$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 52} 2014$

N. RAJESH AND V. VIJAYABHARATHI

ON ALMOST (γ, γ') - (β, β') -s-CONTINUOUS FUNCTIONS

ABSTRACT. The aim of this paper is to introduce and study a new class of functions called almost (γ, γ') - (β, β') -s-continuous functions in topological spaces by using (γ, γ') -semiopen sets.

KEY WORDS: topological spaces, (γ, γ') -open set, (γ, γ') -semiopen set.

AMS Mathematics Subject Classification: 54A40.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara [3] defined the concept of an operation on topological spaces. Umehara et. al. [5] introduced the notion of $\tau_{(\gamma,\gamma')}$ which is the collection of all (γ, γ') -open sets in a topological space (X, τ) . In [1] the authors, introduced the notion of (γ, γ') -semiopeness and investigated its fundamental properties. The aim of this paper is to introduce and study a new class of functions called almost (γ, γ') - (β, β') -s-continuous functions in topological spaces by using (γ, γ') -semiopen sets.

2. Preliminaries

Definition 1 ([3]). Let (X, τ) be a topological space. An operation γ on the topology τ is a function from τ in to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2 ([5]). A subset A of a topological space (X, τ) is said to be a (γ, γ') -open set if for each $x \in A$ there exist open neighborhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of a (γ, γ') -open set is called a (γ, γ') -closed set. Also $\tau_{(\gamma, \gamma')}$ denotes set of all (γ, γ') -open sets in (X, τ) . **Definition 3** ([5]). Let A be a subset of a topological space (X, τ) . A point $x \in A$ is said to be the (γ, γ') -interior point of A if there exist open neighborhods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$ and we denote the set of all such points by $\operatorname{Int}_{(\gamma,\gamma')}(A)$. Thus $\operatorname{Int}_{(\gamma,\gamma')}(A) = \{x \in A : x \in U \in \tau, V \in \tau$ and $U^{\gamma} \cup V^{\gamma'} \subset A$. Note that A is (γ, γ') -open if and only if $A = \operatorname{Int}_{(\gamma,\gamma')}(A)$. A subset $A \subset X$ is called (γ, γ') -closed if and only if $X \setminus A$ is (γ, γ') -open.

Definition 4 ([5]). A point $x \in X$ is called the (γ, γ') -closure point of $A \subset X$, if $(U^{\gamma} \cup V^{\gamma'}) \cap A \neq \emptyset$ for any open neighborhoods U and V of x. The set of all (γ, γ') -closure points of A is called (γ, γ') -closure of A and is denoted by $\operatorname{Cl}_{(\gamma,\gamma')}(A)$. A subset A of X is called (γ, γ') -closed if $\operatorname{Cl}_{(\gamma,\gamma')}(A) \subset A$.

Definition 5 ([1]). A subset A of a topological space (X, τ) is said to be (γ, γ') -semiopen if there exists a (γ, γ') -open set O such that $O \subset A \subset$ $\operatorname{Cl}_{(\gamma,\gamma')}(O)$. The set of all (γ, γ') -semiopen sets is denoted by $SO_{(\gamma,\gamma')}(X)$. A is (γ, γ') -semiclosed if and only if $X \setminus A$ is (γ, γ') -semiopen in X.

Definition 6 ([1]). Let A be a subset of a topological space (X, τ) and γ, γ' operators on τ .

(1) The intersection of all (γ, γ') -semiclosed sets containing A is called the (γ, γ') -semiclosure of A and is denoted by $s \operatorname{Cl}_{(\gamma, \gamma')}(A)$.

(2) The union of all (γ, γ') -semiopen subsets of A is called (γ, γ') -semiinterior of A and is denoted by $s \operatorname{Int}_{(\gamma, \gamma')}(A)$.

Definition 7 ([1]). A point $x \in X$ is said to be (γ, γ') -semi- θ -adherent point of a subset A of X if $s \operatorname{Cl}_{(\gamma,\gamma')}(U) \cap A \neq \emptyset$ for every $U \in SO_{(\gamma,\gamma')}(X)$. The set of all (γ, γ') -semi- θ -adherent points of A is called the (γ, γ') -semi- θ closure of A and is denoted by $s_{(\gamma,\gamma')} \operatorname{Cl}_{\theta}(A)$. A subset A is called (γ, γ') -semi- θ -closed if $s_{(\gamma,\gamma')} \operatorname{Cl}_{\theta}(A) = A$. A subset A is called (γ, γ') -semi- θ -open if and only if $X \setminus A$ is (γ, γ') -semi- θ -closed.

Definition 8 ([1]). A subset A of a topological space (X, τ) is said to be (γ, γ') -semiregular, if it is both (γ, γ') -semiopen and (γ, γ') -semiclosed. The class of all (γ, γ') -semiregular sets of X is denoted by $SR_{(\gamma, \gamma')}(A)$.

Definition 9 ([4]). An operation γ on τ is said to be regular if for any open neighborhoods U, V of $x \in X$, there exists an open neighborhood W of x such that $U^{\gamma} \cap V^{\gamma} \supset W^{\gamma}$.

Definition 10 ([4]). An operation γ on τ is said to be open if for every neighborhood U of $x \in X$, there exists a γ -open set B such that $x \in B$ and $U^{\gamma} \supset B$.

Definition 11 ([2]). A subset A of a topological space (X, τ) is said to be (γ, γ') -s-closed if for every covery $\{V_{\alpha} : \alpha \in I\}$ of X by (γ, γ') -semiopen sets

of X, there exists a finite subset I_0 of I such that $A \subset \bigcup_{\alpha \in I_0} s \operatorname{Cl}_{(\gamma,\gamma')}(V_\alpha)$. If

A = X, the topological space (X, τ) is called a (γ, γ') -s-closed space.

Proposition 1 ([2]). For any space X, the following are equivalent:

(1) X is (γ, γ') -s-closed.

(2) Every cover of X by (γ, γ') -semiregular sets has a finite subcover.

Definition 12 ([1]). A function $f : (X, \tau) \to (Y, \tau)$ is said to be $((\gamma, \gamma'), (\beta, \beta'))$ -semicontinuous if for any (β, β') -open set B in Y, $f^{-1}(B)$ is (γ, γ') -semiopen in X.

Definition 13. An operation $\gamma : \tau \to P(X)$ is said to be γ -open, if V^{γ} is γ -open for each $V \in \tau$.

Lemma 1 ([1]). Let A be a subset of a space X. Then we have (1) If $A \in SO_{(\gamma,\gamma')}(X)$, then $s \operatorname{Cl}_{(\gamma,\gamma')}(A) = s_{(\gamma,\gamma')} \operatorname{Cl}_{\theta}(A)$. (2) If $A \in SR_{(\gamma,\gamma')}(X)$, then A is (γ,γ') -semi- θ -closed.

Proof. (1) Clearly $s \operatorname{Cl}_{(\gamma,\gamma')}(A) \subset s_{(\gamma,\gamma')} \operatorname{Cl}_{\theta}(A)$. Suppose that $x \notin s \operatorname{Cl}_{(\gamma,\gamma')}(A)$. Then, for some (γ,γ') -semiopen set $U, A \cap U = \emptyset$ and hence $A \cap s \operatorname{Cl}_{(\gamma,\gamma')}(U) = \emptyset$, since $A \in SO_{(\gamma,\gamma')}(X)$. This shows that $x \notin s_{(\gamma,\gamma')} \operatorname{Cl}_{\theta}(A)$. Therefore $s \operatorname{Cl}_{(\gamma,\gamma')}(A) = s_{(\gamma,\gamma')} \operatorname{Cl}_{\theta}(A)$.

(2) This follows from (1).

Lemma 2 ([1]). Let A be a subset of a topological space (X, τ) : (1) If $A \in SO_{(\gamma,\gamma')}(X)$, then $s \operatorname{Cl}_{(\gamma,\gamma')}(A) \in SR_{(\gamma,\gamma')}(A)$. (2) If A is (γ,γ') -open in X, then $s \operatorname{Cl}_{(\gamma,\gamma')}(A) = \operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(X))$.

Proof. (1) Since $s \operatorname{Cl}_{(\gamma,\gamma')}(A)$ is (γ,γ') -semiclosed, we show that $s \operatorname{Cl}_{(\gamma,\gamma')}(A) \in SO_{(\gamma,\gamma')}(X)$. Since $A \in SO_{(\gamma,\gamma')}(X)$, then for (γ,γ') -open set U of X, $U \subset A \subset \operatorname{Cl}_{(\gamma,\gamma')}U$. Therefore we have, $U \subset s \operatorname{Cl}_{(\gamma,\gamma')}(U) \subset s \operatorname{Cl}_{(\gamma,\gamma')}(A) \subset s \operatorname{Cl}_{(\gamma,\gamma')}(C) = \operatorname{Cl}_{(\gamma,\gamma')}(U) = \operatorname{Cl}_{(\gamma,\gamma')}(U)$ or $U \subset s \operatorname{Cl}_{(\gamma,\gamma')}(A) \subset \operatorname{Cl}_{(\gamma,\gamma')}(U)$ and hence $s \operatorname{Cl}_{(\gamma,\gamma')}(A) \in SO_{(\gamma,\gamma')}(X)$.

3. Almost (γ, γ') - (β, β') -s-continuous functions

Definition 14. A function $f : (X, \tau) \to (Y, \tau)$ is said to be almost (γ, γ') - (β, β') -s-continuous if for each point $x \in X$ and each $V \in SO_{(\beta,\beta')}(Y)$, there exists a (γ, γ') -open set U containing x such that $f(U) \subseteq s \operatorname{Cl}_{(\gamma,\gamma')}(V)$.

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. Define the operations $\gamma : \tau \to \mathcal{P}(X), \gamma' : \tau \to \mathcal{P}(X), \beta : \sigma \to \mathcal{P}(X)$ and $\beta' : \sigma \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A \\ \operatorname{Cl}(A) & \text{if } b \in A, \end{cases} \qquad A^{\gamma'} = \begin{cases} \operatorname{Cl}(A) & \text{if } b \notin A \\ A & \text{if } b \in A, \end{cases}$$

$$A^{\beta} = \begin{cases} A & \text{if } a \in A \\ A \cup \{a\} & \text{if } a \notin A \end{cases} \text{ and } A^{\beta'} = \begin{cases} A & \text{if } c \in A \\ A \cup \{c\} & \text{if } c \notin A. \end{cases}$$

Clearly, $\tau_{(\gamma,\gamma')} = \{\emptyset, X, \{b\}, \{a, b\}, \{a, c\}\}$ and $SO_{(\beta,\beta')}(Y) = \{\emptyset, X, \{a, c\}\}$. The the identity function $f : (X, \tau) \to (Y, \sigma)$ is almost (γ, γ') - (β, β') -s-continuous.

Theorem 1. The following statements are equivalent for a function f: $(X, \tau) \rightarrow (Y, \sigma)$:

(1) f is almost (γ, γ') - (β, β') -s-continuous.

(2) For each $x \in X$ and $V \in SR_{(\beta,\beta')}(Y)$, there exists a (γ,γ') -open set U containing x such that $f(U) \subseteq V$.

(3) $f^{-1}(V)$ is (γ, γ') -clopen (= (γ, γ') -open as well as (γ, γ') -closed) in X for every $V \in SR_{(\beta,\beta')}(Y)$.

(4) $f^{-1}(V) \subseteq \operatorname{Int}_{(\gamma,\gamma')}(f^{-1}(s\operatorname{Cl}_{(\beta,\beta')}(V)))$ for every $V \in SO_{(\beta,\beta')}(Y)$.

(5) $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(s\operatorname{Int}_{(\beta,\beta')}(V))) \subseteq f^{-1}(V)$ for every (β,β') -semiclosed set V of Y.

(6) $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(V)) \subseteq f^{-1}(s \operatorname{Cl}_{(\beta,\beta')}(V))$ for every $V \in SO_{(\beta,\beta')}(Y)$, where γ and γ' are open.

Proof. (1) \Rightarrow (2): Let $x \in X$ and $V \in SR_{(\beta,\beta')}(Y)$. There exists a (γ, γ') -open set U containing x such that $f(U) \subseteq s \operatorname{Cl}_{(\beta,\beta')}(V) = V$.

(2) \Rightarrow (3): Let $V \in SR_{(\beta,\beta')}(Y)$ and $x \in f^{-1}(V)$. Then $f(U) \subseteq V$ for some (γ, γ') -open set U of X containing x hence $x \in U \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is (γ, γ') -open in X. Since $Y \setminus V \in SR_{(\beta,\beta')}(Y)$, $f^{-1}(Y \setminus V)$ is also (γ, γ') -open and hence $f^{-1}(V)$ is (γ, γ') -clopen in X.

 $(3) \Rightarrow (4): \text{ Let } V \in SO_{(\beta,\beta')}(Y). \text{ Then by Lemma 2, } V \subseteq s \operatorname{Cl}_{(\beta,\beta')}(V) \\ \text{and } s \operatorname{Cl}_{(\beta,\beta')}(V) \in SR_{(\beta,\beta')}(Y). \text{ By } (3), \text{ we have } f^{-1}(V) \subseteq f^{-1}(s \operatorname{Cl}_{(\beta,\beta')}(V)) \\ \text{and } f^{-1}(s \operatorname{Cl}_{(\beta,\beta')}(V)) \text{ is } (\gamma,\gamma')\text{-open in } X. \text{ Therefore, we obtain } f^{-1}(V) \subseteq \operatorname{Int}_{(\gamma,\gamma')}(f^{-1}(s \operatorname{Cl}_{(\beta,\beta')}(V))).$

(4) \Rightarrow (5): Let V be a (β, β') -semiclosed subset of Y. By (4), we have $f^{-1}(Y \setminus V) \subseteq \operatorname{Int}_{(\gamma,\gamma')}(f^{-1}(s\operatorname{Cl}_{(\beta,\beta')}(Y \setminus V))) = \operatorname{Int}_{(\gamma,\gamma')}(f^{-1}(Y \setminus \operatorname{Int}_{(\beta,\beta')}(V))) = X \setminus \operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(s\operatorname{Int}_{(\beta,\beta')}(V)))$. Therefore, we obtain $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(s\operatorname{Int}_{(\beta,\beta')}(V))) \subseteq f^{-1}(V)$.

 $(5) \Rightarrow (6): \text{ Let } V \in SO_{(\beta,\beta')}(Y). \text{ Then } s\operatorname{Cl}_{(\beta,\beta')}(V) \in SR_{(\beta,\beta')}(Y). \text{ By}$ Lemma 2 and (5) we obtain $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(V)) \subseteq \operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(s\operatorname{Cl}_{(\beta,\beta')}(V))) \subseteq f^{-1}(s\operatorname{Cl}_{(\beta,\beta')}(V)).$

(6) \Rightarrow (1): Let $x \in X$ and $V \in SO_{(\beta,\beta')}(Y)$. By Lemma 2, we have $s \operatorname{Cl}_{(\gamma,\gamma')}(X) \in SR_{(\gamma,\gamma')}(X)$ and $f(x) \notin Y \setminus \operatorname{SCl}_{(\beta,\beta')}(V) = s \operatorname{Cl}_{(\beta,\beta')}(Y \setminus s \operatorname{Cl}_{(\beta,\beta')}(V))$. Thus, by (6) we obtain $x \notin \operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(Y \setminus s \operatorname{Cl}_{(\beta,\beta')}(V)))$. There exists a (γ, γ') -open set U of x such that $U \cap f^{-1}(Y \setminus s \operatorname{Cl}_{(\beta,\beta')}(V)) = \emptyset$. Therefore, we have $f(U) \cap (Y \setminus s \operatorname{Cl}_{(\beta,\beta')}(V)) = \emptyset$ and hence $f(U) \subseteq s \operatorname{Cl}_{(\beta,\beta')}(V)$. This shows that f is almost (γ, γ') - (β, β') -s-continuous.

Theorem 2. The following statements are equivalent for a function f: $(X,\tau) \to (Y,\tau)$:

(1) f is almost (γ, γ') - (β, β') -s-continuous.

(2) For each $x \in X$ and each $V \in SR_{(\beta,\beta')}(Y)$, there exists a (γ,γ') -clopen set U containing x such that $f(U) \subseteq V$.

(3) For each $x \in X$ and each $V \in SO_{(\beta,\beta')}(Y)$, there exists a (γ,γ') -open set U containing x such that $f(\operatorname{Cl}_{(\gamma,\gamma')}(U)) \subseteq s \operatorname{Cl}_{(\beta,\beta')}(V)$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and $V \in SR_{(\beta,\beta')}(Y)$. By Theorem 1. $f^{-1}(V)$ is (γ, γ') -clopen in X. Put $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subseteq V$. The proof of the other implications are obvious.

Theorem 3. The following statements are equivalent for a function f: $(X,\tau) \to (Y,\tau)$:

(1) f is almost (γ, γ') - (β, β') -s-continuous.

(2) $f(\operatorname{Cl}_{(\gamma,\gamma')}(A)) \subseteq s_{(\beta,\beta')} \operatorname{Cl}_{\theta}(f(A))$ for every subset A of X. (3) $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(B)) \subseteq f^{-1}(s_{(\beta,\beta')} \operatorname{Cl}_{\theta}(B))$ for every subset B of Y.

(4) $f^{-1}(F)$ is (γ, γ') -closed in X for every (β, β') -semi- θ -closed set F of Y.

(5) $f^{-1}(V)$ is (γ, γ') -open in X for every (β, β') -semi- θ -open set V of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y* and $x \notin f^{-1}(s_{(\beta,\beta')} \operatorname{Cl}_{\theta}(B))$. Then $f(x) \notin s_{(\beta,\beta')} \operatorname{Cl}_{\theta}(B)$ and there exists $V \in SO_{(\beta,\beta')}(Y,f(x))$ such that $s_{(\beta,\beta')} \operatorname{Cl}(V) \cap B = \emptyset$. By (1), there exists a (γ, γ') -open set U containing x such that $f(U) \subset s_{(\beta,\beta')} \operatorname{Cl}(V)$. Hence $f(U) \cap B = \emptyset$ and $U \cap f^{-1}(B) = \emptyset$. Consequently, we obtain $x \notin \operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(B))$.

(2) \Rightarrow (3): Let A be any subset of X. By (2), we have $\operatorname{Cl}_{(\gamma,\gamma')}(A)$ $\subset \operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(f(A))) \subset f^{-1}(s_{(\beta,\beta')}\operatorname{Cl}_{\theta}(f(A)))$ and hence $f(\operatorname{Cl}_{(\gamma,\gamma')}(A)) \subset f^{-1}(s_{(\beta,\beta')})$ $s_{(\beta,\beta')} \operatorname{Cl}_{\theta}(f(A)).$

(3) \Rightarrow (4): Let F be any (β, β') -semi- θ -closed set of Y. Then, by (3), we have $f(\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(F))) \subset s_{(\beta,\beta')}\operatorname{Cl}_{\theta}(f(f^{-1}(F))) \subset s_{(\beta,\beta')}\operatorname{Cl}_{\theta}(F) = F.$ Therefore, we have $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(F)) \subset f^{-1}(F)$ and hence $\operatorname{Cl}_{(\gamma,\gamma')}(f^{-1}(F)) =$ $f^{-1}(F)$. This shows that $f^{-1}(F)$ is (γ, γ') -closed set in X.

 $(4) \Rightarrow (5)$: This is obvious.

 $(5) \Rightarrow (1)$: Let $x \in X$ and $V \in SO_{(\beta,\beta')}(Y, f(x))$. By Lemmas 1 and 2, $s_{(\beta,\beta')} \operatorname{Cl}(V)$ is (β,β') - θ -open in Y. Put $U = f^{-1}(s_{(\beta,\beta')} \operatorname{Cl}(V))$. Then by (5), U is (γ, γ') -open containing x and $f(U) \subset s_{(\beta,\beta')} \operatorname{Cl}(V)$. Thus, f is almost (γ, γ') - (β, β') -s-continuous.

Definition 15. A point $x \in X$ is said to be a (γ, γ') - θ -adherent point of a subset A of X if $\operatorname{Cl}_{(\gamma,\gamma')}(U) \cap A \neq \emptyset$ for every (γ,γ') -open set U containing x. The set of all (γ, γ') - θ -adherent points of A is called the (γ, γ') - θ -closure of A and is denoted by $\operatorname{Cl}_{(\gamma,\gamma')\theta}(A)$. Note that a subset A is called (γ,γ') - θ -closed if $\operatorname{Cl}_{(\gamma,\gamma')\theta}(A) = A$. The complement of a (γ,γ') - θ -closed set is called a (γ, γ') - θ -open set.

The proof of the following theorem is similar to Theorem 3 and thus omitted.

Theorem 4. The following statements are equivalent for a function f : $(X,\tau) \to (Y,\tau)$:

(1) f is almost (γ, γ') - (β, β') -s-continuous.

(2) $\operatorname{Cl}_{(\gamma,\gamma')\theta}(f^{-1}(A)) \subseteq f^{-1}(s_{(\beta,\beta')}\operatorname{Cl}_{\theta}(A))$ for every subset A of Y.

(3) $f(\operatorname{Cl}_{(\gamma,\gamma')\theta}(B)) \subseteq s_{(\beta,\beta')} \operatorname{Cl}_{\theta}(f(B))$ for every subset B of X. (4) $f^{-1}(F)$ is (γ,γ') - θ -closed in X for every (β,β') -semi- θ -closed set Fof Y.

(5) $f^{-1}(V)$ is (γ, γ') - θ -open in X for every (β, β') -semi- θ -open set V of Y.

Theorem 5. If $f: (X, \tau) \to (Y, \tau)$ is almost $(\gamma, \gamma') \cdot (\beta, \beta')$ -s-continuous and A is (γ, γ') -s-closed in X, then f(A) is (β, β') -s-closed in Y.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be any cover of f(A) by (β, β') -semiregular sets of Y. By Theorem 1, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a cover of A by (γ, γ') -clopen sets of X. By Proposition 1, there exists a finite subset I_0 of I such that $A \subseteq \cup s \operatorname{Cl}_{(\gamma,\gamma')} \{ f^{-1}(V_{\alpha}) : \alpha \in I_0 \}$ and hence $f(A) \subseteq \cup s \operatorname{Cl}_{(\beta,\beta')} \{ V_{\alpha} : \alpha \in I_0 \}$ I_0 . Hence f(A) is (β, β') -semiclosed relative to Y.

Theorem 6. If $f: (X, \tau) \to (Y, \tau)$ is almost (γ, γ') - (β, β') -s-continuous surjection and X is (γ, γ') -s-closed, then Y is (β, β') -s-closed.

Proof. The proof is clear.

Theorem 7. Let $f: (X,\tau) \to (Y,\tau)$ be a function and $x \in X$. If there exists a (γ, γ') -open set N of X containing x such that the restriction f_N of f to N is almost (γ, γ') - (β, β') -s-continuous at x, then f is almost (γ, γ') - (β, β') -s-continuous at x, where γ and γ' are regular.

Proof. Let U be any (γ, γ') -semiregular set containing f(x). Since f_N is almost (γ, γ') - (β, β') -s-continuous at x, there is a (γ, γ') -open set V containing x such that $x \in N \cap V$ and $f(N \cap V) \subseteq s \operatorname{Cl}_{(\beta,\beta')}(U) = U$ or $f(N \cap V) \subseteq U$. Since γ and γ' are regular, $N \cap V$ is a (γ, γ') -open set containing x. Hence f is almost (γ, γ') - (β, β') -s-continuous at x.

Theorem 8. Let X_1, X_2 be (γ, γ') -closed sets in a topological space (X, τ) and $X = X_1 \cup X_2$. If $f: X \to Y$ be a function and f_{X_1} and f_{X_2} are almost (γ, γ') - (β, β') -s-continuous functions, then f is almost (γ, γ') - (β, β') -s-continuous, where γ and γ' are regular.

Proof. Let A be a (β, β') -semiregular subset of Y. Since f_{X_1} and f_{X_2} are both almost (γ, γ') - (β, β') -s-continuous, $(f_{X_1})^{-1}(A)$ and $(f_{X_2})^{-1}(A)$ are both (γ, γ') -clopen subsets of X and $f^{-1}(A) = (f_{X_1})^{-1}(A) \cup (f_{X_1})^{-1}(A)$. Since γ and γ' are regular, $f^{-1}(A)$ is the union of two (γ, γ') -clopen sets and is thus (γ, γ') -clopen in X. Hence f is almost (γ, γ') - (β, β') -s-continuous function.

Remark 1. The following example shows that the regularity on γ and γ' of Theorem 8 can not be removed.

Example 2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Define the operations $\gamma : \tau \to \mathcal{P}(X), \gamma' : \tau \to \mathcal{P}(X), \beta : \sigma \to \mathcal{P}(X)$ and $\beta' : \sigma \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A \\ \operatorname{Cl}(A) & \text{if } b \in A, \end{cases} \qquad A^{\gamma'} = \begin{cases} \operatorname{Cl}(A) & \text{if } b \notin A \\ A & \text{if } b \in A, \end{cases}$$
$$A^{\beta} = \begin{cases} A & \text{if } a \in A \\ A \cup \{a\} & \text{if } a \notin A \end{cases} \text{ and } A^{\beta'} = \begin{cases} A & \text{if } c \in A \\ A \cup \{c\} & \text{if } c \notin A \end{cases}$$

Then, it is shown that γ' is not regular. Let $X_1 = \{b\}$, $X_2 = \{a, c\}$ and $f: (X, \tau) \to (Y, \tau)$ be an identity function. Clearly, f_{X_1} and f_{X_2} are almost (γ, γ') - (β, β') -s-continuous functions but f is almost (γ, γ') - (β, β') -s-continuous function.

Theorem 9. If $f: X \to X$ be a function f_{X_1} and f_{X_2} are both almost (γ, γ') - (β, β') -s-continuous at a point $x \in X = X_1 \cup X_2$, then f is almost (γ, γ') - (β, β') -s-continuous at x, where γ and γ' are regular operations.

Proof. Let U be any (γ, γ') -semiregular set containing f(x). Since $x \in X_1 \cap X_2$ and f_{X_1} , f_{X_2} are both almost (γ, γ') - (β, β') -s-continuous at a point x, there exists (γ, γ') -open sets V_1 and V_2 of X, respectively containing x such that $x \in X_1 \cap V_1$, $f(X_1 \cap V_1) \subseteq U$ and $x \in X_2 \cap V_2$, $f(X_2 \cap V_2) \subseteq U$. Since $X = X_1 \cup X_2$, $f(V_1 \cap V_2) = f(X_1 \cap V_1 \cap V_2) \cup f(X_2 \cap V_1 \cap V_2) \subseteq f(X_1 \cap V_1) \cup f(X_2 \cap V_2) \subseteq U$. Since γ and γ' are regular, $V_1 \cap V_2 = V$ is a (γ, γ') -open set containing x such that $f(V) \subseteq U$ and hence f is almost (γ, γ') - (β, β') -s-continuous by Theorem 1.

Acknowledgement. The authors wish to thank the referee for his suggestions and corrections which helped to improve this paper.

References

[1] CARPINTERO C., RAJESH N., ROSAS E., Bioperation-semiopen sets, (*sub-mitted*).

- [2] CARPINTERO C., RAJESH N., ROSAS E., Properties of (γ, γ') -semiopen sets, Italian Journal Pure and Applied Mathematics, to appear in Vol 31, 2013.
- [3] KASAHARA S., Operation-compact spaces, Math. Japonica, 24(1979), 97-105.
- [4] OGATA H., Operation on topological spaces and associated topology, Math. Japonica, 36(1)(1991), 175-184.
- [5] UMEHARA J., MAKI H., NOIRI T., Bioperation on topological spaces and some separation axioms, *Mem. Fac. Sci. Kochi Univ.* (A), 13(1992), 45-59.

N. RAJESH DEPARTMENT OF MATHEMATICS RAJAH SERFOJI GOVT. COLLEGE THANJAVUR-613005, TAMILNADU, INDIA *e-mail:* nrajesh_topology@yahoo.co.in

V. VIJAYABHARATHI DEPARTMENT OF MATHEMATICS NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI, TAMILNADU, INDIA *e-mail:* vijayabharathi_v@yahoo.com

Received on 22.11.2012 and, in revised form, on 25.02.2013.