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of them. Next we study the rates of converge of this approxima-
tion by means modulus of continuity and functions from Lipschitz
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observe the rates of convergence for them.
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1. Introduction

Let f ∈ C ([0, 1]). The well known Beta operators are defined as follows:

Bn (f ;x) :=

1∫
0

tnx−1 (1− t)n(1−x)−1

B (nx, n (1− x))
f (t) dt,

where n ∈ N ={1, 2...}, x ∈ (0, 1) and B is the familiar Beta function and
we set Bn(f, k) := f(k), k = 0, 1. Some approximation properties of Beta
operators were studied in [5], [6], [10] and references there in.

Let x ∈ [0, 1] and f ∈ C ([0, 1]). The Bernstein-Kantorovich operators
are defined by

Kn (f ;x) := n
n∑
k=0

(
n

k

)
xk (1− x)n−k

k+1
n∫
k
n

f (s) ds, n ∈ N.

Also some approximation properties of Kn can be wieved in [1].
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Now, we construct the tensor product of Bm and Kn, Bmn := B
(1)
m ◦K(2)

n ,

here ” ◦ ” denotes the composition and B
(1)
m and K

(2)
n are parametric exten-

sions of Bm and Kn. Clearly Bmn, m,n ∈ N are linear positive operators.

Bmn (f ;x, y) := n

n∑
k=0

(
n

k

)
yk (1− y)

n−k

k+1
n∫
k
n

1∫
0

f (θ, s)
θmx−1 (1− θ)m(1−x)−1

B (mx,m (1− x))
dθds,

where f ∈ C
(
I2
)
, i.e, continuous real-valued functions defined on I2, I2 :=

[0, 1]× [0, 1].
In this paper, we study the approximation properties of the operators

Bmn and obtain the rates of convergence by means of modulus of continuity
and functions from Lipschitz class. For second order differentiable functions,
Voronovskaya [11] was the first to prove a theorem for Bernstein polynomials
known as Voronovskaya Theorem. Later on, it was studied by many authors
for some other linear positive operators (e.g. [3], [4], [8]). For Bmn, we will
also prove a Voronovskaya type theorem for an arbitrary continuous function
by a function having all continuous partial derivatives up to order two in
Bmn. Moreover, we state an r th oder generalization of Bmn. It is known
that r th order generalization of linear positive operators of functions with
one variable were introduced in [7], [9]. Finally, we study the approximation
properties of this generalization and establish the rates of convergence.

2. Approximation Properties of Bmn

In this section, we give some approximation properties of Bmn on I2.

Lemma 1. For all m,n ∈ N , we have

Bmn (1;x, y) = 1,

Bmn (θ;x, y) = x,

Bmn (s;x, y) = y +
1

2n
,

Bmn
(
θ2 + s2;x, y

)
=
mx2 + x

m+ 1
+ y2 +

y (1− y)

n
+
y

n
+

1

3n2
.

Using Lemma 1 we have the following theorem for the convergence of the
operators Bmn.

Theorem 1. Let f (x, y) ∈ C
(
I2
)
, (x, y) ∈ I2, then Bmn (f ;x, y) con-

verges to f (x, y) uniformly on I2 i. e.:

lim
m,n→∞

‖Bmn (f ;x, y)− f (x, y)‖C(I2) = 0.
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Proof is clear from Lemma 1 and the well known Volkov’s theorem [10].
Now, we give the following Lemmas which we shall use.

Lemma 2. For all m,n ∈ N , we have

Bmn (θs;x, y) = x

(
y +

1

2n

)
,

Bmn
(
θ2;x, y

)
=

mx2 + x

m+ 1
,

Bmn
(
θ3;x, y

)
=

(mx+ 2) (mx+ 1)mx

(m+ 2) (m+ 1)m
,

Bmn
(
θ4;x, y

)
=

(mx+ 3) (mx+ 2) (mx+ 1)mx

(m+ 3) (m+ 2) (m+ 1)m
,

Bmn
(
s2;x, y

)
= y2 +

y (1− y)

n
+
y

n
+

1

3n2
,

Bmn
(
s3;x, y

)
=

4n (n− 2) (n− 1) y3 + 18n (n− 1) y2 + 12ny + 1

4n3
,

Bmn
(
s4;x, y

)
=

(n− 3) (n− 2) (n− 1) y4 + 8 (n− 2) (n− 1) y3

n3

+
15 (n− 1) y2 + 5y

n3
+

1

5n4
.

Lemma 3. For operators Bmn we have

Bmn

(
(s− y)

2
;x, y

)
=

y (1− y)

n
+

1

3n2
,

Bmn

(
(θ − x)

2
;x, y

)
=

x (1− x)

m+ 1
,

Bmn ((θ − x) (s− y) ;x, y) = 0,

Bmn

(
(θ − x)

4
;x, y

)
=

3 (m− 6)x4 + 6 (6−m)x3 + 3 (m− 8)x2 + 6x

(m+ 3) (m+ 2) (m+ 1)
,

Bmn

(
(s− y)

4
;x, y

)
=

3 (n− 2) y4 + (16− 6n) y3 + 5 (n− 3) y2 + 4y

n3

+
1

5n4
.

In the sequel, we take the operators Bmn, as follows:

(1) Bmn (f ;x, y) = n
n∑
k=0

Pn (y)

k+1
n∫
k
n

1∫
0

ψm,x (θ) f (θ, s) dθds,

where

(2) Pn (y) =

(
n

k

)
yk (1− y)n−k
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and

(3) ψm,x (θ) =
θmx−1 (1− θ)m(1−x)−1

B (mx,m (1− x))

for the sake of shortness.

3. Rates of convergence

In this section, we study the rates of convergence in Theorem 1 by means
of total modulus of continuity and elements of Lipschitz class.

Let f ∈ C
(
I2
)
. The total modulus of continuity of f , denoted by w (f ; δ),

is defined by

w (f ; δ) = max√
(x1−x2)2+(y1−y2)2≤δ

|f (x1, y1)− f (x2, y2)| .

Morever, partial modulus of continuity with respect to x and y are given by

w(1) (f ; δ) = max
0≤y≤1

max
|x1−x2|≤δ

|f (x1, y)− f (x2, y)| ,

and
w(2) (f ; δ) = max

0≤x≤1
max

|y1−y2|≤δ
|f (x, y1)− f (x, y2)| ,

respectively. It is known that a necessary and sufficient condition for a
function f to be in C

(
I2
)

is

lim
δ→0

w (f ; δ) = 0.

We shall use the following property of the total modulus of continuity:

w (f ;λδ) ≤ (1 + [λ])w (f ; δ)

for any λ ∈ R, here [λ] is the greatest integer that does not exceed λ (the
same properties also hold for partial modulus of continuity), and

(4) |f (θ, s)− f (x, y)| ≤ w (f ; δ)

1 +

√
(θ − x)2 + (s− y)2

δ

 .

The next result gives the rates of convergence of the sequence {Bmn (f ;x, y)},
f ∈ C

(
I2
)
, in Theorem 1 by means of the total modulus of continuity.

Theorem 2. For all f ∈ C
(
I2
)
, we have

(5) ‖Bmn (f ;x, y)− f (x, y)‖C(I2) ≤
3

2
w (f ; δmn) ,

where δmn =
√

1
m+1 + 3n+4

3n2 .



On the rates of convergence of certain . . . 121

Proof. Let f ∈ C
(
I2
)
. Since Bmn are linear and monotone from (4)

then we get that

|Bmn (f ;x, y)− f (x, y)| ≤ Bmn (|f (θ, s)− f (x, y)| ;x, y)(6)

≤ w (f ; δmn)Bmn

1 +

√
(θ − x)2 + (s− y)2

δmn
;x, y


= w (f ; δmn)

{
1 +

n

δmn

n∑
k=0

Pn (y)

×

k+1
n∫
k
n

1∫
0

ψm,x (θ)

√
(θ − x)2 + (s− y)2dθds

}
.

Applying Hölder’s inequality to the inner integral in (6), then (6) turns into
the following from,

Bmn |(f ;x, y)− f (x, y)| ≤ w (f ; δmn)
{

1 +
n

δmn

n∑
k=0

Pn (y)

×

k+1
n∫
k
n


1∫

0

[
(θ − x)2 + (s− y)2

]
ψm,x (θ) dθ


1
2


1∫
0

ψm,x (θ)dθ


1
2

ds
}
.

Again applying Hölder’s inequality to the second (outer) integral, then
the last inequality takes the from

|Bmn (f ;x, y)− f (x, y)| ≤ w (f ; δmn)
{

1 +
n

δmn

n∑
k=0

Pn (y)

×


k+1
n∫
k
n

1∫
0

[
(θ − x)2 + (s− y)2

]
ψm,x (θ) dθds


1
2


k+1
n∫
k
n

ds


1
2 }

.

Finally, applying the Cauchy-Schwarz-Bunyakowsky inequality to the
summation in the last inequality, then we obtain the following:

|Bmn (f ;x, y)− f (x, y)| ≤ w (f ; δmn)
{

1 +
n

δmn

×

 1

n

n∑
k=0

Pn (y)

k+1
n∫
k
n

1∫
0

[
(θ − x)2 + (s− y)2

]
ψm,x (θ) dθds


1
2 }

,
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here Pn (y) and ψm,x (θ) are defined by (2) and (3), respectively. Using
Lemma 1 and Lemma 2 and taking maximum over I2, the desired result is
obtained in (5). �

We have the following theorem for the partial modulus of continuities.

Theorem 3. Let f be continuous on I2 and bounded on R2, then we
have

|Bmn (f ;x, y)− f (x, y)| ≤ 3

2

{
w(1) (f ; δm) + w(2) (f ; δn)

}
,

where δm = 1√
m+1

, δn =
√

3n+4
3n2 and w(1), w(2) are the partial modulus of

continuity with respect to x and y, respectively.

Proof. For proof, we can use similarly way in Theorem 2. Let f (x, y)
be continuous on I2 and bounded on R2, then we get that following:

|Bmn (f ;x, y)− f (x, y)| ≤ Bmn (|f (θ, s)− f (x, y)| ;x, y)

= Bmn (|f (θ, s)− f (θ, y) + f (θ, y)− f (x, y)| ;x, y)

≤ Bmn (|f (θ, s)− f (θ, y)| ;x, y) +Bmn (|f (θ, y)− f (x, y)| ;x, y)

≤ w(2) (f ; δn)Bmn

(
1 +
|s− y|
δn

;x, y

)
+ w(1) (f ; δm)Bmn

(
1 +
|θ − x|
δm

;x, y

)
=

3

2

{
w(1) (f ; δm) + w(2) (f ; δn)

}
.

Thus, the proof of Theorem 3 is finished. �

Now, we will investigate the rates of convergence of Bmn by means of the
Lipschitz class LipM (γ) for 0 < γ ≤ 1. Recapulate that LipM (γ) is given
by

(7) |f (x1, y1)− f (x2, y2)| ≤M
[
(x1 − x2)2 + (y1 − y2)2

] γ
2
,

here (x1, y1), (x2, y2) ∈ I2 and M > 0.

Theorem 4. Let f ∈ LipM (γ), 0 < γ ≤ 1, then we have

(8) ‖Bmn (f ;x, y)− f (x, y)‖C(I2) ≤
M

2γ
δγmn,

where δmn is given by δmn =
√

1
m+1 + 3n+4

3n2 =
√
δ2m + δ2n, which is the same

in Theorem 2, and δm, δn are the same as in Theorem 3.
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Proof. Let f ∈ LipM (γ), 0 < γ ≤ 1. Using linearicity and monotonicity
of Bmn, we get that

|Bmn (f ;x, y)− f (x, y)| ≤ Bmn (|f (θ, s)− f (x, y)| ;x, y)(9)

≤Mn
n∑
k=0

Pn (y)

k+1
n∫
k
n

1∫
0

ψm,x (θ)
[
(θ − x)2 + (s− y)2

] γ
2
dθds

by (7). Applying Hölder’s inequality to the inner integral in (9), we obtain
that

|Bmn (f ;x, y)− f (x, y)| ≤Mn

n∑
k=0

Pn (y)

×

k+1
n∫
k
n


1∫

0

ψm,x (θ)
[
(θ − x)

2
+ (s− y)

2
]
dθ


γ
2


1∫
0

ψm,x (θ) dθ


2−γ
2

ds

= Mn

n∑
k=0

Pn (y)

k+1
n∫
k
n


1∫

0

ψm,x (θ)
[
(θ − x)

2
+ (s− y)

2
]
dθ


γ
2

ds.

Again, to the outher integral is applied by Hölder’s inequality, then the last
inequality takes the following form:

|Bmn (f ;x, y)− f (x, y)|

≤Mn

n∑
k=0

Pn (y)


k+1
n∫
k
n

1∫
0

ψm,x (θ)
[
(θ − x)

2
+ (s− y)

2
]
dθds


γ
2


k+1
n∫
k
n

ds


2−γ
2

= Mn

n∑
k=0

Pn (y)


k+1
n∫
k
n

1∫
0

ψm,x (θ)
[
(θ − x)

2
+ (s− y)

2
]
dθds


γ
2{

1

n

} 2−γ
2

.

Now, applying Hölder’s inequality for the sum in the last inequality we
reach to the following:

|Bmn (f ;x, y)− f (x, y)| ≤M

{
n

n∑
k=0

Pn (y)
1

n

} 2−γ
2

×

n
n∑
k=0

Pn (y)

k+1
n∫
k
n

1∫
0

ψm,x (θ)
[
(θ − x)2 + (s− y)2

]
dθds


γ
2

.
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Using Lemma 1, Lemma 2 and taking maximum over I2, (8) is obtained
easily, which completes the proof. �

4. A Voronovskaya type theorem

In this section, we will give a Voronovskaya type Theorem in C2
(
I2
)

for
operators Bmn for m = n .

Let C2 denote the space of all functions f having all continuous partial
derivatives up to order 2 exist, i.e.:

C2 :=
{
f ∈ C : fxiyj exist for 0 ≤ i, j ≤ 2

and 0 ≤ i+ j ≤ 2 is continuous} ,

where fxiyj := ∂2f(x,y)
∂xi∂yj

.

Firstly, we need the following lemma.

Lemma 4. Let (x, y) ∈ I2. Then, we get

(10) lim
m→∞

m2Bmn

(
(θ − x)4 ;x, y

)
= 3x4 − 6x3 + 3x2,

(11) lim
n→∞

n2Bmn

(
(s− y)4 ;x, y

)
= 3y4 − 6y3 + 5y2.

Proof. By Lemma 3 and the linearity of Bmn, we may write that

m2Bmn

(
(θ − x)4 ;x, y

)
= m2

[
3 (m− 6)x4 + 6 (6−m)x3 + 3 (m− 8)x2 + 6x

(m+ 3) (m+ 2) (m+ 1)

]
n2Bmn

(
(s− y)4 ;x, y

)
= n2

[
3 (n− 2) y4 + (16− 6n) y3 + 5 (n− 3) y2 + 4y

n3
+

1

5n4

]
.

Taking limit as m→∞, n→∞ respectively, then, the proof is complete. �

Theorem 5. For every f ∈ C2
(
I2
)

and (x, y) ∈ I2, we have

lim
n→∞

n {Bnn (f ;x, y)− f (x, y)}(12)

=
1

2
{fy + x (1− x) fxx + y (1− y) fyy} .
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Proof. Let (x, y) ∈ I2 and fx, fy, fxx, fxy, fyy ∈ C2 (I). Define the
function Φ as follows:

Φ(x,y) (θ, s) =


f(θ,s)−f(x,y)−(θ−x)fx−(s−y)fy√

(θ−x)4+(s−y)4

−
1
2{(θ−x)2fxx+2(θ−x)(s−y)fxy+(s−y)2fyy}√

(θ−x)4+(s−y)4
, (θ, s) 6= (x, y)

0, (θ, s) = (x, y) .

Then, by assumption we have Φ(x,y) (x, y) = 0 and the function Φ(x,y) (·, ·) ∈
C2
(
I2
)
. Hence, by the Taylor formula for f ∈ C2

(
I2
)
, we get

f (θ, s) = f (x, y) + (θ − x) fx + (s− y) fy(13)

+
1

2

{
(θ − x)2 fxx + 2 (θ − x) (s− y) fxy + (s− y)2 fyy

}
+ Φ(x,y) (θ, s)

√
(θ − x)4 + (s− y)4.

We apply the linear operators nBnn to (13) and using Lemma 2, we have

n {Bnn (f ;x, y)− f (x, y)}(14)

=
1

2

{
fy +

nx (1− x)

n+ 1
fxx +

[
y (1− y) +

1

3n

]
fyy

}
+ nBnn

(
Φ(x,y) (θ, s)

√
(θ − x)4 + (s− y)4;x, y

)
.

If we apply the Cauchy-Schwarz inequality for the second term on the
right-hand side of (14) then we conclude that

n

∣∣∣∣Bnn(Φ(x,y) (θ, s)

√
(θ − x)4 + (s− y)4;x, y

)∣∣∣∣(15)

≤
[
Bnn

(
Φ2
(x,y) (θ, s) ;x, y

)] 1
2

×
[
n2Bnn

(
(θ − x)4 + (s− y)4 ;x, y

)] 1
2

=
[
Bnn

(
Φ2
(x,y) (θ, s) ;x, y

)] 1
2

×
[
n2Bnn

(
(θ − x)4 ;x, y

)
+ n2Bnn

(
(s− y)4 ;x, y

)] 1
2
.

Let ϕ(x,y) (θ, s) = Φ2
(x,y) (θ, s). In this case, observe that ϕ(x,y) (x, y) = 0 and

ϕ(x,y) (·, ·) ∈ C2
(
I2
)
. From Theorem 1,

lim
n→∞

Bnn

(
Φ2
(x,y) (θ, s) ;x, y

)
= lim

n→∞
Bnn

(
ϕ(x,y) (θ, s) ;x, y

)
(16)

= ϕ(x,y) (x, y) = 0.
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Using (16) and Lemma 4, we have from (15)

(17) lim
n→∞

nBnn

(
Φ(x,y) (θ, s)

√
(θ − x)4 + (s− y)4;x, y

)
= 0.

On the other hand, observe that

(18) lim
n→∞

nx (1− x)

n+ 1
= x (1− x) , lim

n→∞

1

3n
= 0.

Then, taking limit as n→∞ in (14) and using (17) and (18) we have (12).
So the proof is completed. �

5. A Generalization of order r of Bmn

Let Cr
(
I2
)
, r ∈ N∪{0}, denote the space of all functions f having all

continuous partial derivatives up to order r exist at (x, y) ∈ I2. Let B
[r]
mn

denote the following generalization of Bmn.

(19) B[r]
mn (f ;x, y) = n

n∑
k=0

Pn (y)

k+1
n∫
k
n

1∫
0

ψm,x (θ)Pr,(θ,s) (x− θ, y − s) dθds,

where

(20) Pr,(θ,s) (x− θ, y − s) =
r∑

h=0

∑
i+j=h

1

h!

(
h

j

)
fxiyj (θ, s) (x− θ)i (y − s)j ,

and by the subscripts appeared on fxiyj , we denote to write the partial

derivatives of f , i.e.: fxiyj := ∂rf(x,y)
∂xi∂yj

; r = i+ j. Now let us write

(21) (x− θ, y − s) = u (α, β) ,

where (α, β) is a unit vector, u > 0 and let us write

(22) F (u) = f (θ + uα, s+ uβ) = f (θ + (x− θ) , s+ (y − s)) .

Clearly Taylor’s formula for F (u) at u = 0 turns into Taylor’s formula for
f (x, y) at (θ, s). Morever, r − th derivative takes the form (see [2])

(23) F [r] (u) =
∑
i+j=r

(
r

j

)
fxiyj (θ + uα, s+ uβ)αiβj , r ∈ N.
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Theorem 6. Let f ∈ Cr
(
I2
)

and F [r] (u) ∈ LipM (γ), then the following
inequality∥∥∥B[r]

mn (f ;x, y)− f (x, y)
∥∥∥
C(I2)

(24)

≤ γMB (γ, r)

(γ + r) (r − 1)!

∥∥∥B[r]
mn

(
|(x, y)− (θ, s)|r+γ ;x, y

)∥∥∥
C(I2)

holds, where F [r] (u) is given by (23), B (γ, r) is the familiar Beta function,
0 < γ ≤ 1 and M > 0.

Proof. From (19) and (20), we have

f (x, y)−B[r]
mn (f ;x, y)(25)

= n

n∑
k=0

Pn (y)

k+1
n∫
k
n

1∫
0

ψm,x (θ)
{
f (x, y)− Pr,(θ,s) (x− θ, y − s)

}
dθds.

Using the integral form of the remainder term appeared in the previous
formula, we obtain that

f (x, y)− Pr,(θ,s) (x− θ, y − s)(26)

=
1

(r − 1)!

1∫
0

∑
i+j=h

1

h!

(
h

j

)
(x− θ)i (y − s)j

× fxiyj (θ + t (x− θ) , s+ t (y − s)) (1− t)r−1 dt.

(26) turns into the following form:

F (u)−
r∑

h=0

1

h!
F (h) (0)uh(27)

=
ur

(r − 1)!

1∫
0

[
F (r) (tu)− F (r) (0)

]
(1− t)r−1 dt

by using (21)-(23).

Taking (21), (26) and (27) into account and considering the fact that
F [r] (u) ∈ LipM (γ), then it follows that

∣∣f (x, y)− Pr,(θ,s) (x− θ, y − s)
∣∣ =

∣∣∣∣∣F (u)−
r∑

h=0

1

h!
F (h) (0)uh

∣∣∣∣∣(28)
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≤ |u|r

(r − 1)!

1∫
0

[
F (r) (tu)− F (r) (0)

]
(1− t)r−1 dt

≤ |u|r+γ

(r − 1)!
MB (γ + 1, r)

≤ M

(r − 1)!

γ

γ + r
B (γ, r) |u|r+γ

≤ M

(r − 1)!

γ

γ + r
B (γ, r) |x− θ, y − s|r+γ .

Hence combining (25) and (28) we obtain (24), which completes the
proof. �

Now, define the function g ∈ C
(
I2
)

as

g (θ, s) = |(x, y)− (θ, s)|r+γ .

It is clear that g (x, y) = 0. From Theorem 1 we get that

‖Bmn (g;x, y)‖C(I2) → 0 as m,n→∞.

From (24), we arrive at the following approximation:∥∥∥B[r]
mn (f ;x, y)− f (x, y)

∥∥∥
C(I2)

→ 0 as m,n→∞.

Taking Theorem 2 and Theorem 4 into consideration the following results
can be obtained from Theorem 6.

Corollary 1. Under the conditions of Theorem 6, it follows that∥∥∥B[r]
mn (f ;x, y)− f (x, y)

∥∥∥
C(I2)

≤ M

(r − 1)!

γ

(γ + r)
B (γ, r)

3

2
w (g; δmn) ,

here δmn =
√

1
m+1 + 3n+4

3n2 which is the same as in Theorem 2.

Corollary 2. Under the conditions of Theorem 6 and assuming that
g (x, y) ∈ Lip(√2)r (γ) in Theorem 4, it follows that

∥∥∥B[r]
mn (f ;x, y)− f (x, y)

∥∥∥
C(I2)

≤ M

(r − 1)!

γ

(γ + r)
B (γ, r)

(√
2
)r

2γ
δγmn,

where δmn =
√

1
m+1 + 3n+4

3n2 which is the same as in Theorem 2.
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