$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 52} 2014$

A. S. Sezer, A. O. Atagün and N. Çağman

N-GROUP *SI*-ACTION AND ITS APPLICATIONS TO *N*-GROUP THEORY

ABSTRACT. In this paper, we define a new concept, called N-group soft intersection action (SI) on a soft set. This new notion gathers soft set theory, set theory and N-group theory together and it shows how a soft set effects on an N-group structure in the mean of intersection and inclusion of sets. We then obtain its basic properties with illustrative examples and derive some analog of classical N-group theoretic concepts for N-group SI-actions. Finally, we give the applications of N-group SI-actions to N-group theory.

KEY WORDS: soft set, N-group SI-action, N-ideal SI-action, soft image, soft pre-image, α -inclusion.

AMS Mathematics Subject Classification: 03E70, 58E40.

1. Introduction

Soft set theory was introduced in 1999 by Molodtsov [22] for dealing with uncertainties and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 25, 28]. Moreover, Atagün and Sezgin [4] defined the concepts of soft subrings and ideals of a ring, soft subfields of a field and soft submodules of a module and studied their related properties with respect to soft set operations.

Operations of soft sets have been studied by some authors, too. Maji et al. [19] presented some definitions on soft sets and based on the analysis of several operations on soft sets Ali et al. [3] introduced several operations of soft sets and Sezgin and Atagün [26] studied on soft set operations as well. Furthermore, soft set relations and functions [5] and soft mappings [21] with many related concepts were discussed. The theory of soft set has also a wide-ranging applications especially in soft decision making as in the following studies: [6, 7, 23, 29].

In this paper, we first define a new type of N-group action on a soft set, called N-group soft intersection action (abbreviated as "N-group SI-action"), which is based on the inclusion relation and intersection of sets. Since this

new concept can be regarded as a bridge among soft set theory, set theory and N-group theory, it is very functional in the mean of improving the soft set theory with respect to N-group structure. Based on this new notion, we then introduce the concepts of N-ideal SI-action and show that if N is a zero-symmetric near-ring, then every N-ideal SI-action over U is an N-group SI-action over U. Moreover, we investigate these notions with respect to soft image, soft pre-image and α -inclusion of soft sets and give their applications to N-group theory.

2. Preliminaries

In this section, we recall some basic notions relevant to N-groups and soft sets. By a *near-ring*, we shall mean an algebraic system (N, +, .), where

(N1) (N, +) forms a group (not necessarily abelian)

(N2) (N, \cdot) forms a semigroup and

(N3) (a+b)c = ac+bc for all $a, b, c \in N$ (i.e. we study on right N-groups.)

Throughout this paper, N will always denote a right near-ring. A normal subgroup I of N is called a left ideal of N if $n(s+i) - ns \in I$ for all $n, s \in N$ and $i \in I$ and denoted by $I \triangleleft_{\ell} N$. For a near-ring N, the zero-symmetric part of N denoted by N_0 is defined by $N_0 = \{n \in \Gamma \mid n0 = 0\}$. Let $(\Gamma, +)$ be a group and

$$\begin{array}{rccc} \mu : & N \times \Gamma & \to & \Gamma \\ & & (n, \gamma) & \to & n\gamma \end{array}$$

 (Γ, μ) is called an *N*-group or near-ring module if $\forall x, y \in N, \forall \gamma \in \Gamma$,

- (i) $x(y\gamma) = (xy)\gamma$ and
- $(ii) \ (x+y)\gamma = x\gamma + y\gamma.$

It is denoted by N^{Γ} . Clearly N itself is an N-group by natural operation. A subgroup Δ of N^{Γ} with $N\Delta \subseteq \Delta$ is said to be an N-subgroup of Γ and denoted by $\Delta \leq_N \Gamma$. A normal subgroup Δ of Γ is called an N-ideal of N^{Γ} and denoted by $\Delta \leq_N \Gamma$, if $\forall \gamma \in \Gamma$, $\forall \delta \in \Delta$, $\forall n \in N$, $n(\gamma + \delta) - n\gamma \in \Delta$. Let N be a near-ring, Γ and Ψ two N-groups. Then, $h : \Gamma \to \Psi$ is called an N-homomorphism if $\forall \gamma, \delta \in \Gamma, \forall n \in N$,

(i) $h(\gamma + \delta) = h(\gamma) + h(\delta)$ and

(*ii*)
$$h(n\gamma) = nh(\gamma)$$
.

For all undefined concepts and notions we refer to [24]. From now on, U refers to an initial universe, E is a set of parameters, P(U) is the power set of U and $A, B, C \subseteq E$.

Definition 1 ([7, 22]). A soft set f_A over U is a set defined by

$$f_A: E \to P(U)$$
 such that $f_A(x) = \emptyset$ if $x \notin A$.

Here f_A is also called approximate function. A soft set over U can be represented by the set of ordered pairs

$$f_A = \{ (x, f_A(x)) : x \in E, f_A(x) \in P(U) \}.$$

It is clear to see that a soft set is a parametrized family of subsets of the set U. It is worth noting that the sets $f_A(x)$ may be arbitrary. Some of them may be empty, some may have nonempty intersection. If we define more than one soft set in a subset A of the set of parameters E, then the soft sets will be denoted by f_A , g_A , h_A etc. If we define more than one soft set in some subsets A, B, C etc. of parameters E, then the soft sets will be denoted by f_A , f_B , f_C etc., respectively. We refer to [7, 12, 13, 19, 22] for further details.

Definition 2 ([7]). Let f_A and f_B be soft sets over U. Then, union of f_A and f_B , denoted by $f_A \widetilde{\cup} f_B$, is defined as $f_A \widetilde{\cup} f_B = f_{A \widetilde{\cup} B}$, where $f_{A \widetilde{\cup} B}(x) = f_A(x) \cup f_B(x)$ for all $x \in E$.

Intersection of f_A and f_B , denoted by $f_A \cap f_B$, is defined as $f_A \cap f_B = f_{A \cap B}$, where $f_{A \cap B}(x) = f_A(x) \cap f_B(x)$ for all $x \in E$.

Definition 3 ([7]). Let f_A and f_B be soft sets over U. Then, \lor -product of f_A and f_B , denoted by $f_A \lor f_B$, is defined as $f_A \lor f_B = f_{A \lor B}$, where $f_{A \lor B}(x, y) = f_A(x) \cup f_B(y)$ for all $(x, y) \in E \times E$.

 \wedge -product of f_A and f_B , denoted by $f_A \wedge f_B$, is defined as $f_A \wedge f_B = f_{A \wedge B}$, where $f_{A \wedge B}(x, y) = f_A(x) \cap f_B(y)$ for all $(x, y) \in E \times E$

Definition 4 ([8]). Let f_A and f_B be soft sets over the common universe U and Ψ be a function from A to B. Then, soft image of f_A under Ψ , denoted by $\Psi(f_A)$, is a soft set over U by

$$(\Psi(f_A))(b) = \begin{cases} \bigcup \{f_A(a) \mid a \in A \text{ and } \Psi(a) = b\}, & \text{if } \Psi^{-1}(b) \neq \emptyset, \\ \emptyset, & \text{otherwise} \end{cases}$$

for all $b \in B$. And soft pre-image (or soft inverse image) of f_B under Ψ , denoted by $\Psi^{-1}(f_B)$, is a soft set over U by $(\Psi^{-1}(f_B))(a) = f_B(\Psi(a))$ for all $a \in A$.

Definition 5 ([10]). Let f_A be a soft set over U and α be a subset of U. Then, upper α -inclusion of f_A , denoted by $f_A^{\supseteq \alpha}$, and lower α -inclusion of f_A , denoted by $f_A^{\subseteq \alpha}$, are defined as

$$f_A^{\supseteq\alpha} = \{ x \in A \mid f_A(x) \supseteq \alpha \} \text{ and } f_A^{\subseteq\alpha} = \{ x \in A \mid f_A(x) \subseteq \alpha \},\$$

respectively.

2. N-group SI-actions and N-ideal SI-actions

In this section, we first define N-group soft intersection action, abbreviated as N-group SI-action and N-ideal SI-action with illustrative examples. We then study their basic properties with respect to soft set operations.

Definition 6. Let Γ be an N-group and f_{Γ} be a soft set over U. Then, f_{Γ} is called an N-group SI-action over U if it satisfies the following conditions: (i) $f_{\Gamma}(x + y) \supset f_{\Gamma}(x) \cap f_{\Gamma}(y)$

$$(i) f_{\Gamma}(x+y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y)$$

$$(ii) f_{\Gamma}(-x) = f_{\Gamma}(x)$$

(*iii*) $f_{\Gamma}(nx) \supseteq f_{\Gamma}(x)$

for all $x, y \in \Gamma$ and $n \in N$.

Example 1. Consider $N = \{0, a, b, c\}$ be the (right) near-ring per scheme 22 ([24], p. 408) under the operations defined by the following tables:

+	0	a	b	c		0	a	b	с	
0	0	a	b	с	0	0	0	0	0	
a	a	0	с	b	a	a	a	a	a	
b	b	\mathbf{c}	0	a	b	0	0	0	0	
с	c	b	a	0	\mathbf{c}	a	a	a	a	
Γ be the set of parameters and $U = \begin{cases} x \\ 0 \end{cases}$										

Let $\Gamma = N$ and Γ be the set of parameters and $U = \left\{ \begin{bmatrix} x & x \\ 0 & x \end{bmatrix} \mid x, y \in \mathbb{Z}_6 \right\},$ 2 × 2 matrices with \mathbb{Z}_6 terms, is the universal set. We construct a soft set f_{Γ} over U by

$$f_{\Gamma}(0) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 5 \\ 0 & 5 \end{bmatrix} \right\},$$
$$f_{\Gamma}(a) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 5 \\ 0 & 5 \end{bmatrix} \right\},$$
$$f_{\Gamma}(b) = \left\{ \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix} \right\} \quad \text{and} \quad f_{\Gamma}(c) = \left\{ \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix} \right\}$$

Then, one can easily show that the soft set f_{Γ} is an N-group SI-action over U.

Example 2. In Example 1, assume that $\Gamma = N = \{0, a, b, c\}$ is again the set of parameters and $U = D_3 = \{\langle x, y \rangle : x^3 = y^2 = e, xy = yx^2\} = \{e, x, x^2, y, yx, yx^2\}$, dihedral group, be the universal set. We define a soft set f_{Γ} by

$$f_{\Gamma}(0) = D_3, \ f_{\Gamma}(a) = \{x, yx\}, \ f_{\Gamma}(b) = \{e, x, x^2, yx\}, \ f_{\Gamma}(c) = \{e, x, x^2, yx\}.$$

Since $f_{\Gamma}(cb) = f_{\Gamma}(a) = \{x, yx\} \not\supseteq f_{\Gamma}(b) = \{e, x, x^2, yx\}, f_{\Gamma}$ is not an N-group SI-action over U.

It is known that if $N = N_0$, then $n0_{\Gamma} = 0_{\Gamma}$ for all $n \in N$. Therefore, if N is a zero-symmetric near-ring and if we take $\Gamma = \{0_{\Gamma}\}$, then f_{Γ} is an N-group SI-action over U no matter how f_{Γ} is defined and no matter U is.

Proposition 1. Let f_{Γ} be an N-group SI-action over U. Then, $f_{\Gamma}(0_{\Gamma}) \supseteq f_{\Gamma}(x)$ for all $x \in \Gamma$.

Proof. Assume that f_{Γ} is an N-group SI-action over U. Then, for all $x \in \Gamma$, $f_{\Gamma}(0_{\Gamma}) = f_{\Gamma}(x - x) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(-x) = f_{\Gamma}(x) \cap f_{\Gamma}(x) = f_{\Gamma}(x)$.

Theorem 1. Let Γ be an N-group and f_{Γ} be a soft set over U. Then, f_{Γ} is an N-group SI-action over U if and only if

(i) $f_{\Gamma}(x-y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y)$

 $(ii) \ f_{\Gamma}(nx) \supseteq f_{\Gamma}(x)$

for all $x, y \in \Gamma$ and $n \in N$.

Proof. Suppose that f_{Γ} is an N-group SI-action over. Then, by Definition 6, $f_{\Gamma}(xy) \supseteq f_{\Gamma}(y)$ and $f_{\Gamma}(x-y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(-y) = f_{\Gamma}(x) \cap f_{\Gamma}(y)$ for all $x, y \in \Gamma$.

Conversely, assume that $f_{\Gamma}(xy) \supseteq f_{\Gamma}(y)$ and $f_{\Gamma}(x-y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y)$ for all $x, y \in \Gamma$. If we choose $x = 0_{\Gamma}$, then

 $f_{\Gamma}(0_{\Gamma} - y) = f_{\Gamma}(-y) \supseteq f_{\Gamma}(0_{\Gamma}) \cap f_{\Gamma}(y) = f_{\Gamma}(y)$

by Proposition 1. Similarly, $f_{\Gamma}(y) = f_{\Gamma}(-(-y)) \supseteq f_{\Gamma}(-y)$, thus $f_{\Gamma}(-y) = f_{\Gamma}(y)$ for all $y \in \Gamma$. Also, by assumption $f_{\Gamma}(x+y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(-y) = f_{\Gamma}(x) \cap f_{\Gamma}(y)$. This completes the proof.

Theorem 2. Let f_{Γ} be an N-group SI-action over U. If $f_{\Gamma}(x-y) = f_{\Gamma}(0_{\Gamma})$ for any $x, y \in \Gamma$, then $f_{\Gamma}(x) = f_{\Gamma}(y)$.

Proof. Assume that $f_{\Gamma}(x-y) = f_{\Gamma}(0_{\Gamma})$ for any $x, y \in \Gamma$. Then,

$$f_{\Gamma}(x) = f_{\Gamma}(x - y + y) \supseteq f_{\Gamma}(x - y) \cap f_{\Gamma}(y)$$
$$= f_{\Gamma}(0_{\Gamma}) \cap f_{\Gamma}(y) = f_{\Gamma}(y)$$

and similarly

$$f_{\Gamma}(y) = f_{\Gamma}((y-x)+x) \supseteq f_{\Gamma}(y-x) \cap f_{\Gamma}(x)$$

= $f_{\Gamma}(-(y-x)) \cap f_{\Gamma}(x)$
= $f_{\Gamma}(0_{\Gamma}) \cap f_{\Gamma}(x) = f_{\Gamma}(x).$

Thus, $f_{\Gamma}(x) = f_{\Gamma}(y)$ which completes the proof.

It is known that if Γ is an N-group, then $(\Gamma, +)$ is a group but not necessarily abelian. That is, for any $x, y \in \Gamma$, x + y needs not be equal to y + x. However, we have the following:

Theorem 3. Let f_{Γ} be an N-group SI-action over U and $x \in \Gamma$. Then,

$$f_{\Gamma}(x) = f_{\Gamma}(0_{\Gamma}) \Leftrightarrow f_{\Gamma}(x+y) = f_{\Gamma}(y+x) = f_{\Gamma}(y)$$

for all $y \in \Gamma$.

Proof. Suppose that $f_{\Gamma}(x+y) = f_{\Gamma}(y+x) = f_{\Gamma}(y)$ for all $y \in \Gamma$. Then, by choosing $y = 0_{\Gamma}$, we obtain that $f_{\Gamma}(x) = f_{\Gamma}(0_{\Gamma})$. Conversely, assume that $f_{\Gamma}(x) = f_{\Gamma}(0_{\Gamma})$. Then, by Proposition 1, we have

(1)
$$f_{\Gamma}(0_{\Gamma}) = f_{\Gamma}(x) \supseteq f_{\Gamma}(y), \quad \forall y \in \Gamma$$

Since f_{Γ} is an N-group SI-action over U, then

$$f_{\Gamma}(x+y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y) = f_{\Gamma}(y), \quad \forall y \in \Gamma.$$

Moreover, for all $y \in \Gamma$

$$\begin{split} f_{\Gamma}(y) &= f_{\Gamma}((-x)+x) + y) = f_{\Gamma}(-x+(x+y)) \\ &\supseteq f_{\Gamma}(-x) \cap f_{\Gamma}(x+y) = f_{\Gamma}(x) \cap f_{\Gamma}(x+y) = f_{\Gamma}(x+y) \end{split}$$

since by (1), $f_{\Gamma}(x) \supseteq f_{\Gamma}(y)$ for all $y \in \Gamma$ and $x, y \in \Gamma$ implies that $x + y \in \Gamma$. Thus, it follows that $f_{\Gamma}(x) \supseteq f_{\Gamma}(x + y)$, so $f_{\Gamma}(x + y) = f_{\Gamma}(y)$ for all $y \in \Gamma$. Now, let $x \in \Gamma$. Then, for all $y \in \Gamma$

$$f_{\Gamma}(y+x) = f_{\Gamma}(y+x+(y-y)) = f_{\Gamma}(y+(x+y)-y)$$
$$\supseteq f_{\Gamma}(y) \cap f_{\Gamma}(x+y) \cap f_{\Gamma}(y)$$
$$= f_{\Gamma}(y) \cap f_{\Gamma}(x+y) = f_{\Gamma}(y)$$

since $f_{\Gamma}(x+y) = f_{\Gamma}(y)$. Furthermore, for all $y \in \Gamma$,

$$f_{\Gamma}(y) = f_{\Gamma}(y + (x - x)) = f_{\Gamma}((y + x) - x)$$
$$\supseteq f_{\Gamma}(y + x) \cap f_{\Gamma}(x) = f_{\Gamma}(y + x)$$

by (1). It follows that $f_{\Gamma}(y+x) = f_{\Gamma}(y)$ and so $f_{\Gamma}(x+y) = f_{\Gamma}(y+x) = f_{\Gamma}(y)$ for all $y \in \Gamma$, which completes the proof.

Theorem 4. If f_{Γ} and f_{Δ} are N-group SI-actions over U, then so is $f_{\Gamma} \wedge f_{\Delta}$ over U.

Proof. By Definition 3, let $f_{\Gamma} \wedge f_{\Delta} = f_{\Gamma \wedge \Delta}$, where $f_{\Gamma \wedge \Delta}(x, y) = f_{\Gamma}(x) \cap f_{\Delta}(y)$ for all $(x, y) \in E \times E$. Since Γ and Δ are N-groups, then $\Gamma \times \Delta$ is an $N \times N$ group. So, let $(x_1, y_1), (x_2, y_2) \in \Gamma \times \Delta$ and $(n_1, n_2) \in N \times N$. Then,

$$\begin{aligned} f_{\Gamma \wedge \Delta}((x_1, y_1) - (x_2, y_2)) &= f_{\Gamma \wedge \Delta}(x_1 - x_2, y_1 - y_2) \\ &= f_{\Gamma}(x_1 - x_2) \cap f_{\Delta}(y_1 - y_2) \\ &\supseteq (f_{\Gamma}(x_1) \cap f_{\Gamma}(x_2)) \cap (f_{\Delta}(y_1) \cap f_{\Delta}(y_2)) \\ &= (f_{\Gamma}(x_1) \cap f_{\Delta}(y_1)) \cap (f_{\Gamma}(x_2) \cap f_{\Delta}(y_2)) \\ &= f_{\Gamma \wedge \Delta}(x_1, y_1) \cap f_{\Gamma \wedge \Delta}(x_2, y_2), \end{aligned}$$

$$\begin{aligned} f_{\Gamma \wedge \Delta}((n_1, n_2)(x_2, y_2)) &= f_{\Gamma \wedge \Delta}(n_1 x_2, n_2 y_2) = f_{\Gamma}(n_1 x_2) \cap f_{\Delta}(n_2 y_2) \\ &\supseteq f_{\Gamma}(x_2) \cap f_{\Delta}(y_2) = f_{\Gamma \wedge \Delta}(x_2, y_2). \end{aligned}$$

Thus, $f_{\Gamma} \wedge f_{\Delta}$ is an N-group SI-action over U.

Definition 7. Let f_{Γ} , g_{Δ} be N-group SI-actions over U. Then, product of N-group SI-actions f_{Γ} and g_{Δ} is defined as $f_{\Gamma} \times g_{\Delta} = h_{\Gamma \times \Delta}$, where $h_{\Gamma \times \Delta}(x, y) = f_{\Gamma}(x) \times g_{\Delta}(y)$ for all $(x, y) \in \Gamma \times \Delta$.

Theorem 5. If f_{Γ} and g_{Δ} are N-group SI-actions over U, then so is $f_{\Gamma} \times g_{\Delta}$ over $U \times U$.

Proof. By Definition 7, let $f_{\Gamma} \times g_{\Delta} = h_{\Gamma \times \Delta}$, where $h_{\Gamma \times \Delta}(x, y) = f_{\Gamma}(x) \times g_{\Delta}(y)$ for all $(x, y) \in \Gamma \times \Delta$. Then, for all $(x_1, y_1), (x_2, y_2) \in \Gamma \times \Delta$ and $(n_1, n_2) \in N \times N$,

$$\begin{split} h_{\Gamma \times \Delta}((x_1, y_1) - (x_2, y_2)) &= h_{\Gamma \times \Delta}(x_1 - x_2, y_1 - y_2) \\ &= f_{\Gamma}(x_1 - x_2) \times g_{\Delta}(y_1 - y_2) \\ &\supseteq (f_{\Gamma}(x_1) \cap f_{\Delta}(x_2)) \times (g_{\Delta}(y_1) \cap g_{\Delta}(y_2)) \\ &= (f_{\Gamma}(x_1) \times g_{\Delta}(y_1)) \cap (f_{\Gamma}(x_2) \times g_{\Delta}(y_2)) \\ &= h_{\Gamma \times \Delta}(x_1, y_1) \cap h_{\Gamma \times \Delta}(x_2, y_2), \end{split}$$

$$h_{\Gamma \times \Delta}((n_1, n_2)(x_2, y_2)) = h_{\Gamma \times \Delta}(n_1 x_2, n_2 y_2) = f_{\Gamma}(n_1 x_2) \times g_{\Delta}(n_2 y_2)$$
$$\supseteq f_{\Gamma}(x_2) \times g_{\Delta}(y_2) = h_{\Gamma \times \Delta}(x_2, y_2).$$

Hence, $f_{\Gamma} \times g_{\Delta} = h_{\Gamma \times \Delta}$ is an N-group SI-action over $U \times U$.

Theorem 6. If f_{Γ} and h_{Γ} are two N-group SI-actions over U, then so is $f_{\Gamma} \cap h_{\Gamma}$ over U.

Proof. Let $x, y \in \Gamma$ and $n \in N$, then

$$(f_{\Gamma} \cap h_{\Gamma})(x-y) = f_{\Gamma}(x-y) \cap h_{\Gamma}(x-y)$$

$$\supseteq (f_{\Gamma}(x) \cap f_{\Gamma}(y)) \cap (h_{\Gamma}(x) \cap h_{\Gamma}(y))$$

$$= (f_{\Gamma}(x) \cap h_{\Gamma}(x)) \cap (f_{\Gamma}(y) \cap h_{\Gamma}(y))$$

$$= (f_{\Gamma} \cap h_{\Gamma})(x) \cap (f_{\Gamma} \cap h_{\Gamma})(y),$$

$$(f_{\Gamma} \widetilde{\cap} h_{\Gamma})(nx) = f_{\Gamma}(nx) \cap h_{\Gamma}(nx) \supseteq f_{\Gamma}(x) \cap h_{\Gamma}(x) = (f_{\Gamma} \widetilde{\cap} h_{\Gamma})(x).$$

Therefore, $f_{\Gamma} \cap h_{\Gamma}$ is an N-group SI-action over U.

145

Definition 8. Let Γ be an N-group and f_{Γ} be a soft set over U. Then, f_{Γ} is called an N-ideal SI-action of Γ over U if the following conditions are satisfied:

(i) $f_{\Gamma}(x+y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y)$,

- (*ii*) $f_{\Gamma}(-x) = f_{\Gamma}(x)$,
- (*iii*) $f_{\Gamma}(x+y-x) \supseteq f_{\Gamma}(y)$,
- $(iv) f_{\Gamma}(n(x+y) nx) \supseteq f_{\Gamma}(y)$

for all $x, y \in \Gamma$ and $n \in N$. Here, note that $f_{\Gamma}(x+y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y)$ and $f_{\Gamma}(-x) = f_{\Gamma}(x)$ imply $f_{\Gamma}(x-y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y)$.

Example 3. Consider the (right) near-ring $N = \{0, a, b, c\}$ with the following tables [27]:

+	0	a	b	с		0	a	b	с	
0	0	a	b	с	0	0	0	0	0	
a	a	0	\mathbf{c}	b	a	0	0	0	a	
b	b	с	0	a	b	0	a	b	b	
\mathbf{c}	c	\mathbf{b}	a	0	\mathbf{c}	0	a	b	с	

Let $\Gamma = N$ be the set of parameters and $U = D_2$, dihedral group, be the universal set. We define a soft set f_{Γ} over U by

 $f_{\Gamma}(0) = D_2, \quad f_{\Gamma}(a) = \{e, y, yx\}, \quad f_{\Gamma}(b) = \{x, y\}, \quad f_N(c) = \{y\}.$

Then, one can show that f_{Γ} is an N-ideal SI-action of Γ over U.

Example 4. Consider the (right) near-ring $N = \{0, 1, 2, 3\}$ ([24], p. 407) with the following tables:

+	0	1	2	3	•	0	1	2	3	
0	0	1	2	3	 0	0	0	0	0	
1	1	2	3	0	1	0	1	0	1	
2	2	3	0	1	2	0	3	0	3	
3	3	0	1	2	3	0	2	0	2	

Let $\Gamma = N$ be the set of parameters and $U = \mathbb{Z}^+$ be the universal set. We define a soft set f_{Γ} over U by

$$\begin{split} f_{\Gamma}(0) &= \{1, 2, 3, 5, 6, 7, 9, 10, 11, 17\}, \\ f_{\Gamma}(1) &= f_{\Gamma}(3) = \{1, 3, 5, 7, 9, 11\}, \\ f_{\Gamma}(2) &= \{1, 5, 7, 9, 11\}. \end{split}$$

Since $f_{\Gamma}(3 \cdot (1+1) - 3 \cdot 1) = f_{\Gamma}(3 \cdot 2 - 3 \cdot 1) = f_{\Gamma}(0-2) = f_{\Gamma}(0+2) = f_{\Gamma}(2) \not\supseteq f_{\Gamma}(1), f_{\Gamma}$ is not an N-ideal SI-action of Γ over U.

It is known that if N is a zero-symmetric near-ring, then every N-ideal of Γ is also an N-subgroup of Γ [24]. Here, we have an analog for this case:

Theorem 7. Let N be a zero-symmetric near-ring. Then, every N-ideal SI-action over U is an N-group SI-action over U.

Proof. Let f_{Γ} be an *N*-ideal *SI*-action of Γ over *U*. Since $f_{\Gamma}(n(x+y) - nx) \supseteq f_{\Gamma}(y)$, for all $x, y \in \Gamma$ and $n \in N$, in particular for $x = 0_{\Gamma}$, it follows that $f_{\Gamma}(n(0_{\Gamma} + y) - n0_{\Gamma}) = f_{\Gamma}(ny - 0_{\Gamma}) = f_{\Gamma}(ny) \supseteq f_{\Gamma}(y)$. Since the other conditions is satisfied by Definition 8, f_{Γ} is an *N*-group *SI*-action over *U*.

Theorem 8. Let f_{Γ} be an N-ideal SI-action of Γ and f_{Δ} be an N-ideal SI-action of Δ over U. Then, $f_{\Gamma} \wedge f_{\Delta}$ is an N-ideal SI-action of $\Gamma \times \Delta$ over U.

Proof. Let $(x_1, y_1), (x_2, y_2) \in \Gamma \times \Delta$ and $(n_1, n_2) \in N \times N$. Then, $f_{\Gamma \wedge \Delta}((x_1, y_1) - (x_2, y_2)) \supseteq f_{\Gamma \wedge \Delta}(x_1, y_1) \cap f_{\Gamma \wedge \Delta}(x_2, y_2)$ can be shown similar to Theorem 4. Moreover,

$$\begin{aligned} f_{\Gamma \wedge \Delta}((x_1, y_1) + (x_2, y_2) - (x_1, y_1)) &= f_{\Gamma \wedge \Delta}(x_1 + x_2 - x_1, y_1 + y_2 - y_1) \\ &= f_{\Gamma}(x_1 + x_2 - x_1) \cap f_{\Delta}(y_1 + y_2 - y_1) \\ &\supseteq f_{\Gamma}(x_2) \cap f_{\Delta}(y_2) = f_{\Gamma \wedge \Delta}(x_2, y_2) \end{aligned}$$

and

$$\begin{split} f_{\Gamma \wedge \Delta}((n_1, n_2)((x_1, y_1) + (x_2, y_2)) - (n_1, n_2)(x_1, y_1)) \\ &= f_{\Gamma \wedge \Delta}(n_1(x_1 + x_2) - n_1x_1, n_2(y_1 + y_2) - n_2y_1) \\ &= f_{\Gamma}(n_1(x_1 + x_2) - n_1x_1) \cap f_{\Delta}(n_2(y_1 + y_2) - n_2y_1) \\ &\supseteq f_{\Gamma}(x_2) \cap f_{\Delta}(y_2) = f_{\Gamma \wedge \Delta}(x_2, y_2). \end{split}$$

Therefore, $f_{\Gamma} \wedge f_{\Delta}$ is an N-ideal SI-action of $\Gamma \times \Delta$ over U.

Definition 9. Let f_{Γ} be an N-ideal SI-action of Γ and f_{Δ} be an N-ideal SI-action of Δ over U. Then, product of N-ideal SI-actions f_{Γ} and g_{Δ} is defined as $f_{\Gamma} \times g_{\Delta} = h_{\Gamma \times \Delta}$, where $h_{\Gamma \times \Delta}(x, y) = f_{\Gamma}(x) \times g_{\Delta}(y)$ for all $(x, y) \in \Gamma \times \Delta$.

Theorem 9. If f_{Γ} is an N-ideal SI-action of Γ and f_{Δ} is an N-ideal SI-action of Δ over U, then $f_{\Gamma} \times g_{\Delta}$ is an N-ideal SI-action of $\Gamma \times \Delta$ over $U \times U$.

Proof. Let $(x_1, y_1), (x_2, y_2) \in \Gamma \times \Delta$ and $(n_1, n_2) \in N \times N$. Then, $f_{\Gamma \wedge \Delta}((x_1, y_1) - (x_2, y_2)) \supseteq f_{\Gamma \wedge \Delta}(x_1, y_1) \cap f_{\Gamma \wedge \Delta}(x_2, y_2)$ can be shown similar to Theorem 5. Now,

$$f_{\Gamma \times \Delta}((x_1, y_1) + (x_2, y_2) - (x_1, y_1)) = f_{\Gamma \times \Delta}(x_1 + x_2 - x_1, y_1 + y_2 - y_1)$$

= $f_{\Gamma}(x_1 + x_2 - x_1) \times f_{\Delta}(y_1 + y_2 - y_1)$
 $\supseteq f_{\Gamma}(x_2) \times f_{\Delta}(y_2) = f_{\Gamma \times \Delta}(x_2, y_2)$

and

$$\begin{split} f_{\Gamma \times \Delta}((n_1, n_2)((x_1, y_1) + (x_2, y_2)) - (n_1, n_2)(x_1, y_1)) \\ &= f_{\Gamma \times \Delta}(n_1(x_1 + x_2) - n_1x_1, n_2(y_1 + y_2) - n_2y_1) \\ &= f_{\Gamma}(n_1(x_1 + x_2) - n_1x_1) \times f_{\Delta}(n_2(y_1 + y_2) - n_2y_1) \\ &\supseteq f_{\Gamma}(x_2) \times f_{\Delta}(y_2) = f_{\Gamma \times \Delta}(x_2, y_2). \end{split}$$

Hence, $f_{\Gamma} \times g_{\Delta}$ is an N-ideal SI-action of $\Gamma \times \Delta$ over $U \times U$.

Theorem 10. If f_{Γ} and h_{Γ} are two N-ideal SI-actions of Γ over U, then $f_{\Gamma} \cap h_{\Gamma}$ is an N-ideal SI-action of Γ over U.

Proof. Let $x, y \in \Gamma$ and $n \in N$. Then, $(f_{\Gamma} \cap h_{\Gamma})(x - y) \supseteq (f_{\Gamma} \cap h_{\Gamma})(x) \cap (f_{\Gamma} \cap h_{\Gamma})(y)$ can be shown similar to Theorem 10. Now,

$$(f_{\Gamma} \cap h_{\Gamma})(x+y-x) = f_{\Gamma}(x+y-x) \cap h_{\Gamma}(x+y-x)$$
$$\supseteq f_{\Gamma}(y) \cap h_{\Gamma}(y) = (f_{\Gamma} \cap h_{\Gamma})(y)$$

and

$$(f_{\Gamma} \widetilde{\cap} h_{\Gamma})(n(x+y) - nx) = f_{\Gamma}(n(x+y) - nx) \cap h_{\Gamma}(n(x+y) - nx)$$
$$\supseteq f_{\Gamma}(y) \cap h_{\Gamma}(y) = (f_{\Gamma} \widetilde{\cap} h_{\Gamma})(y)$$

Therefore, $f_{\Gamma} \cap h_{\Gamma}$ is an N-ideal SI-action of Γ over U.

4. Applications of N-group SI-actions and N-ideal SI-actions

In this section, we give the applications of soft image, soft pre-image, upper α -inclusion of soft sets and N-homomorphism to N-group theory with respect to N-group SI-actions and N-ideal SI-actions.

Theorem 11. If f_{Γ} is an N-ideal SI-action of Γ over U, then $\Gamma_f = \{x \in \Gamma : f_{\Gamma}(x) = f_{\Gamma}(0_{\Gamma})\}$ is an N-ideal of Γ .

Proof. It is obvious that $0_{\Gamma} \in \Gamma_f \subseteq \Gamma$. We need to show that (i) $x - y \in \Gamma_f$, (ii) $\gamma + x - \gamma \in \Gamma_f$ and (iii) $n(\gamma + x) - n\gamma \in \Gamma_f$ for all $x, y \in \Gamma_f$ and $n \in N$ and $\gamma \in \Gamma$. If $x, y \in \Gamma_f$, then $f_{\Gamma}(x) = f_{\Gamma}(y) = f_{\Gamma}(0_{\Gamma})$. By Proposition 1,

$$f_{\Gamma}(0_{\Gamma}) \supseteq f_{\Gamma}(x-y), \quad f_{\Gamma}(0_{\Gamma}) \supseteq f_{\Gamma}(\gamma+x-\gamma)$$

and
$$f_{\Gamma}(0_{\Gamma}) \supseteq f_{\Gamma}(n(\gamma+x)-n\gamma)$$

for all $n \in N$, $x, y \in \Gamma_f$ and $\gamma \in \Gamma$. Since f_{Γ} is an N-ideal SI-action of Γ over U, then for all $n \in N$, $x, y \in \Gamma_f$ and $\gamma \in \Gamma$

(i)
$$f_{\Gamma}(x-y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y) = f_{\Gamma}(0_{\Gamma}),$$

(ii) $f_{\Gamma}(\gamma + x - \gamma) \supseteq f_{\Gamma}(x) = f_{\Gamma}(0_{\Gamma})$
(iii) $f_{\Gamma}(n(\gamma + x) - n\gamma) \supseteq f_{\Gamma}(x) = f_{\Gamma}(0_{\Gamma}).$

Hence,

$$\begin{split} f_{\Gamma}(x-y) &= f_{\Gamma}(0_{\Gamma}), \quad f_{\Gamma}(\gamma+x-\gamma) = f_{\Gamma}(0_{\Gamma}) \\ \text{and} \quad f_{\Gamma}(n(\gamma+x)-n\gamma) = f_{\Gamma}(0_{\Gamma}) \end{split}$$

for all $n \in N$, $x, y \in \Gamma_f$ and $\gamma \in \Gamma$. Therefore Γ_f is an N-ideal of Γ .

Theorem 12. Let f_{Γ} be a soft set over U and α be a subset of U such that $\emptyset \subseteq \alpha \subseteq f_{\Gamma}(0_{\Gamma})$. If f_{Γ} is an N-ideal SI-action over U, then $f_{\Gamma}^{\supseteq \alpha}$ is an N-ideal of Γ .

Proof. Since $f_{\Gamma}(0_{\Gamma}) \supseteq \alpha$, then $0_{\Gamma} \in f_{\Gamma}^{\supseteq \alpha}$ and $\emptyset \neq f_{\Gamma}^{\supseteq \alpha} \subseteq \Gamma$. Let $x, y \in f_{\Gamma}^{\supseteq \alpha}$, then

$$f_{\Gamma}(x) \supseteq \alpha$$
 and $f_{\Gamma}(y) \supseteq \alpha$.

We need to show that

(i) $x - y \in f_{\Gamma}^{\supseteq \alpha}$ (ii) $\gamma + x - \gamma \in f_{\Gamma}^{\supseteq \alpha}$ (iii) $n(\gamma + x) - n\gamma \in f_{\Gamma}^{\supseteq \alpha}$

(*iii*) $n(\gamma + x) - n\gamma \in f_{\Gamma}^{\supseteq \alpha}$ for all $x, y \in f_{\Gamma}^{\supseteq \alpha}$, $n \in N$ and $\gamma \in \Gamma$. Since f_{Γ} is an N-ideal SI-action over U, it follows that

$$f_{\Gamma}(x-y) \supseteq f_{\Gamma}(x) \cap f_{\Gamma}(y) \supseteq \alpha \cap \alpha = \alpha,$$

$$f_{\Gamma}(\gamma + x - \gamma) \supseteq f_{\Gamma}(x) \supseteq \alpha$$

and
$$f_{\Gamma}(n(\gamma + x) - n) \supseteq f_{\Gamma}(x) \supseteq \alpha.$$

Thus, the proof is completed.

 \mathbf{a}

Theorem 13. Let f_{Γ} and f_{Δ} be soft sets over U and Ψ be an N-isomorphism from Γ to Δ . If f_{Γ} is an N-ideal SI-action of Γ over U, then $\Psi(f_{\Gamma})$ is an N-ideal SI-action of Δ over U.

Proof. Let δ_1, δ_2 and $n \in N$. Since Ψ is surjective, there exists $\gamma_1, \gamma_2 \in \Gamma$ such that $\Psi(\gamma_1) = \delta_1$ and $\Psi(\gamma_2) = \delta_2$. Then,

$$(\Psi(f_{\Gamma}))(\delta_{1} - \delta_{2}) = \bigcup \{f_{\Gamma}(\gamma) : \gamma \in \Gamma, \Psi(\gamma) = \delta_{1} - \delta_{2}\} = \bigcup \{f_{\Gamma}(\gamma) : \gamma \in \Gamma, \gamma = \Psi^{-1}(\delta_{1} - \delta_{2})\} = \bigcup \{f_{\Gamma}(\gamma) : \gamma \in \Gamma, \gamma = \Psi^{-1}(\Psi(\gamma_{1} - \gamma_{2})) = \gamma_{1} - \gamma_{2}\} = \bigcup \{f_{\Gamma}(\gamma_{1} - \gamma_{2}) : \gamma_{i} \in \Gamma, \Psi(\gamma_{i}) = \delta_{i}, i = 1, 2\} \supseteq \bigcup \{f_{\Gamma}(\gamma_{1}) \cap f_{\Gamma}(\gamma_{2}) : \gamma_{i} \in \Gamma, \Psi(\gamma_{i}) = \delta_{i}, i = 1, 2\}$$

A. S. Sezer, A. O. Atagün and N. Çağman

$$= \left(\bigcup \{f_{\Gamma}(\gamma_1) : \gamma_1 \in \Gamma, \Psi(\gamma_1) = \delta_1\}\right)$$

$$\cap \left(\bigcup \{f_{\Gamma}(\gamma_2) : \gamma_2 \in \Gamma, \Psi(\gamma_2) = \delta_2\}\right)$$

$$= \left(\Psi(f_{\Gamma})\right)(\delta_1) \cap \left(\Psi(f_{\Gamma})\right)(\delta_2).$$

Also,

$$\begin{aligned} (\Psi(f_{\Gamma}))(\delta_{1}+\delta_{2}-\delta_{1}) &= \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \Psi(\gamma) = \delta_{1}+\delta_{2}-\delta_{1}\} \\ &= \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \gamma = \Psi^{-1}(\delta_{1}+\delta_{2}-\delta_{1})\} \\ &= \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \gamma = \Psi^{-1}(\Psi(\gamma_{1}+\gamma_{2}-\gamma_{1})) \\ &= \gamma_{1}+\gamma_{2}-\gamma_{1}\} \\ &= \bigcup \{f_{\Gamma}(\gamma_{1}+\gamma_{2}-\gamma_{1}): \gamma_{i} \in \Gamma, \Psi(\gamma_{i}) = \delta_{i}, i = 1, 2\} \\ &\supseteq \bigcup \{f_{\Gamma}(\gamma_{2}): \gamma_{2} \in \Gamma, \Psi(\gamma_{2}) = \delta_{2}\} = (\Psi(f_{\Gamma}))(\delta_{2}). \end{aligned}$$

Furthermore,

$$(\Psi(f_{\Gamma}))(n(\delta_{1}+\delta_{2})-n\delta_{1}) = \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \Psi(\gamma) = n(\delta_{1}+\delta_{2})-n\delta_{1}\}$$
$$= \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \gamma = \Psi^{-1}(n(\delta_{1}+\delta_{2})-n\delta_{1})\}$$
$$= \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \gamma = \Psi^{-1}(\Psi(n(\gamma_{1}+\gamma_{2})-n\gamma_{1})))\}$$
$$= \bigcup \{f_{\Gamma}(\gamma): \gamma \in \Gamma, \gamma = n(\gamma_{1}+\gamma_{2})-n\gamma_{1}\}$$
$$= \bigcup \{f_{\Gamma}(n(\gamma_{1}+\gamma_{2})-n\gamma_{1}): \gamma_{i} \in \Gamma, \Psi(\gamma_{i}) = \delta_{i}, i = 1, 2, 3\}$$
$$\supseteq \bigcup \{f_{\Gamma}(\gamma_{2}): \gamma_{2} \in \Gamma, \Psi(\gamma_{2}) = \delta_{2}\} = (\Psi(f_{\Gamma}))(\delta_{2}).$$

Hence, $\Psi(f_{\Gamma})$ is an N-ideal SI-action of Δ over U.

Theorem 14. Let f_{Γ} and f_{Δ} be soft sets over U and Ψ be an N-homomorphism from N to Δ . If f_{Δ} is an N-ideal SI-action of Δ over U, then $\Psi^{-1}(f_{\Delta})$ is an N-ideal SI-action of Γ over U.

Proof. Let $\gamma_1, \gamma_2 \in \Gamma$ and $n \in N$. Then,

$$(\Psi^{-1}(f_{\Delta}))(\gamma_{1}-\gamma_{2}) = f_{\Delta}(\Psi(\gamma_{1}-\gamma_{2})) = f_{\Delta}(\Psi(\gamma_{1})-\Psi(\gamma_{2}))$$

$$\supseteq f_{\Delta}(\Psi(\gamma_{1})) \cap f_{\Delta}(\Psi(\gamma_{2}))$$

$$= (\Psi^{-1}(f_{\Delta}))(\gamma_{1}) \cap (\Psi^{-1}(f_{\Delta}))(\gamma_{2}).$$

Also,

$$(\Psi^{-1}(f_{\Delta}))(\gamma_1 + \gamma_2 - \gamma_1) = f_{\Delta}(\Psi(\gamma_1 + \gamma_2 - \gamma_1))$$

= $f_{\Delta}(\Psi(\gamma_1) + \Psi(\gamma_2) - \Psi(\gamma_1))$
 $\supseteq f_{\Delta}(\Psi(\gamma_2)) = (\Psi^{-1}(f_{\Delta}))(\gamma_2).$

Furthermore,

$$(\Psi^{-1}(f_{\Delta}))(n(\gamma_1 + \gamma_2) - n\gamma_1) = f_{\Delta}(\Psi((n(\gamma_1 + \gamma_2) - n\gamma_1)))$$

= $f_{\Delta}(n((\Psi(\gamma_1) + \Psi(\gamma_2)) - n\Psi(\gamma_1)))$
 $\supseteq f_{\Delta}(\Psi(\gamma_2) = (\Psi^{-1}(f_{\Delta}))(\gamma_2).$

Hence, $\Psi^{-1}(f_{\Delta})$ is an N-ideal SI-action of Γ over U.

5. Conclusion

In this paper, we have defined a new type of N-group action on a soft set, called N-group SI-action by using the soft sets. This new concept picks up the soft set theory, set theory and N-group theory together and therefore, it is very functional for obtaining results in the mean of N-group structure. Based on this definition, we have introduced the concept of N-ideal SI-action of an N-group. We have then investigated these notions with respect to soft image, soft pre-image and upper α -inclusion of soft sets. Finally, we give some applications of N-ideal SI-actions to N-group theory. To extend this study, one can further study the other algebraic structures such as different algebras in view of their SI-actions.

References

- ACAR U., KOYUNCU F., TANAY B., Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463.
- [2] AKTAS H., ÇAĞMAN N., Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
- [3] ALI M.I., FENG F., LIU X., MIN W.K., SHABIR M., On some new operations in soft set theory, *Comput. Math. Appl.*, 57(2009), 1547-1553.
- [4] ATAGÜN A.O., SEZGIN A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3)(2011), 592-601.
- [5] BABITHA K.V., SUNIL J.J., Soft set relations and functions, Comput. Math. Appl., 60(7)(2010), 1840-1849.
- [6] ÇAĞMAN N., ENGINOĞLU S., Soft matrix theory and its decision making, Comput. Math. Appl., 59(2010), 3308-3314.
- [7] ÇAĞMAN N, ENGINOĞLU S., Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207(2010), 848-855.
- [8] ÇAĞMAN N., ÇITAK F., AKTAŞ H., Soft int-groups and its applications to group theory, *Neural Comput. Appl.*, DOI: 10.1007/s00521-011-0752-x.
- [9] ÇAĞMAN N., SEZGIN A., ATAGÜN A.O., Soft uni-groups and its applications to group theory, (*submitted*).
- [10] ÇAĞMAN N., SEZGIN A., ATAGÜN A.O., α -inclusions and their applications to group theory, (*submitted*).

- [11] FENG F., JUN Y.B., ZHAO X., Soft semirings, Comput. Math. Appl., 56(2008), 2621–2628.
- [12] FENG F., LIU X.Y., LEOREANU-FOTEA V., JUN Y.B., Soft sets and soft rough sets, *Inform. Sci.*, 181(6)(2011), 1125-1137.
- [13] FENG F., LI C., DAVVAZ B., ALI M.I., Soft sets combined with fuzzy sets and rough sets: a tentative approach, *Soft Comput.*, 14(6)(2010), 899-911.
- [14] JUN Y.B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56(2008), 1408 -1413.
- [15] JUN Y.B., PARK C.H., Applications of soft sets in ideal theory of BCK/ BCI-algebras, *Inform. Sci.*, 178(2008), 2466-2475.
- [16] JUN Y.B., LEE K.J., ZHAN J., Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060-2068.
- [17] JUN Y.B., LEE K.J., PARK C.H., Soft set theory applied to ideals in d-algebras, Comput. Math. Appl., 57(3)(2009), 367-378.
- [18] KAZANCI O., YILMAZ Ş., YAMAK S., Soft sets and soft BCH-algebras, Hacet. J. Math. Stat., 39(2)(2010), 205-217.
- [19] MAJI P.K., BISWAS R., ROY A.R., Soft set theory, Comput. Math. Appl., 45(2003), 555-562.
- [20] MAJI P.K., ROY A.R., BISWAS R., An application of soft sets in a decision making problem, *Comput. Math. Appl.*, 44(2002), 1077-1083.
- [21] MAJUMDAR P., SAMANTA S.K., On soft mappings, Comput. Math. Appl., 60 (9)(2010), 2666-2672.
- [22] MOLODTSOV D., Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.
- [23] MOLODTSOV D.A., LEONOV V.YU., KOVKOV D.V., Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya, 1(1)(2006), 8-39.
- [24] PILZ G., Near-rings, North Holland Publishing Company, Amsterdam-New York-Oxford, 1983.
- [25] SEZGIN A., ATAGÜN A.O., AYGÜN E., A note on soft near-rings and idealistic soft near-rings, *Filomat.*, 25(1)(2011), 53-68.
- [26] SEZGIN A., ATAGÜN A.O., On operations of soft sets, Comput. Math. Appl., 61(5)(2011), 1457-1467.
- [27] WENDT G., On Zero Divisors in Near-Rings, Int. J. Algebra, 3(1)(2009), 21-32.
- [28] ZHAN J., JUN Y.B., Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(6)(2010), 2037-2046.
- [29] ZOU Y., XIAO Z., Data analysis approaches of soft sets under incomplete information, *Knowl-Based Syst.*, 21(2008), 941-945.

Aslihan Sezgin Sezer Department of Mathematics Faculty of Arts and Science Amasya University 05100 Amasya, Turkey *e-mail:* aslihan.sezgin@amasya.edu.tr AKIN OSMAN ATAGÜN DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE BOZOK UNIVERSITY 66100 YOZGAT, TURKEY *e-mail:* aosman.atagun@bozok.edu.tr

NAIM ÇAĞMAN DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE GAZIOSMANPAŞA UNIVERSITY 60250 TOKAT, TURKEY *e-mail:* ncagman@gop.edu.tr

Received on 28.06.2012 and, in revised form, on 27.11.2012.