sequence {Rn} tending to infinity that

logM−1g Mf (Rn)

logRn
<

logM−1g Mg

(
R

ρf+ε

ρg−ε
n

)
logRn

i.e., lim inf
Rn→∞

logM−1g Mf (Rn)

logRn
≤
ρf + ε

ρg − ε
.

As ε (> 0) is arbitrary we have

(10) λg(f) ≤
ρf
ρg
.

Now from the definition of relative lower order we get for arbitrary ε2 (> 0)
and for all large values of R that

λg(f)− ε2 <
logM−1g Mf (R)

logR
.

Now from (7) we get for a sequence {Rn} tending to infinity that

λg(f)− ε2 <
logM−1g

[
exp(R

λf+ε
n )

]
logRn

=

logM−1g

exp

(
R

λf+ε

λg−ε
n

)λg−ε
log rn

<

logM−1g Mg

(
R

λf+ε

λg−ε
n

)
logRn

=
λf + ε

λg − ε
.

As ε2 (> 0) and ε (> 0) are arbitrary we obtain that

(11) λg(f) ≤
λf
λg
.

Now from (3) we get for arbitrary ε(> 0) and for all large values of R that

logM−1g Mf (R)

logR
>

logM−1g
[
exp(Rλf−ε)

]
logR

=

logM−1g

[
exp

(
R
λf−ε
λg+ε

)λg+ε]
logR

.
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Now from (8) we obtain for a sequence {Rn} tending to infinity that

logM−1g Mf (Rn)

logRn
>

logM−1g Mg

(
R

λf−ε
λg+ε

n

)
logRn

i.e., lim sup
Rn→∞

logM−1g Mf (Rn)

logRn
≥
λf − ε
λg − ε

.

As ε (> 0) is arbitrary we get that

(12) ρg(f) ≥
λf
λg
.

Now we get for arbitrary ε3 (> 0) and for a sequence {Rn} tending to infinity
that

ρg(f)− ε3 <
logM−1g Mf (Rn)

logRn
<

logM−1g

[
exp(R

ρf+ε
n )

]
logRn

=

logM−1g

exp

(
R

ρf+ε

λg−ε
n

)λg−ε
logRn

<

logM−1g Mg

(
R

ρf+ε

λg−ε
n

)
logRn

=
ρf + ε

λg − ε
.

As ε3 (> 0) and ε (> 0) are arbitrary we have

(13) ρg(f) ≤
ρf
λg
.

Now we get for arbitrary ε4 (> 0) and for a sequence {Rn} tending to infinity
that

λg(f) + ε4 >
logM−1g Mf (Rn)

logRn
>

logM−1g

[
exp(R

λf−ε
n )

]
logRn

=

logM−1g

[
exp

(
R

λf−ε
ρg+ε
n

)ρg+ε]
logRn

>

logM−1g Mg

(
R

λf−ε
ρg+ε
n

)
logRn

=
λf − ε
ρg + ε

.
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As ε4 (> 0) and ε (> 0) are arbitrary we obtain that

(14) λg(f) ≥
λf
ρg
.

The theorem follows from (9), (10) , (11), (12) , (13) and (14). �

Corollary 1. If g is of regular growth with nonzero order then

ρg(f) =
ρf
ρg
.

Corollary 2. If both f and g are of regular growth with nonzero order
then

ρg(f) = ρf (g) iff ρf = ρg.

Corollary 3. If both f and g are of regular growth with nonzero order
then λg(f) = ρg(f).

Remark 1. Theorem 1 improves Theorem 2.5 of Mondal and Roy [4].

Remark 2. The ≤ sign in Theorem 1 cannot be replaced by < which is
evident from the following example.

Example 1. Let f(z) = e2z1z2...zn and g (z) = ez1z2...zn .Then λg = ρg =
λf = ρf = 1.Also ρg(f) = λg(f) = 1 and therefore

λf
ρg

= λg(f) = min

{
λf
λg
,
ρf
ρg

}
= max

{
λf
λg
,
ρf
ρg

}
= ρg(f) =

ρf
λg
.

Remark 3. As both f and g are of regular growth with nonzero order
and ρg(f) = ρf (g) = 1 the Example1 also verifies the above three corollaries.

Theorem 2. Let f and g be entire functions of n complex variables such
that 0 < ρf <∞ and ρg = 0. Then

ρg(f) =∞.

Proof. From the definition of relative order we get for arbitrary ε1(> 0)
and all large values of R that

ρg(f) + ε1 >
logM−1g Mf (R)

logR
.

Now from (5) we get for a sequence {Rn} tending to infinity that

ρg(f) + ε1 >
logM−1g

[
exp(R

ρf−ε
n )

]
logRn

=

logM−1g

[
exp

(
R
ρf−ε
ε

n

)ε]
logRn

>

logM−1g Mg

(
R
ρf−ε
ε

n

)
logRn

=
ρf − ε
ε

.
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As ε1(> 0) and ε (> 0) are arbitrary it follows that ρg(f) =∞. �

Theorem 3. Let f and g be entire functions of n complex variables such
that 0 < ρg <∞ and ρf = 0. Then

λg(f) = 0.

Proof. From the definition of Gol’dberg order we have for arbitrary ε
(> 0) and for all large values of R that

Mf (R) < exp(Rε)

i.e.,
logM−1g Mf (R)

logR
<

logM−1g [exp(Rε)]

logR

=

logM−1g

[
exp

(
R

ε
ρg−ε

)ρg−ε]
logR

.

Now from (6) we get for a sequence {Rn} tending to infinity that

logM−1g Mf (Rn)

logRn
<

logM−1g Mg

(
R

ε
ρg−ε
n

)
logRn

i.e., lim inf
rn→∞

logM−1g Mf (Rn)

logRn
≤ ε

ρg − ε
.

As ε (> 0) is arbitrary it follows that λg(f) = 0. �

Remark 4. If ρf = ρg = 0 then Theorem 2 and Theorem 3 are not true
which is evident from the following example.

Example 2. Let f(z) ≡ z and g(z) = z2.Then ρf = ρg = 0, but

ρg(f) = lim sup
r→∞

logM−1g Mf (R)

logR
= lim sup

r→∞

log
√
R

logR
=

1

2
.

Also

λf (g) = lim inf
r→∞

logM−1f Mg(R)

logR
= lim inf

r→∞

logR2

logR
= 2.
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