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Abstract. An ideal I is a family of subsets of positive inte-
gers N which is closed under taking finite unions and subsets of
its elements. In [25], Kostyrko et. al introduced the concept of
ideal convergence as a sequence (xk) of real numbers is said to
be I-convergent to a real number `, if for each ε > 0 the set
{k ∈ N : |xk − `| ≥ ε} belongs to I. In this article we introduce
the concept of ideal convergent sequence of fuzzy numbers us-
ing difference operator and Orlicz functions and study their basic
facts. Also we investigate the different algebraic and topological
properties of these classes of sequences.
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1. Introduction

The concept of fuzzy set and fuzzy set operations were first introduced by
Zadeh [45] and subsequently several authors have discussed various aspects
of the theory and applications of fuzzy sets such as fuzzy topological spaces,
similarly relations and fuzzy orderings, fuzzy measures of fuzzy events. In
fact the fuzzy set theory has become an area of active research for the
last 40 years. To overcome the limitations induced by vagueness and un-
certainty of real life data, neoclassical analysis [3] has been developed. It
extends the scope and results of classical mathematical analysis objects;
such as functions, sequences and series. The fuzzy set theory has been used
widely not only in many engineering applications, such as, in bifurcation of
non-linear dynamical systems [22], in the computer programming [13], in
the non-linear operator [32], in population dynamics [2], but also in various
branches of mathematics, such as, in the theory of linear systems [35], in
approximations theory ([1], [6]).
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On the other hand the concept of ordinary convergence of sequences
of fuzzy numbers was firstly introduced by Matloka [30], where he proved
some basic theorems for sequences of fuzzy numbers. Nanda [33] studied
the sequences of fuzzy numbers and showed that the set of all convergent
sequences of fuzzy numbers from a complete metric space. Recently Ku-
mar and Kumar [27] introduced the ideal convergence of sequences of fuzzy
numbers.

Throughout the article wF , `F∞, c
F , cF0 denote the classes of all, bounded,

convergent and null sequence spaces of fuzzy real numbers, respectively.
The notions of I-convergence was introduced and studied at the initial

stage by Kostyrko et al. [25], it is generalized form of statistical convergence,
which was introduced by Fast [12]. Later on it was further investigated
by S̆alát et al. ([36],[37]), Tripathy and Hazarika ([40], [41], [42], [43]),
Tripathy and Mahanta [39] , Esi and Hazarika ([7], [8]), Hazarika ([15],[16],
[17], [18], [19], [20], [21]), Hazarika and Savas [14] and many others. Also
I-convergence has been discussed in more general abstract spaces such as
the fuzzy numbers spaces [35], 2-normed linear spaces [38].

Let S be a non-empty set. Then a non empty class I ⊆ P (S) is said to
be an ideal on S if I is additive (i.e. A,B ∈ I ⇒ A∪B ∈ I) and hereditary
(i.e.A ∈ I,B ⊆ A ⇒ B ∈ I). An ideal I ⊆ P (S) is said to be non trivial
if I ⊆ P (S). A non-empty family of sets F ⊆ P (S) is said to be a filter on
S if φ /∈ F, for each A,B ∈ F we have A ∩ B ∈ F and for each A ∈ F and
B ⊃ A, implies B ∈ F. For each ideal I, there is a filter F (I) corresponding
to I i.e. F (I) = {K ⊆ S : Kc ∈ I}, where Kc = S −K. A non-trivial ideal
I ⊆ P (S) is called an admissible ideal on S if and only if it contains all
singletons, i.e., if it contains {{x} : x ∈ S}. A non-trivial ideal I is said to
be maximal, if there cannot exists any non-trivial ideal J 6= I containing I
as a subset.

The difference sequence space was introduced by Kizmaz [24] as follows:

Z(∆) = {(xk) ∈ w : ∆xk ∈ Z},

for Z = `∞, c, c0 and ∆xk = xk − xk+1 for all k ∈ N.
The idea of difference sequences was generalized by Colak and Et [4],

Colak et al. [5], Et and Basarir [9], Et and Colak [10], Et et al. [11]. The
operator ∆m : wF → wF is defined by

(∆0Xk) = Xk, (∆
1Xk) = ∆1Xk = Xk −Xk+1,

(∆mXk) = ∆1(∆m−1Xk),m ≥ 2 for all k ∈ N,
which is equivalent to the following binomial representation,

∆mXk =

m∑
ν=0

(−1)ν
(
m

ν

)
Xk+ν for all k ∈ N.
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Tripathy, et al [44] further generalized this notion and introduced the fol-
lowing. For m ≥ 1 and n ≥ 1,

Z(∆m
n ) = {(xk) ∈ w : ∆m

n xk ∈ Z},

for Z = `∞, c, c0.

This generalized difference has the following binomial representation,

(1) ∆m
n xk =

m∑
ν=0

(−1)ν
(
m

ν

)
xk+νn for all k ∈ N.

An Orlicz function is a function M : [0,∞) → [0,∞), which is contin-
uous, non-decreasing and convex with M(0) = 0, M(0) > 0 as x > 0 and
M(x)→∞ as x→∞.

At the initial stage Lindberg [28] was studied Orlicz space in connection
with Banach space with symmetric. Nung and Lee [34] were studied different
classes of sequence spaces defined by Orlicz function. Later on the notion
was studied by Mursaleen et al. [31] and many others.

Remark 1. It is well known if M is a convex function and M(0) = 0,
then M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

An Orlicz function M is said to be satisfy ∆2-condition for all values of
u, if there exists a constant K > 0 such that M(Lu) ≤ KLM(u) for all
values of L > 1(see Krasnoselski and Rutitsky [26]).

Lindenstrauss and Tzafriri [29] used the idea of Orlicz function to con-
struct the sequence space,

`M =

{
(xk) ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.

The space `M with the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. The space
`M is closely related to the space `p which is an Orlicz sequence space with
M(t) = |t|p for 1 ≤ p <∞.
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2. Definitions and preliminaries

A fuzzy number X is a fuzzy subset of the real line R i.e. a map-
ping X : R → J(= [0, 1]) associating each real number t with its grade
of membership X(t). A fuzzy number X is convex if X(t) ≥ X(s)∧X(r) =
min{X(s), X(r)}, where s < t < r. If there exists t0 ∈ R such that X(t0) =
1, then the fuzzy number X is called normal. The α -level set of a fuzzy real
number X, 0 < α ≤ 1 denoted by Xα is defined as Xα = {t ∈ R : X(t) ≥ α}.

A fuzzy number X is said to be upper-semi continuous if for each ε0,
X−1([0, a+ ε)), for all a ∈ [0, 1] is open in the usual topology of R.

The set of all upper semi-continuous, normal, convex fuzzy number is
denoted by R(J).

Let D denote the set of all closed and bounded intervals X = [x1, x2] on
the real line R. For X = [x1, x2] and Y = [y1, y2] in D, we define

X ≤ Y if and only if] x1 ≤ y1 and x2 ≤ y2.

Define a metric d on D by

d(X,Y ) = max{|x1 − y1|, |x2 − y2|}.

Then it can be easily seen that d defines a metric on D and (D, d) is a
complete metric space. Also the relation ≤ is a partial order on D.

The absolute value |X| of X ∈ R(J) is defined as

|X|(t) =

{
max{X(t), X(−t)}, if t > 0;

0, if t < 0.

Let d̄ : R(J)× R(J)→ R be defined by

d̄(X,Y ) = sup
0≤α≤1

d(Xα, Y α).

Then (R(J), d) is a complete metric space.
We define X ≤ Y if and only if Xα ≤ Y α, for all α ∈ J. The addi-

tive identity and multiplicative identity in R(J) are denoted by 0̄ and 1̄,
respectively.

A sequence X = (Xk) of fuzzy numbers is said to bounded if the set
{Xk : k ∈ N} of fuzzy numbers is bounded.

A sequence (Xk) of fuzzy real numbers is said to be convergent to a
fuzzy real number X0 if for every ε > 0, there exists k0 ∈ N such that
d̄(Xk, X0) < ε, for all k ≥ n0.

A subset A of N is said to have asymptotic density (or density) δ(A) if

δ(A) = lim
n→∞

1

n

n∑
k=1

χA(k)
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exists, where χA is the characteristic function of A.
A sequence (Xk) of fuzzy numbers is said to be statistical convergent

if there exists a fuzzy number X0 such that for each ε > 0, δ({k ∈ N :
d(Xk, X0) ≥ ε}) = 0. In this case we write st− limXk = X0.

A sequence (Xk) of fuzzy real numbers is said to be I-convergent if there
exists a fuzzy real number X0 such that for each ε > 0, the set

{k ∈ N : d̄(Xk, X0) ≥ ε} ∈ I.

We write I − limXk = X0.
A sequence space EF of fuzzy numbers is said to be normal (or solid) if

(αkXk) ∈ EF whenever (Xk) ∈ EF and for all sequence (αk) of scalars with
|αk| ≤ 1 for all k ∈ N and |Yk| ≤ |Xk|, for all k ∈ N.

A sequence space EF of fuzzy numbers is said to be symmetric if (Xπ(k)) ∈
EF , whenever (Xk) ∈ EF , where π is a permutation of N.

Let K = {k1 < k2 < . . .} ⊆ N and E be a sequence space. A K-step
space of E is a sequence space

λEF
K = {(Xkn) ∈ wF : (kn) ∈ EF }.

A canonical preimage of a sequence {(Xkn)} ∈ λEF
K is a sequence {Yk} ∈

wF defined as

Yk =

{
Xk, if k ∈ K
0, otherwise.

A canonical preimage of a step space λEF
K is a set of canonical preimages

of all elements in λEF
K , i.e. Y is in canonical preimage of λEF

K if and only if

Y is canonical preimage of some X ∈ λEF
K .

A sequence space EF of fuzzy numbers is said to be monotone if EF
contains the cannical pre-image of all its step spaces.

A sequence space EF is said to be a sequence algebra if (Xk ⊗ Yk) ∈ EF ,
whenever (Xk), (Yk) ∈ EF

A sequence space EF is said to be convergence free if (Yk) ∈ EF whenever
(Xk) ∈ EF and Xk = 0 implies Yk = 0.

A subset A of N is said to have logarithmic density d(A) if d(A) =

limn→∞ dn(A) = 1
sn

n∑
k=1

χA(k)
k exists, for all n ∈ N, where sn =

n∑
k=1

1
k .

Example 1. Let Iδ{A ⊂ N : δ(A) = 0}. Then Iδ is an ideal of N. Also
all finite subsets of 2N have zero asymptotic density and δ(Ac) = δ(N−A) =
1− δ(A).

Example 2. Let Id = {A ⊂ N : d(A) = 0}. Then Id is an ideal of
N. Also all finite subsets of 2N have zero logarithmic density and d(Ac) =
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d(N− A) = 1− d(A). Since
n∑
k=1

1
k = log n+ γ +O( 1

n), where γ is the Euler

constant, so if d(A) exists, then it is equal to limn→∞
1

logn

n∑
k=1

χA(k)
k .

If I = If (class of all finite subsets of N), then If -convergence coincides
with the usual convergence of fuzzy numbers. If I = Iδ, then Iδ - convergence
coincides with the statistical convergence of fuzzy numbers.

The following result will be used for establishing some results in this
article.

Lemma 1. Every normal space is monotone.(Please refer to Kamthan
and Gupta [23], page 53).

3. Main results

In this section we introduce some sequence spaces using the difference
operator and Orlicz functions. Let M be an Orlicz function and p = (pk)
be a sequence of strictly positive real numbers. For some ρ > 0, we define
the following sequence spaces:

cIF0 (M,∆r
n, p) =

{
(Xk) ∈ wF :

{
k ∈ N :

[
M

(
d(∆r

nXk, 0)

ρ

)]pk

≥ ε

}
∈ I

}

cIF (M,∆r
n, p) =

{
(Xk) ∈ wF :

{
k ∈ N :

[
M

(
d(∆r

nXk, X0)

ρ

)]pk

≥ ε

}
∈ I

}

`F∞(M,∆r
n, p) =

{
(Xk) ∈ wF : sup

k

[
M

(
d(∆r

nXk, 0)

ρ

)]pk

<∞

}
.

for X0 ∈ R(J). By using these spaces, we can construct the sequence spaces

mIF (M,∆r
n, p) = cIF (M,∆r

n, p) ∩ `F∞(M,∆r
n, p)

and

mIF
0 (M,∆r

n, p) = cIF0 (M,∆r
n, p) ∩ `F∞(M,∆r

n, p).

Throughout the article I denote a non-trivial admissible ideal of N.

Theorem 1. The spaces cIF0 (M,∆r
n, p), c

IF (M,∆r
n, p), `

F
∞(M,∆r

n, p),
mIF (M,∆r

n, p) and mIF
0 (M,∆r

n, p) are closed with respect to addition and
scalar multiplication.

Proof. We shall proof the result only for the space cIF (M,∆r
n, p). The

others can be treated similarly. Let X = (Xk) and Y = (Yk) be two elements
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in cIF (M,∆r
n, p) and α1, α2 be scalars. Let ε > 0 be given. Then there exist

some positive numbers ρ1, ρ2 such that

P =

{
k ∈ N :

[
M

(
d(∆r

nXk, X0)

ρ1

)]pk

≥ ε

2

}
∈ I

and

Q =

{
k ∈ N :

[
M

(
d(∆r

nYk, Y0)

ρ2

)]pk

≥ ε

2

}
∈ I.

Let ρ3 = max(2|α1|ρ1, 2|α2|ρ2). Since M is non-decreasing and convex
function, we have[

M

(
d(∆r

n(α1Xk + α2Yk), α1X0 + α2Y0)

ρ3

)]pk

≤
[
M

(
α1d(∆r

nXk, X0)

ρ3

)]pk

+

[
M

(
α2d(∆r

nYk, Y0)

ρ3

)]pk

≤
[
M

(
d(∆r

nXk, X0)

ρ1

)]pk

+

[
M

(
d(∆r

nYk, Y0)

ρ2

)]pk

.

Now,{
k ∈ N :

[
M

(
d(∆r

n(α1Xk + α2Yk), α1X0 + α2Y0)

ρ3

)]pk

≥ ε

}
⊆ P ∪Q ∈ I.

Therefore (α1X + α2Y ) ∈ cIF (M,∆r
n, p). This completes the proof. �

Theorem 2. For an Orlicz function M, cIF0 (M,∆r
n, p), c

IF (M,∆r
n, p),

mIF (M,∆r
n, p), m

IF
0 (M,∆r

n, p) and `F∞(M,∆r
n, p) are complete metric spaces

with the metric

g∆(X,Y ) =

nr∑
k=1

d(Xk, Yk) + inf

{
ρ

pk
H > 0 : sup

k
M

(
d(∆r

nXk,∆
r
nYk)

ρ

)
≤ 1

}
,

where H = supk pk.

Proof. We shall prove only for the space cIF (M,∆r
n, p). The other can

be treated, similarly. It can shown that g∆ is a metric on cIF (M,∆r
n, p).

Let (Xk) be a Cauchy sequence in cIF (M,∆r
n, p). Let ε > 0 be given. For

a fixed X0 > 0 and choose t > 0 such that M
(
tX0

2

)
≥ 1. Then there exists

n0 ∈ N such that

g∆(Xi, Xj) <
ε

tX0
for all i, j ≥ n0.

⇒
nr∑
k=1

d(Xi
k, X

j
k) + inf

{
ρ

pk
H > 0 : sup

k
M

(
d(∆r

nX
i
k,∆

r
nX

j
k)

ρ

)
≤ 1

}
< ε
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for all i, j ≥ n0, which implies

nr∑
k=1

d(Xi
k, X

j
k) < ε for all i, j ≥ n0

⇒ d(Xi
k, X

j
k) < ε for all i, j ≥ n0, k = 1, 2, 3..., nr.

Hence (Xi
k) for k = 1, 2, 3, . . . , nr are Cauchy sequences in R(J) and hence

are convergent in R(J), since R(J) is a complete metric space.
Let

(2) lim
i→∞

Xi
k = Xk for k = 1, 2, 3, ..., nr.

Also

(3) sup
k
M

(
d(∆r

nX
i
k,∆

r
nX

j
k)

ρ

)
≤ 1 for all i, j ≥ n0 and k ∈ N.

M

(
d(∆r

nX
i
k,∆

r
nX

j
k)

g∆(Xi, Xj)

)
≤ 1 ≤M

(
tX0

2

)
for all i, j ≥ n0 and k ∈ N.

d(∆r
nX

i
k,∆

r
nX

j
k) <

ε

2
for all i, j ≥ n0 and k ∈ N.

Thus (∆r
nX

i
k) is Cauchy sequence of fuzzy numbers. Let limi→∞∆r

nX
i
k = Xk

for each k ∈ N. For k = 1 we have, from (1) and (3),

lim
i→∞

Xi
1+rn = X1+rn for r ≥ 1, n ≥ 1.

Proceeding in this way inductively we conclude that

lim
i→∞

Xi
k = Xk for each k ∈ N.

Also

lim
i→∞

∆r
nX

i
k = Xk for each k ∈ N.

By the continuity of M, we have the following from (4)

sup
k
M

(
d(∆r

nX
i
k, Xk)

ρ

)
≤ 1 for all i ≥ n0, j →∞.

⇒ inf

{
ρ

pk
H > 0 : sup

k
M

(
d(∆r

nX
i
k, Xk)

ρ

)
≤ 1

}
< ε for all i ≥ n0.
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Hence from (2) on taking limit as j →∞, we get

nr∑
k=1

d(Xi
k, Xk) + inf

{
ρ

pk
H > 0 : sup

k
M

(
d(∆r

nX
i
k,∆

r
nXk)

ρ

)
≤ 1

}
< ε+ ε = 2ε for all i ≥ n0.

i.e. g∆(Xi, X) < ε for all i ≥ n0. Then the inequality

g∆(X, 0) ≤ g∆(X,∆r
nX

i) + g∆(∆r
nX

i, 0) for all i ≥ n0

implies that (Xk) ∈ cIF (M,∆r
n, p). This completes the proof. �

Following standard techniques, one can easily prove the results.

Theorem 3. The spaces cIF0 (∆), cIF (∆), mIF
0 (∆) and mIF (∆) are

closed linear subspaces of the complete metric space `F∞(∆) with the metric

f∆(X,Y ) = d(X1, Y1) + sup
k
d(∆Xk,∆Yk).

Theorem 4. The spaces cIF0 (∆), cIF (∆), mIF
0 (∆), mIF (∆) and `F∞(∆)

are complete metric spaces with the metric f∆.

Theorem 5. Let M1 and M2 be two Orlicz functions. Then
(i) Z(M2,∆

r
n, p) ⊆ Z(M1M2,∆

r
n, p).

(ii) Z(M1,∆
r
n, p) ∩ Z(M2,∆

r
n, p) ⊆ Z(M1 +M2,∆

r
n, p),

for Z = cIF0 , cIF ,mIF
0 ,mIF , `F∞.

Proof. (i) Let X = (Xk) ∈ cIF (M2,∆
r
n, p). For some ρ > 0 we have

(4)

{
k ∈ N :

[
M2

(
d(∆r

nXk, X0)

ρ

)]pk
≥ ε

}
∈ I for every ε > 0.

Let ε > 0 and choose λ with 0 < λ < 1 such that M1(t) < ε for 0 ≤ t ≤ λ.
We define

Yk =
d(∆r

nXk, X0)

ρ

and consider

lim
k∈N;0≤Yk≤λ

[M1(Yk)]
pk = lim

k∈N;Yk≤λ
[M1(Yk)]

pk + lim
k∈N;Yk>λ

[M1(Yk)]
pk .

We have

(5) lim
k∈N;Yk≤λ

[M1(Yk)]
pk ≤ [M1(2)]H lim

k∈N;Yk≤λ
[Yk]

pk , H = sup
k
pk.
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For the second summation (i.e. Yk > λ), we go through the following pro-
cedure. We have

Yk <
Yk
λ
< 1 +

Yk
λ
.

Since M1 is non-decreasing and convex, it follows that

M1(Yk) < M1

(
1 +

Yk
λ

)
≤ 1

2
M1(2) +

1

2
M1

(
2Yk
λ

)
.

Since M1 satisfies ∆2-condition, we can write

M1(Yk) <
1

2
K
Yk
λ
M1(2) +

1

2
K
Yk
λ
M1(2) = K

Yk
λ
M1(2).

We get the following estimates:

(6) lim
k∈N;Yk>λ

[M1(Yk)]
pk ≤ max

{
1, (Kλ−1M1(2))H

}
lim

k∈N;Yk>λ
[Yk]

pk .

From (5), (6) and (7), it follows that (Xk) ∈ cIF (M1M2,∆
r
n, p).

Hence cIF (M2,∆
r
n, p) ⊆ cIF (M1M2,∆

r
n, p).

(ii) Let (Xk) ∈ cIF (M1,∆
r
n, p) ∩ cIF (M2,∆

r
n, p). Let ε > 0 be given.

Then there exists ρ > 0 such that{
k ∈ N :

[
M1

(
d(∆r

nXk, X0)

ρ

)]pk
≥ ε

}
∈ I

and {
k ∈ N :

[
M2

(
d(∆r

nXk, X0)

ρ

)]pk
≥ ε

}
∈ I.

The rest of the proof follows from the following relation:{
k ∈ N :

[
(M1 +M2)

(
d(∆r

nXk, X0)

ρ

)]pk
≥ ε

}

⊆

{
k ∈ N :

[
M1

(
d(∆r

nXk, X0)

ρ

)]pk
≥ ε

}

∪

{
k ∈ N :

[
M2

(
d(∆r

nXk, X0)

ρ

)]pk
≥ ε

}
.

�

Taking M2(x) = x and M1(x) = M(x) for all x ∈ [0,∞), we have the
following result.
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Corollary 1. If I is an admissible ideal, then Z(∆r
n, p) ⊆ Z(M,∆r

n, p)
for Z = cIF0 , cIF ,mIF

0 ,mIF , `F∞.

Following standard techniques, one can easily prove the results.

Theorem 6. If M1(x) ≤M2(x) for all x ∈ [0,∞), then Z(M2,∆
r
n, p) ⊆

Z(M1,∆
r
n, p) for Z = cIF0 , cIF and `F∞.

Theorem 7. Let M be an Orlicz function. Then

cIF0 (M,∆r
n) ⊂ cIF (M,∆r

n) ⊂ `F∞(M,∆r
n)

and the inclusions are proper.

Proof. Let (Xk) ∈ cIF (M,∆r
n). Let ε > 0 be given. Then there exists

ρ > 0 such that {
k ∈ N :

[
M

(
d(∆r

nXk, X0)

ρ

)]
≥ ε
}
∈ I.

Since

M

(
d(∆r

nXk, 0)

ρ

)
≤ 1

2
M

(
d(∆r

nXk, X0)

ρ

)
+

1

2
M

(
d(X0, 0)

ρ

)
.

Taking supremum over k on both sides implies that (Xk) ∈ `F∞(M,∆r
n). �

The inclusion cIF0 (M,∆r
n) ⊂ cIF (M,∆r

n) is obvious. The inclusion is
strict, for this consider the following example.

Example 3. Let M(x) = x2 for all x ∈ [0,∞) and r = 1, n = 1.
Consider the sequence (Xk) of fuzzy numbers be defined as follows:

For k = 2i, i = 1, 2, 3, . . .

Xk(t) =


4
k t+ 1, if − k

4 ≤ t ≤ 0;

− 4
k t+ 1, if 0 < t ≤ k

4 ;
0, otherwise

otherwise, Xk(t) = 0.
For α ∈ (0, 1], the α-level sets of Xk and ∆Xk are

[Xk]
α =

{
[k4 (α− 1), k4 (1− α)], if k = 2i, i = 1, 2, 3, . . .
[0, 0], otherwise

and

[∆Xk]
α =


[k4 (α− 1), k4 (1− α)], for k = 2i;

[k4 (α− 1), k4 (1− α)], for k + 1 = 2i(i > 1);
[0, 0], otherwise .

It is easy to prove that the sequences (Xk) and (∆Xk) are bounded but
these are not I-convergent.
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Theorem 8. The inclusions Z(M,∆r−1
n , p) ⊆ Z(M,∆r

n, p) are strict for
r ≥ 1. In general Z(M,∆i

n, p) ⊆ Z(M,∆r
n, p) for i = 1, 2, . . . , r − 1 and the

inclusion is strict, for Z = cIF0 , cIF ,mIF
0 ,mIF , `F∞.

Proof. Let X = (Xk) ∈ cIF0 (M,∆r−1
n , p). Let ε > 0 be given. Then

there exists ρ > 0 such that{
k ∈ N :

[
M

(
d(∆r−1

n Xk, 0)

ρ

)]pk
≥ ε

}
∈ I.

Since M is non-decreasing and convex it follows that[
M

(
d(∆r

nXk, 0)

2ρ

)]pk

≤
[
M

(
d(∆r−1

n Xk −∆r−1
n Xk+1, 0)

2ρ

)]pk

≤ D
[

1

2
M

(
d(∆r−1

n Xk, 0)

ρ

)]pk

+D

[
1

2
M

(
d(∆r−1

n Xk+1, 0)

ρ

)]pk

≤ DK
[
M

(
d(∆r−1

n Xk, 0)

ρ

)]pk

+DK

[
M

(
d(∆r−1

n Xk+1, 0)

ρ

)]pk

,

where K = max{1,
(

1
2

)H}.
Therefore we have{

k ∈ N :

[
M

(
d(∆r

nXk, 0)

2ρ

)]pk
≥ ε

}

⊆

{
k ∈ N : DK

[
M

(
d(∆r−1

n Xk, 0)

ρ

)]pk
≥ ε

}

∪

{
k ∈ N : DK

[
M

(
d(∆r−1

n Xk+1, 0)

ρ

)]pk
≥ ε

}
.

i.e.

{
k ∈ N :

[
M

(
d(∆r

nXk, 0)

2ρ

)]pk
≥ ε

}
∈ I.

Hence (Xk) ∈ cIF0 (M,∆r
n, p). �

The inclusion is strict follows from the following example.

Example 4. Let M(x) = x for all x ∈ [0,∞), r = 3, n = 1 and pk = 1
for all k ∈ N. Consider the sequence (Xk) of fuzzy numbers as follows:

Xk(t) =


− t
k3−1

+ 1, if k3 − 1 ≤ t ≤ 0;

− t
k3+1

+ 1, if 0 < t ≤ k3 + 1;

0, otherwise.
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For α ∈ (0, 1], the α-level sets of Xk, ∆Xk, ∆2Xk and ∆3Xk are

[Xk]
α = [(1− α)(k3 − 1), (1− α)(k3 + 1)]

[∆Xk]
α = [(1− α)(−3k2 − 3k − 3), (1− α)(−3k2 − 3k + 1)]

[∆2Xk]
α

= [(1− α)(6k + 2), (1− α)(6k + 10)]

[∆3Xk]
α

= [−14(1− α), 2(1− α)],

respectively. It is easy to see that the sequence [∆2Xk]
α is not I-bounded

but [∆3Xk]
α is I-bounded.

Theorem 9. Let 0 < pk ≤ qk < ∞ for each k. Then Z(M,∆r
n, p) ⊆

Z(M,∆r
n, q) for Z = cIF0 and cIF .

Proof. Let (Xk) ∈ cIF0 (M,∆r
n, p). Then there exists a number ρ > 0

such that {
k ∈ N :

[
M

(
d(∆r

nXk, 0)

ρ

)]pk
≥ ε

}
∈ I.

For sufficiently large k. Since pk ≤ qk for each k, therefore we get{
k ∈ N :

[
M

(
d(∆r

nXk, 0)

ρ

)]qk
≥ ε

}

⊆

{
k ∈ N :

[
M

(
d(∆r

nXk, 0)

ρ

)]pk
≥ ε

}
∈ I.

i.e. (Xk) ∈ cIF0 (M,∆r
n, q). This completes the proof. �

Similarly, it can be shown that cIF (M,∆r
n, p) ⊆ cIF (M,∆r

n, q).

Corollary 2. (a) Let 0 < infk pk ≤ pk ≤ 1. Then Z(M,∆r
n, p) ⊆

Z(M,∆r
n) for Z = cIF0 and cIF .

(b) Let 1 ≤ pk ≤ supk pk < ∞. Then Z(M,∆r
n) ⊆ Z(M,∆r

n, p) for
Z = cIF0 and cIF .

Theorem 10. If I is an admissible ideal and I 6= If , then the sequence
spaces cIF0 (M,∆r

n, p), c
IF (M,∆r

n, p), m
IF (M,∆r

n, p) and mIF
0 (M,∆r

n, p) are
neither normal nor monotone.

Proof. We prove this result with the help of following example. �

Example 5. Let M(x) = x2 for all x ∈ [0,∞) and r = 1, n = 1. For
I = Iδ and pk = 1 for all k ∈ N. Consider the sequence (Xk) of fuzzy
numbers as follows:

Xk(t) =


t− 3k + 1, if t ∈ [3k − 1, 3k];
−t+ 3k + 1, if t ∈ [3k, 3k + 1];
0, otherwise.
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Let

αk =

{
1, if k is odd;
0, if k is even.

Thus (αkXk) /∈ Z(M,∆r
n) for Z = cIF0 , cIF ,mIF

0 ,mIF . Therefore cIF0 (M,∆r
n, p),

cIF (M,∆r
n, p), m

IF (M,∆r
n, p) andmIF

0 (M,∆r
n, p) are not normal. By Lemma 1,

these spaces are not monotone.

Theorem 11. If I is an admissible ideal and I 6= If , then the sequence
spaces Z(M,∆r

n, p) are not symmetric, where Z = cIF0 , cIF ,mIF
0 ,mIF .

Proof. We prove of the result only for cIF (M,∆r
n, p) with the help of

the following example. The rest of the results follow similar way. �

Example 6. Let M(x) = x2 for all x ∈ [0,∞) and r = 1, n = 1. For
I = Iδ and pk = 1 for all k ∈ N. Consider the sequence (Xk) of fuzzy
numbers as follows:

Xk(t) =


t− 2k + 1, if t ∈ [2k − 1, 2k];
−t+ 2k + 1, if t ∈ [2k, 2k + 1];
0, otherwise.

Thus we have (Xk) ∈ cIF (M,∆r
n, p). But the rearrangement (Yk) of (Xk)

defined as

Yk = {X1, X4, X2, X9, X3, X16, X5, X25, X6, . . .}.

This implies that (Yk) /∈ cIF (M,∆r
n, p). Hence cIF (M,∆r

n, p) is not sym-
metric.

We give the following proposition without proof.

Proposition 1. The spaces Z(M) are normal as well as monotone and
symmetric, where Z = cIF0 , cIF ,mIF

0 ,mIF and `F∞.

Theorem 12. If I is an admissible ideal and I 6= If , then the sequence
spaces cIF0 (M,∆r

n, p), c
IF (M,∆r

n, p), m
IF (M,∆r

n, p) and mIF
0 (M,∆r

n, p) are
not convergence free.

Proof. It follows from the following example that these spaces are not
convergence free. �

Example 7. Let M(x) = x2 for all x ∈ [0,∞) and r = 1, n = 1. For
I = Iδ and pk = 1 for all k ∈ N. Consider the sequence (Xk) of fuzzy
numbers as follows:

Xk(t) = 0 for k = 2i, i = 1, 2, 3, . . .
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Otherwise

Xk(t) =


k
3 (t− 2) + 1, if t ∈ [2k−3

k , 2];

−k
3 (t− 2) + 1, if t ∈ [2, 2k+3

k ];

0, otherwise.

Then the α-level sets of (Xk) and (∆Xk) are

[Xk]
α =

{
[0, 0], if k = 2i, i = 1, 2, 3, . . .

[2− 3
k (1− α), 2 + 3

k (1− α)], otherwise .

and

[∆Xk]
α =


[−2− 3

k (1− α),−2 + 3
k (1− α)], for k = 2i

[2− 3
k (1− α), 2 + 3

k (1− α)], for k + 1 = 2i(i > 1)

[(α− 1)( 3
k + 3

k+1), (1− α)( 3
k + 3

k+1)], otherwise.

Thus we have (Xk) ∈ Z(M,∆r
n, p) for Z = cIF0 , cIF ,mIF ,mIF

0 .
Define a sequence (Yk) of fuzzy numbers as follows:

Yk = 0 for k = 2i, i = 1, 2, 3, . . .

Yk(t) =


t− (k + 1), if t ∈ [k + 1, k + 2];

1
k−k2−1

t− k2+3
k−k2−1

, if t ∈ [k + 2, k2 + 3];

0, otherwise.

Then the α-level sets of (Yk) and (∆Yk) are

[Yk]
α =

{
[0, 0], if k = 2i, i = 1, 2, 3, . . .

[k + 1 + α, k2 + 3 + α(k − k2 − 1)], otherwise .

and

[∆Yk]
α =



[−(k + 2)2 + α(k + k2 + 1)− 3,−(k + 2 + α)], for k = 2i

[k + 1 + α, k2 + 3 + α(k − k2 − 1)], for k + 1 = 2i

(i > 1)

[k + 1− (k + 2)2 − 3 + α(k + k2 + 3),

k2 − k + 1 + α(k − k2 − 3)], otherwise .

This implies that (Yk) /∈ Z(M,∆r
n, p) for Z = cIF0 , cIF ,mIF ,mIF

0 . Hence
cIF0 (M,∆r

n, p), c
IF (M,∆r

n, p), m
IF (M,∆r

n, p) and mIF
0 (M,∆r

n, p) are not
convergence free.
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Theorem 13. If I is an admissible ideal and I 6= If , then the sequence
spaces cIF0 (M,∆r

n, p), c
IF (M,∆r

n, p), m
IF (M,∆r

n, p) and mIF
0 (M,∆r

n, p) are
not sequence algebra.

Proof. These spaces are sequence algebra which follows from the follow-
ing example. �

Example 8. Let M(x) = x2 for all x ∈ [0,∞) and r = 1, n = 1. For
I = Iδ and pk = 1 for all k ∈ N. Consider the sequences (Xk) and (Yk) of
fuzzy numbers as follows:

For k = 2i, i = 1, 2, 3, . . .

Xk(t) =


k

2k−2 t−
k

2k−2 , if t ∈ [1, 3k−2
k ];

1, if t ∈ [3k−2
k , 3k+2

k ];

− k
2k−2 t+ 5k

2k−2 , if t ∈ [3k+2
k , 5];

0, otherwise.

otherwise

Xk(t) =


kt− 7k + 1, if t ∈ [7− 1

k , 7];

−t+ 8, if t ∈ [7, 8];

0, otherwise.

and for k = 2i, i = 1, 2, 3, . . .

Yk(t) =


t− k − 1, if t ∈ [k + 1, k + 2];

−t+ k + 3, if t ∈ [k + 2, k + 3];

0, otherwise.

otherwise

Yk(t) =


t− k, if t ∈ [k, k + 1];

−2t+ 2k + 5, if t ∈ [k + 2, k + 5
2 ];

0, otherwise.

Then the α-level sets of (Xk) and (Yk) are

[Xk]
α =

{
[1 + α, 5− α], if k = 2i, i = 1, 2, 3, ...

[7− 1
k (1− α), 8− α], otherwise .

and

[Yk]
α =

{
[k + 1 + α, k + 3− α], if k = 2i, i = 1, 2, 3, ...

[k + α, k + 1
2(5− α)], otherwise .
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Therefore the α-level sets of (∆Xk) and (∆Yk) are

[∆Xk]
α =


[−7 + 2α,−2− α+ 1−α

k+1 ], for k = 2i

[2− 1−α
k + α, 7− 2α], for k + 1 = 2i(i > 1)

[−1− 1−α
k + α, 1− α+ 1−α

k+1 ], otherwise .

and

[∆Yk]
α =


[−5

2 + 3α
2 , 2− 2α], for k = 2i

[−4 + 2α, 1
2 −

3α
2 ], for k + 1 = 2i(i > 1)

[−7
2 + 3α

2 ,
3
2 −

3α
2 ], otherwise .

Thus for the sequences (Xk) and (Yk) we have

(Xk), (Yk) ∈ mIF (M,∆r
n, p)(⊂ cIF (M,∆r

n, p)).

But
(Xk ⊗ Yk) /∈ cIF (M,∆r

n, p)(⊃ mIF (M,∆r
n, p)).

This completes the proof of the result.
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