F A S C I C U L I M A T H E M A T I C I

Nr 52

Nguyen Van Dung

A GENERAL FIXED POINT THEOREM ON G-METRIC SPACES*

Abstract. In this paper, we prove a general fixed point theorem on G-metric spaces by an implicit relation. This result unifies many fixed point theorems in [3], [6], [9], [12].
Key words: fixed point theorem, G-metric space.
AMS Mathematics Subject Classification: 54H25, 54E99.

1. Introduction

In [8], Z. Mustafa and B. Sims introduced the concept of G-metric spaces as follows.

Definition 1 ([8], Definition 3). Let X be a nonempty set and the function $G: X \times X \times X \longrightarrow \mathbb{R}_{+}$satisfy the following.
(G1) $G(x, y, z)=0$ if $x=y=z$.
(G2) $0<G(x, x, y)$ for all $x \neq y \in X$.
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y \neq z \in X$.
(G4) The symmetry on three variables:

$$
\begin{aligned}
G(x, y, z) & =G(x, z, y)=G(y, x, z)=G(y, z, x) \\
& =G(z, x, y)=G(z, y, x)
\end{aligned}
$$

for all $x, y, z \in X$.
(G5) The rectangle inequality:

$$
G(x, y, z) \leq G(x, a, a)+G(a, y, z)
$$

for all $x, y, z, a \in X$.
Then G is called a G-metric on X and the pair (X, G) is called a G-metric space.

Many authors have been interested in the fixed point problem on G-metric spaces and many results have been obtained in [1], [2], [3], [4], [5], [6], [7],

[^0][9], [10], [11], [12]. In this paper, we prove a general fixed point theorem on G-metric spaces by an implicit relation. This result unifies many fixed point theorems in [3], [6], [9], [12].

2. Main results

First we recall some notions and lemmas.
Definition $2([8])$. Let (X, G) be a G-metric space and $x_{0} \in X, r>0$. The set

$$
B_{G}\left(x_{0}, r\right)=\left\{x \in X: G\left(x_{0}, x, x\right)<r\right\}
$$

is called a G-ball with center x_{0} and radius r. The family of all G-balls forms a base of a topology $\tau(G)$ on X, and $\tau(G)$ is called a G-metric topology. The sequence $\left\{x_{n}\right\}$ is called to be G-convergent to x in X if $x_{n} \rightarrow x$ in the G-metric topology $\tau(G)$. The sequence $\left\{x_{n}\right\}$ is called to be G-Cauchy in X if $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $m, n, l \rightarrow \infty$. X is called a complete G-metric space if every G-Cauchy sequence is G-convergent.

Lemma 1 ([8], Proposition 6). Let (X, G) be a G-metric space. Then the following statements are equivalent.
(i) x_{n} is G-convergent to x in X.
(ii) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(iii) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(iv) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Lemma 2 ([8], Proposition 9). Let (X, G) be a G-metric space. Then the following statements are equivalent.
(i) $\left\{x_{n}\right\}$ is a G-Cauchy sequence.
(ii) $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$.

Lemma 3 ([8], Proposition 8). Let (X, G) be a G-metric space. Then G is jointly continuous in all three of its variables.

Now we introduce an implicit relation to state the main result. Let \mathcal{M} be the set of all continuous ten-variables functions $M: \mathbb{R}_{+}^{10} \longrightarrow \mathbb{R}_{+}$. We consider following conditions for all $x, y, z, x_{i}, y_{i}, z_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, and some $k \in[0,1)$.
(C1) If $y \leq M(x, x, z, z, y, 0, y, y, 0, y)$ and $z \leq x+y$, then $y \leq k x$.
$(C 2)$ If $y \leq M(0,0, y, y, 0, x, 0,0, x, 0)$, then $y \leq k x$.
(C3) $M(x, x, x, x, x, x, x, 0,0,0) \leq k x$

$$
M(0, x, x, 0, x, x, 0,0, x, x) \leq k x
$$

and if $x_{i} \leq y_{i}+z_{i}$, then $M\left(x_{0}, \ldots, x_{9}\right) \leq M\left(y_{0}, \ldots, y_{9}\right)+M\left(z_{0}, \ldots, z_{9}\right)$.
Next we state the main result of the paper with respect to the above implicit relation.

Theorem 1. Let T be a self-map on a complete G-metric space (X, G) and

$$
\begin{align*}
G(T x, T y, T z) \leq & M(G(x, y, z), G(x, T(x), T(x)) \tag{1}\\
& G(x, T(y), T(y)), G(x, T(z), T(z)), \\
& G(y, T(y), T(y)), G(y, T(x), T(x)), \\
& G(y, T(z), T(z)), G(z, T(z), T(z)), \\
& G(z, T(x), T(x)), G(z, T(y), T(y)))
\end{align*}
$$

for some $M \in \mathcal{M}$ and all $x, y, z \in X$. Then we have
(i) If M satisfies the condition (C1), then T has a fixed point.
(ii) If M satisfies the condition (C2) and T has a fixed point, then the fixed point is unique.
(iii) If M satisfies the condition (C3) and T has a fixed point, then T is continuous at the fixed point.

Proof. (i) For any $x_{0} \in X$ and all $n \in \mathbb{N}$, put $x_{n}=T x_{n-1}$. It follows from (1) that

$$
\begin{aligned}
G\left(x_{n}, x_{n+1}, x_{n+1}\right)= & G\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
\leq & M\left(G\left(x_{n-1}, x_{n}, x_{n}\right), G\left(x_{n-1}, T x_{n-1}, T x_{n-1}\right),\right. \\
& G\left(x_{n-1}, T x_{n}, T x_{n}\right), G\left(x_{n-1}, T x_{n}, T x_{n}\right), \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n-1}, T x_{n-1}\right), \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n}, T x_{n}\right), \\
& \left.G\left(x_{n}, T x_{n-1}, T x_{n-1}\right), G\left(x_{n}, T x_{n}, T x_{n}\right)\right) \\
= & M\left(G\left(x_{n-1}, x_{n}, x_{n}\right), G\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
& G\left(x_{n-1}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n+1}, x_{n+1}\right), \\
& G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n}, x_{n}, x_{n}\right), \\
& G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n}, x_{n+1}, x_{n+1}\right), \\
& \left.G\left(x_{n}, x_{n}, x_{n}\right), G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \\
= & M\left(G_{1}\left(x_{n-1}, x_{n}, x_{n}\right), G\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
& G\left(x_{n-1}, x_{n+1}, x_{n+1}\right), G\left(x_{n-1}, x_{n+1}, x_{n+1}\right), \\
& G\left(x_{n}, x_{n+1}, x_{n+1}\right), 0, G\left(x_{n}, x_{n+1}, x_{n+1}\right), \\
& \left.G\left(x_{n}, x_{n+1}, x_{n+1}\right), 0, G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) .
\end{aligned}
$$

Since

$$
G\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \leq G\left(x_{n-1}, x_{n}, x_{n}\right)+G\left(x_{n}, x_{n+1}, x_{n+1}\right)
$$

by (G5) and M satisfies the condition ($C 1$), then there exists $k \in[0,1)$ such that

$$
\begin{equation*}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G\left(x_{n-1}, x_{n}, x_{n}\right) \leq k^{n} G\left(x_{0}, x_{1}, x_{1}\right) \tag{2}
\end{equation*}
$$

For all $n<m$, by using (G5) and (2) we have

$$
\begin{aligned}
0 \leq G\left(x_{n}, x_{m}, x_{m}\right) \leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{m}, x_{m}\right) \\
\leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +\ldots+G\left(x_{m-1}, x_{m}, x_{m}\right) \\
\leq & \left(k^{n}+k^{n+1}+\ldots+k^{m-1}\right) G\left(x_{0}, x_{1}, x_{1}\right) \\
\leq & \frac{k^{n}}{1-k} G\left(x_{0}, x_{1}, x_{1}\right) .
\end{aligned}
$$

Taking the limit as $m, n \rightarrow \infty$ we get $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$. By Lemma 2, $\left\{x_{n}\right\}$ is a G-Cauchy sequence. Since X is complete, then $x_{n} \rightarrow u$. Now we prove that u is a fixed point of T. By using (1) again we get

$$
\begin{aligned}
G\left(x_{n+1}, T u, T u\right)= & G\left(T x_{n}, T u, T u\right) \\
\leq & M\left(G\left(x_{n}, u, u\right),\right. \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T u, T u\right), G\left(x_{n}, T u, T u\right), \\
& G(u, T u, T u), G\left(u, T x_{n}, T x_{n}\right), G(u, T u, T u), \\
& \left.G(u, T u, T u), G\left(u, T x_{n}, T x_{n}\right), G(u, T u, T u)\right) \\
= & M\left(G\left(x_{n}, u, u\right),\right. \\
& G\left(x_{n}, x_{n+1}, x_{n+1}\right), G\left(x_{n}, T u, T u\right), G\left(x_{n}, T u, T u\right), \\
& G(u, T u, T u), G\left(u, x_{n+1}, x_{n+1}\right), G(u, T u, T u), \\
& \left.G(u, T u, T u), G\left(u, x_{n+1}, x_{n+1}\right), G(u, T u, T u)\right) .
\end{aligned}
$$

By Lemma 3 and $M \in \mathcal{M}$, taking the limit as $n \rightarrow \infty$ we have

$$
\begin{aligned}
G(u, T u, T u) \leq & M(G(u, u, u), \\
& G(u, u, u), G(u, T u, T u), G(u, T u, T u), \\
& G(u, T u, T u), G(u, u, u), G(u, T u, T u), \\
& G(u, T u, T u), G(u, u, u), G(u, T u, T u)) \\
= & M(0,0, G(u, T u, T u), G(u, T u, T u), \\
& G(u, T u, T u), 0, G(u, T u, T u), \\
& G(u, T u, T u), 0, G(u, T u, T u)) .
\end{aligned}
$$

Since M satisfies the condition $(C 1)$, then $G(u, T u, T u) \leq k .0$. This proves that $G(u, T u, T u)=0$ or $T u=u$.
(ii) Let $u, v \in X$ and

$$
T u=u, \quad T v=v
$$

We shall prove that $u=v$. By using (1) again we get

$$
\begin{aligned}
G(v, u, u)= & G(T v, T u, T u) \\
\leq & M(G(v, T v, T v) \\
& G(v, T v, T v), G(v, T u, T u), G(v, T u, T u) \\
& G(u, T u, T u), G(u, T v, T v), G(u, T u, T u) \\
& G(u, T u, T u), G(u, T v, T v), G(u, T u, T u)) \\
= & M(G(v, v, v) \\
& G(v, v, v), G(v, u, u), G(v, u, u) \\
& G(u, u, u), G(u, v, v), G(u, u, u) \\
& G(u, u, u), G(u, v, v), G(u, u, u)) \\
= & M(0,0, G(v, u, u), G(v, u, u) \\
& 0, G(u, v, v), 0,0, G(u, v, v), 0)
\end{aligned}
$$

Since M satisfies the condition (C2), then

$$
\begin{equation*}
G(v, u, u) \leq k G(u, v, v) \tag{3}
\end{equation*}
$$

By a similar argument we get

$$
\begin{equation*}
G(u, v, v) \leq k G(v, u, u) \tag{4}
\end{equation*}
$$

It follows from (3) and (4) that

$$
G(v, u, u) \leq k^{2} G(v, u, u)
$$

Then $G(v, u, u)=0$. This proves that $u=v$. (1). Let $u=T u$ and $x_{n} \rightarrow u$ in X. To prove T is continuous at u, we shall prove that $T x_{n} \rightarrow T u$. By using (1) again we get

$$
\begin{aligned}
G\left(T x_{n}, T x_{n}, T u\right) \leq & M\left(G\left(x_{n}, x_{n}, u\right),\right. \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T u, T u\right), \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T u, T u\right), \\
& \left.G(u, T u, T u), G\left(u, T x_{n}, T x_{n}\right), G\left(u, T x_{n}, T x_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & M\left(G\left(x_{n}, x_{n}, u\right)\right. \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, u, u\right) \\
& G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, T x_{n}, T x_{n}\right), G\left(x_{n}, u, u\right) \\
& \left.0, G\left(u, T x_{n}, T x_{n}\right), G\left(u, T x_{n}, T x_{n}\right)\right)
\end{aligned}
$$

It follows from (G5) that

$$
\begin{aligned}
G\left(x_{n}, x_{n}, u\right) & \leq G\left(x_{n}, x_{n}, u\right)+0 \\
G\left(x_{n}, T x_{n}, T x_{n}\right) & \leq G\left(x_{n}, u, u\right)+G\left(u, T x_{n}, T x_{n}\right) \\
G\left(x_{n}, u, u\right) & \leq G\left(x_{n}, u, u\right)+0 \\
0 & \leq 0+0 \\
G\left(u, T x_{n}, T x_{n}\right) & \leq 0+G\left(u, T x_{n}, T x_{n}\right) .
\end{aligned}
$$

Since M satisfies the condition ($C 3$), then

$$
\begin{aligned}
G\left(T x_{n}, T x_{n}, T u\right) \leq & M\left(G\left(x_{n}, x_{n}, u\right), G\left(x_{n}, u, u\right)\right. \\
& G\left(x_{n}, u, u\right), G\left(x_{n}, u, u\right), G\left(x_{n}, u, u\right) \\
& \left.G\left(x_{n}, u, u\right), G\left(x_{n}, u, u\right), 0,0,0\right) \\
+ & M\left(0, G\left(u, T x_{n}, T x_{n}\right), G\left(u, T x_{n}, T x_{n}\right), 0\right. \\
& G\left(u, T x_{n}, T x_{n}\right), G\left(u, T x_{n}, T x_{n}\right), 0 \\
& \left.0, G\left(u, T x_{n}, T x_{n}\right), G\left(u, T x_{n}, T x_{n}\right)\right) \\
\leq & k \cdot G\left(x_{n}, x_{n}, u\right)+k \cdot G\left(u, T x_{n}, T x_{n}\right)
\end{aligned}
$$

It implies that

$$
0 \leq G\left(T x_{n}, T x_{n}, u\right) \leq \frac{k}{1-k} G\left(x_{n}, x_{n}, u\right)
$$

Taking the limit as $n \rightarrow \infty$ we get $G\left(T x_{n}, T x_{n}, u\right) \rightarrow 0$. Then by Lemma 1 we have

$$
T x_{n} \rightarrow u=T u
$$

This proves that T is continuous at u.
Next we show that many known fixed point theorems are particular cases of Theorem 1.

Remark 1. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{0, t_{1}, \ldots, t_{9}\right\}
$$

with $k \in\left[0, \frac{1}{2}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [12, Theorem 1] and [12, Corollary 1] are particular cases of Theorem 1.

Remark 2. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{0, t_{1}+t_{4}+t_{7}, t_{2}+t_{5}+t_{9}, t_{3}+t_{6}+t_{8}\right\}
$$

with $k \in\left[0, \frac{1}{4}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [12, Theorem 2] and [12, Corollary 2] are particular cases of Theorem 1.

Remark 3. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{t_{0}, t_{1}, t_{4}, t_{7}, t_{2}, t_{6}, t_{8}\right\}
$$

with $k \in\left[0, \frac{1}{2}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [9, Theorem 2.1] and [9, Corollary 2.3] are particular cases of Theorem 1.

Remark 4. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{t_{2}+t_{5}, t_{6}+t_{9}, t_{3}+t_{8}\right\}
$$

with $k \in\left[0, \frac{1}{2}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [9, Theorem 2.4] and [9, Corollary 2.5] are particular cases of Theorem 1.

Remark 5. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{t_{4}+t_{2}, 2 t_{5}\right\}
$$

with $k \in\left[0, \frac{1}{3}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [9, Theorem 2.6] and [9, Corollary 2.7] are particular cases of Theorem 1.

Remark 6. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{t_{8}+t_{5}, t_{6}+t_{3}, t_{2}+t_{9}\right\}
$$

with $k \in\left[0, \frac{1}{3}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [9, Theorem 2.8] is a particular case of Theorem 1.

Remark 7. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{t_{0}, t_{1}, t_{4}, t_{7}, \frac{t_{2}+t_{8}}{2}, \frac{t_{2}+t_{5}}{2}, \frac{t_{6}+t_{9}}{2}, \frac{t_{3}+t_{8}}{2}\right\}
$$

with $k \in[0,1)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions $(C 1),(C 2)$ and (C3). So [3, Theorem 2.1] is a particular case of Theorem 1.

Remark 8. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k \max \left\{t_{0}, t_{1}, t_{4}, t_{2}, t_{5}, t_{7}\right\}
$$

with $k \in[0,1)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3), then the first part of [3, Theorem 2.2] is a particular case of Theorem 1.

Remark 9. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=k\left(t_{1}+t_{4}+t_{7}\right)
$$

with $k \in\left[0, \frac{1}{3}\right)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [6, Theorem 2.1] and [6, Corollary 1] are particular cases of Theorem 1.

Remark 10. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=\alpha t_{0}+\beta\left(t_{1}+t_{4}+t_{7}\right)
$$

with $\alpha+3 \beta \in[0,1)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions $(C 1),(C 2)$ and $(C 3)$. So [6, Theorem 2.2] and [6, Corollary 2] are particular cases of Theorem 1 .

Remark 11. By choosing

$$
M\left(t_{0}, t_{1}, \ldots, t_{9}\right)=\alpha t_{0}+\beta \max \left\{t_{1}, t_{4}, t_{7}\right\}
$$

with $\alpha+\beta \in[0,1)$ and $t_{i} \in \mathbb{R}_{+}, 0 \leq i \leq 9$, then $M \in \mathcal{M}$ and M satisfies the conditions (C1), (C2) and (C3). So [6, Theorem 2.3] and [6, Corollary 3] are particular cases of Theorem 1 .

Remark 12. We can have more new fixed point theorems if we combine Theorem 1 with some examples of $M \in \mathcal{M}$ and M satisfies the conditions $(C 1),(C 2)$ and (C3).

References

[1] Abbas M., Nazir T., Vetro P., Common fixed point results for three maps in G-metric spaces, Filomat, 25(4)(2011), 1-17.
[2] Cho Y.J., Rhoades B.E., Saadati R., Samet B., Shatanawi W., Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory Appl., 2012(8)(2012), 1-14.
[3] Chugh R., Kadian T., Rani A., Rhoades B.E., Property P in G-metric spaces, Fixed Point Theory Appl., 2010(2010), 1-12.
[4] Gajić L., Crvenković Z.L., A fixed point result for mappings with contractive iterate at a point in G-metric spaces, Filomat, 25(2)(2011), 53-58.
[5] Gajić L., Crvenković Z.L., On mappings with contractive iterate at a point in generalized metric spaces, Fixed Point Theory Appl., 2010(2010), 1-16.
[6] Mustafa Z., Obiedat H., A fixed point theorem of Reich in G-metric spaces, Cubo, 12(1)(2010), 83-93.
[7] Mustafa Z., Shatanawi W., Bataineh M., Existence of fixed point results in G-metric spaces, Fixed Point Theory Appl., 2009(2009), 1-10.
[8] Mustafa Z., Sims B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2)(2006), 289-297.
[9] Mustafa Z., Sims B., Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009(2009), 1-10.
[10] Shatanawi W., Fixed point theory for contractive mapping satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl., 2010(2010), 1-9.
[11] Shatanawi W., Some fixed point theorems in ordered G-metric spaces and applications, Abstr. Appl. Anal., 2011(2011), 1-11.
[12] Vats R. K., Kumar S., Sihag V., Fixed point theorems in complete G metric space, Fasc. Math., 47(2011), 127-139.

Nguyen Van Dung
Faculty of Mathematics and Information
Technology Teacher Education
Dong Thap University Cao Lanh City
Dong Thap Province, Vietnam
e-mail: nvdung@dthu.edu.vn or nguyendungtc@yahoo.com

Received on 28.04.2012 and, in revised form, on 10.07.2013.

[^0]: * This work is discussed at The Dongthap Seminar on Mathematical Analysis.

